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Abstract

The decay width of the A isobar is calculated using the QCD sum rule
method. To include the effect of finite hadronic widths, we replace the §-
function in the spectral density by a normalized Breit-Wigner distribution.

The resulting width is in reasonable agreement with the experimental value.
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The QCD sum rule api)roach is an attempt to understand hadronic parameters in the
low energy region in terms of QCD perturbation theory and non-vanishing condensates,
which cha.racterizes the non-perturbative QCD vacuum. It has been widely applied to cal-
culate hadron properties [1-4] and its fundamental assumption is the principle of duality:
specifically one assumes that there exists an energy interval over which a hadron may be
equivalently described at both quark and hadronic level.

The underlying procedure of the QCD sum rule technique; is to look at the correlation
function between QCD hadronic currents and to study its dispersion relation, The real part
of the correlation function is calculated in QCD using the operator product ezpansion (OPE)
and the hmaginary part is modeled with phenomenological parameters, such as mass and
particle-current coupling.

In almost all QCD sum rule calculations, the phenomenological side is parametrized by
writing the spectral density as a single sharp pole, representing the lowest-energy hadron
state, plus a smooth continuum representing higher states. This approximation is justified
by saying that the lowest-energy hadron state is usually fairly narrow when compared to
higher-mass states. Nevertheless, one knows that the A-particle is unstable, and therefore it
does have a finite width. In this note we will evaluate the A width in the frameworklof the
QCD sum rules, and show that the result obtained is compatible with experimental data.

Also, besides the intrinsic interest of the problem, there is the fact that the A width
is expecte& to change in the nuclear medium [5,6]. Therefore, once one is able to extract
information about the A width from the QCD sum rules in vacuum, the approach can be
extended to nuclear matter in order to evaluate the effect of the medium in the A width
from the QCD sum rule point of view {7}, The QCD sum rules for the A in nuclear matter
with the sharp pole approximation were recently analyzed in Refs. [8,9].

We must stress here that our main goal in introducing a width is not to try to improve
the agreement between the two A sum rules, as was done in Ref, [10] by the inclusion of
instanton effects, but rather to explore the QCD sum rules prediction for the width. We

have knowledge of only one work which has considered the effect of finite hadronic widths
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in a QCD sum rule calculation [11]. The authors of Ref. [11] have shown that the large
difference between the p and w widths can have a dramatic effect on the value of the off-
shell p-w mixing matrix element. In this work we follow an opposite direction than that
used by these authors and extract the value of the width from the QCD sum rule analysis,
instead of using it as an input in the calculation.

The correlation function for the A isobar is defined by

Malg) = [ ™(OIT {1(2)5.(0)}10), (1

where

Mu(®) = €ate (1] (2)Crt0(2)| wel) (2)

is the current with the A isobar quantum numbers [2]. In Eq. (2) u(w) is a quark field
operator, T denotes a transpose in Dirac space, C is the charge conjugation matrix and g,
b, c are color indices.

The A correlator, Eq. (1), has many tensorial structures. However, in this work we
will consider only the sum rules obtained from the structures G and g4, which receive

contributions just from spin £ states [2]:
1,u(q) = g [M1(4%) + d1T4(¢%)] + - (3)

For each of these two structures, we can write a dispersion relation:

Im [Ty 4(s
10, 4 (¢%) = ~ fd—[L()l . (4)
q
where “--" in the last equation stands for subtraction terms {polynomials in 7).

In previous studies the spectral density, Im {11, 4(s)], was always represented by a sharp

pole at the mass of the A, plus a continuum starting at an effective threshold s, [2-4,10]:

T [y 4(s)] = mAherg6(s — MZ) + Im [HR;’E(S)] 8(s — sq), (5)

where ¢; = Ma, ¢; = 1 and A, gives the strength o_f the coupling between the current and

the A-particle (M, is the mass of the A isobar). |
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In order to include a finite width for the A, we follow Ref. [11] and replace the §-function

in Eq. {5) by a normalized Breit-Wigner distribution:

Mals
(s — M3)" + MEI2’

8(s — MA) — [7/2 + arctan(Ma /Ta )] (6)

where I'y denotes -the width of the A

For the calculation of the correlator using OPE, we have considered quark and quark-
gluon condensates up to dimension 5, pure gluon condensates of dimension 4 and the four-
quark condensate of dimension 6. The corresponding diagra,n';é are shown in Fig. 1.

As usual, we proceed by equating the correlator evaluated using OPE [called the left-
hand-side (LHS)] to the correlator obtained using the dispersion relation [called the right-
hand-side (RHS)], which is a function of the physical quantities. After applying a Borel

transform [1], we obtain the following sum rule from the structure Guw'

1

[ aF, L1877 ppd maE LA = R(M*%) (7a)
MA 3

and this one bellow from the structure g, ¢:
1
= E L'I/'Z? 5] 21’28/27 bE 4/27M2 — 2
5 M®+ 3 75 ol R(M*), (7b)

where we have defined

p oo MaT 2 .
R(MY = A2 ds [n/2 + arctan(Ma [T} ™! 4’4 —sfM 8
(M%) = 34 [} ds /2 4 vcsan(MaTa)) (i e, (g

and

—(27)* (dq),
b= (ng’2> )
mg = {§g.o - Gq) / () ,
M = (2m)'ad,

L = log(M[Aqcn)/ log(t/ Aqep). (9)




In the above equations 4 is the QCD normalization point and Aqep is the QCD scale
parameter. The powers of I take care of the anomalous dimension, while the factors E; are

responsible for the continuum contribution to the sum rules and are given by [2]

Fy=1— ¢ 5™

E1 = 1 — e—ao/M2 (—‘?.9_ + 1)

M2
e 56 s .
Ey=1-¢ Dle(ﬁ;-FE;—z‘Fl) (10)

The hadronic parameters are then determined by the requirement that the Eqs. (7a) and
(7b) are simultaneously satisfied in a certain Borel window, that in our case is 1.2GeV?% <
M? <1.8CeV? In doing that, we have chosen to hold M fixed at its experimental value,
Ma = 1.23 GeV. The values for the QCD parameters used in our calculations are shown in
Table I,

The values obtained for the hadronic parameters, using the same numerical optimization

procedure described in Ref. [4], are shown bellow. The resulting fit can be seen from Fig. 2.

MA = 1.23 GeV
M w2 2.3GeV
sp = 3.7 GeV?

[a = 160 MeV

The values for Ay and sg, as well as the quality of the fit, are roughly the same as that
obfained from the A sum rules with the sharp pole approximation. This attests for the
stability of our calculations.

It is gratifying to note that the value obtained for Iy is in good agreement with the
experimental value Ty =~ 110 MeV, obtained recently from analysis of ntp scattering data
[12].

In conclusion, v.ve have calculated the width of the A jsobar using the QCD sum rule

approach. A finite hadronic width is introduced in the phenomenplogicai side of the sum
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rule through the replacement of the é-function by a normalized Breit-Wigner distribution.

The inclusion of the width has little effect on the values of the coupling constant and the

continuum threshold, indicating the stability of the result. The widih obtained is in good

agreement with the experimental value.

It will be very interesting to analyze the effect of the nuclear medium in the A width
using the QCD sum rule technique. Work in this direction is in progress [7].

This work was partiatly supported by CNPq (Bragil).
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FIGURES
FIG. 1. Diagrams accounted for in the calculation of the correlator [Eq. (1)] using OPE.

FIG. 2. Fit of the phenomenological and QCD sides of the A sum rules. R(M?)} is given by

Eq. (8), while LHS, and LHS; denote the left-hand-size of Eqs. (7a} and (7b) respectively.




TABLES

TABLE I. Values for the QCD parameters used in evaluating the left-hand-size of the sum rules.

a b m} u Aqgep

0.5GeV? 0.474 Gev* 0.8GeV? 0.5GeV 0.1 GeV
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FIGURE 1 - A width from QCD sum rules, E. C. Lopes and M. Nielsen.
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FIGURE 2 - A width from QCD sum rules, E. C. Lopes and M. Nielsen.




