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A review is presented of some applications of g—deformed algebras to
many-body systems. The rotational and pairing nuclear problems will be
discussed in the context of g—deformed algebras, before presenting a more
microscopically_ based application Vof g—deformed concepts to many-fermion

systems.

I INTROQDUCTION

In the last decade a great effort has been devoted to the development and understand-
ing of deformed algebras, although their direct physical interpretation is sometimes incom-

plete or even completely lacking. In some cases like the XXZ-model, where the ferromag-

*Dedicated to Prof. Paule Leal Ferreiva on his 70th birthday. His scieatific contribution to
the developmient of Theoretical Physics, particularly in our country, will never be acknowledged

enough.

netic/antiferromagnetic nature of & spin % chain of length N can be simulated through the
introduction of a ¢-deformed algebra {1], or the rotational bands in deformed naclei and -
molecules which can be fitted via a g-rotor Hamiltonian [2-4], instead of using the variable

moment of inertia (VMI-model), is the physical meaning of such a deformation established.

From the original studies which appeared in connection with problems related to solvable

statistical mechanics models [5] and quantum inverse scatiering theory 6], a solid develop-

ment has emerged which enconipass nowadays various branclies of mathematical problems

related to physical applications, such as deformed superalgebras [7]. kuot theories [8], non-

commutative geometries [9] and so on. In this conlext, the introduction of a g-deformed

bosonic harmouic oscillator, derived in siuch a way to pass [roin a su(2) synunelry. originally

present in the non-deformed case, to a su (2) one, gave origin to new comnutalion rela-

tions which have been extensively studied in several papers [10-12] heing all these results

unambiguously obtained due to the underiying sl,(2) structure [13].

The nucleus is a finite quantal many-baryon system. It provides a scenario where elec-
tromagnetic, weak and strong interactions play their role altogether. The nuclens may be, .
therefore, a uatural place to look for manifestations of new symmetries and/for deviations
from old ones.

A plethora of models have been developed to deal wilh the physics of such a complex
system, some of them with more phenomenological foundations, for instance the nuclear
collective model, being others hased ou the underlying fermionic structure of the nuclear
many body system, like the mean-field plus residual interaction description of the nuclei.

The many-body problem in all its complexity calls {or the use of approximale methods or
the development of simple solvable madels which should entail most of the relevant physics
combined with a technically simple treatment [14]. A long heritage of such models is available
in the nuclear physics literature, among which the Lipkin model [15] has been exiensively
used as a laboratory to test approximate methods and te poinl out the main features of the
many-body systems.

Fromn the point of view of g—deformed algehra applications Lo physical systets it s
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important to understand how the basic characleristics and the general behavior of many- -

body systems are modified when the underlying algebra is deforined. The use of g-deformed
algebra in the description of some mauny-body systems has lead to the appearance of new
features when compared lo the non-deformed case. In this conneclion we mention some
examples: a) in the g-oscillator many-body problem [12] it was shown that, when promoting
the symmetrics of the standard oscillator system to g-symmetries, the specirum of the system
is found to exhibit interactions between the levels of the individual oscillators, b) the revivals
phenomenon present in the Jaynes-Cuminings model [16] disappears when the original su(2)
syminelry is deformed, c) an extensive study of a deformed collective Lipkin Hamiltonian
was parformed and the g-deformed second order phase transition was found to be suppressed
{17]. The sccond order phase transition associated to the spherical symmetry breaking in
the quasi-spin space [18] for this deforined model was also discussed in the g-coherent states
framework [19]. A recenl paper [20] has shown, in the framework of the g—deformed Lipkin
Hamiltonian, the importance of a carveful treatinent of the mean field, when dealing with
" g—deformed fermionic systems. ’

In this talk differeut aspects of the application of g—algebras to many-hody physics will
he presented. After a short review of the basic concepts of g—deformed algebras in section
2, "phenomenological” applications of q— algebras in nuclear physics will be discussed in
section 3. Section 4 will deal with g—deformed many fermion systems in the context of a
g-fermionic extension of the standard Lipkin madel (SLM). In this section the discussion will
be concentrated on the phase transition hehavior of lermionic g—deformed systems, both at

zero and finite temperatures. Finally some conclusions will be drawn on section 5.

I1. A BRIEF REVIEW OF S5Ug(2) DEFORMED ALGEBRAS

The concepl of deformed algehbra emerged in the eighties and is still object of continuous
developments in mathemalics and physics. It was intreduced in the context of exactly soluble

statistical models, integrable systems in field theory, non-commutative geometry and other

fields. Of particular interest are the develdpments by Biedcnharn [10] and Macfarlane [11]
on the g—analogues of the quantum harmonic oscillator. If the importance of the harmonic
oscillator in many branches in physics v;ri]l be reproduced in the context of g—algebras, it
can be expected that its study may provide some guidance in this new field.

The quantum algebra su,(2) is a deformation of the Lie algebra of the SU(2) group.
Deformation in this context does not mean exac.tly what we may be acquainted with, for
instance in a non spherical nucleus or a molecule, but rather deformation here is to be un-
derstood as modifications in the commutation relations among the generators of the algebra
according to given, although not unique, prescriptions. A possible realization of the su,(2)
quantum algebra in terms of three hermitian operators 1y, J_ and Jo is shown below along

with the usual su(2) algebra:

su(2) suy{2)
[JU-,J:I:] = £ ']i —* [.]n, ']i] = :l:.]i (2-])
Wi J ) =2J0 = Lde] = 20y
The new quantity [z e.lp])earing above is a g—number and it can be defined as,
T — g™  sinhqyr
[z}, = £-¢ _T_17° (2.3

g-—q! sinhvy ’
where g = €' may be a complex number. —numbers go to the usual numbers as g — 1
{or v = 0), meaning that the well known commutation relations of the zi{2) algebra are
recovered in this limit.

The quadratic Casimir operator of su,(2) given by,
Cq = J+J_ + {J[)],,[Ju - ]}q, (23)

still commutes with the generators of the algebra. Jinibo [21] has shown that, given Eqgs.
(2.1), exists a representation, for each 7 ( 7 =0, 1/2,1, ._..,) with basis {jm) (—7 < m £ j),

such that,




Joljm) = mijm 2.4)
.

dylgm) = \/[J FmffEm+ 1 fm 1), (2.5)

The su,(2) irreducible representations D are obtained from the maximum weight states.

The basis states |jm) are connected to the maximum weight states 177} in the following way,

i +m]y!

m(«k)j"m 1) » (2.6)

lim) =
where, [n];! = [1],]2],----[n]; and,
o Ljm) = Lil i + s im). (27)

Analogously to the standard construction of irreducible representations of su(2) due to
Schwinger [22], Maclarlane proposed a way to write J in terms of the creation and destruction
operators of a pair of independent. g—deformed harmonic oscillator degrees of freedom [11].

Q@ —bosons can be defined through the contmutation relations,

aal — qala; = g™ (2.8}

[N.-,ai] = nE and [NV, a = —ay, (2.9)

v

where a! {q;) are creation (annihilation) operators and N; is the corresponding number

operator. The whole su{2) spectrum can now be described by two commuting oscillators,

(alym ()™

bm) = —= - j0}. (2.10)
\/[j - 1! \/[_7 + m,!
In terms of g—bosons the generalors of su(2) can be written as,
Jp = agfl’-g, J_ = ngah 20y = Ny — Na. (2.11)

We would like to call the reader’s attention to the fact that the above way of g—deform
the su(2) algebra is by no means unique [23]. In fact, the lack of uniqueness in deriv-

ing q—deformed objects.is a source of skeplicism on the reliability of the application of

5

g—algebras to physical systems. As a matiter of fact, the unclear (il any) physical meaning
of the g—deformation is another source of such a skeptical attitude. In the next scction we
will briefly review two examples where the physical meaning of the g—dcformation scems lo

be established.

III. Q—DEFORMED ALGEBRAS APPLIED TO NUCLEAR PHYSICS

This section will deat with some applications of g—deformation to nuclear systems, Two
problems will be discussed: a) pairing in a single 7 shell , and b) the spectra of rotational
nuclei. Both cases have a suf2) structure and the g—deformation will be performed at the
level of the generators of the algebra. We have called these bwo situations ™ phenomenologi-
cal” because the g—deflormation of the algebra is performed irrespectively of the underlying

fermionic structure.

A. Pairing in a single j shell

Pairing plays an important role in the structure of nuclei. T is by far the most important
part of the residual interaction around magic nuclei. Among the very many applications of
pairing model to nuclei, the ®Ce isotopes represent a particularly simple situation, since
the 1f;1 level is fairly isolated from the others and can therelore lie considered as a single
7 shell.

In this casc, the pairing Hamiltosian can he written,

G . -
— qm RISTIN I . . .
Hpiving = 7 E (=P (=Y T i e Cimm i (3.1)
jm,j'm!
where ¢l (e is the creation (annikilation) operator in the single § shell orbit, 7 is the
JIMAN 1 {-i ]

pairing strength.
Due to the underlying su(2) structure of the single j shell pairing Iamiltonian, it can

be written in terms of the quasi-spin operators [14),
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”pairing = *(I'S_'_S_ == *GS?' _ GS[}(SO — ]))1 . (32)

where 5, = Enl)(](_)j+’“('}rnc;-1n! S. = Zm>u(_]j+mcj—mcjm and Sy = %(Em C}:ncjm -0)
satisly quasi-spin {angular momentuin) commautation relations. 0 = %(Qj + 1) is the pair
degeneracy. The cigenstates are labeled by the number of particles n and by the number of

unpaired particles ¢ (seniority quantum nmunber) giving rise to the eigenvalues,
. G
E(n,v) = -—T(n — )2 =~ 1+ 2).

The g—deformation of the quasi-spin pairing Hamiltonian in Eq. (3.2) can be easily

performed hy using Eq. (2.3) and rewriting it in terms of the Casimir operators of s (2),

M

pairing

= —G'IC,‘, - (}'[.S'U],,ISU - 1],,.. (33)

9

Like in the non-deformed case, n and » label the eigenstates of I, .,

and their eigen-
values are given by [24],

' Hn=v) _ o= M=)y A0-Fledn) 1) = (=S (etn) 1)
(q q )g q )

(g—q')?

sl v} = (¢ (3.4)

Defining a stale dependent paramedrization for the deformalion of the algebra, ¢ = exp(3(n-
v1v'), we obtlain,

sinh[300 — vPy]sinh{[Q = v + ) + 1w — )7}

Faln,v) = ~C
(2, 1) Si]lllz(%(” - v

(3.5)

Figure t shows the corresponding resulls for Lhe ground state energies of the even-A Ca
isofopes,
The results are rather goed, even considering the, non usual, stale dependent

parametrization used. This can be understood if we Taylor expand a typical term appearing

in H) iy namely,
g* —q " Y ‘
W 2 S+ [{Se — 1)2+(.§0-3)2+....](5q)2. (3.6}

Therefore, it scems that, by g— deforming the su(2) algebra, higher order terms of the

residual interaction are taken inlo account in an effective way.
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FIG. 1. This figure shows the binding energies of even A .Ce isotopes as a function of Lhe
deformation parameter v'. n=2.4,6.8 correspond to 288y respectively. The diamonds are
the experimental data for #%%8Cq The pairing strength was adjusted to the 200 binding

energy.

B. The spectra of rotational nuclei

This case has some similarities with the pairing one. The g—dcforined Hamiltonian for
rotational nuclei can be written in terms of the usual one sinply substituting the su(2)

Casimir operator by its deformed version:

1 1 S -
H"afo"_: Eﬂ + EYJ(J_I- 1) - Hgotar = EU + '2'_1“6‘1‘ . - (3")

where By is the band-head energy and [ is the moment of inertia.

There are {at least) two different approaches:
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1) gis a phase ( ¢ = ¢} and &, = JoJ. +J],[Jo—1],- Rather good fits to the rotational

spectra of nuclei and molecules are obtained.

16008 . Y
0 yrast band
- ul)
| —— w2 0019 ’
sees — en)(2) (y0.022) P
— 10, (2) (=0.030) il
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/
—_ et | R
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=)
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[X] < X
. 104 209 20.0

FIG. 2. Experimental transition energies A (J) = E(J) — E{(J — 2) for the yrast stales of 30U/
are shown along with the su(2) and s, (2} prediclions calculated with three different values of the

deformation parameler 7.

Figurc 2 presents the-%U experimental transition energies along with fittings using the
non-deformed and deformed rotor Itamiltonians. T'hree different valies ol fhe deformation
parameter 5 are presented and for v = 0.030 the agreement is quite good. The reason for

t.hi; success is simple: C, is equivalent to an expansion in powers of (5 4 1):
By = Eq+alghilG+ D) + W)+ DI + .-

Moreover, the cocllicients a(q), (g}, ... have alternating signs (@ > 0) and magnitudes in

agreement with phenomenology [3]. On the other side, looking at the corresponding transi-

9

tion probahilities (Fig.3) [25], this success looks less spectacular: good agreementas
with y = 0.019 whereas 4 = 0,030 is completely off. This clearly should not e considered «.
2 difficulty of the g—deformation scheme but rather it is an inherent dificulty in any attempt

to get good descriptions of both spectra and wave functions.

20080 T !
0 date
-—- i)
——— 2 (2) (4=0.019) T
1s0es [ ST D (0022) i
e, (2) (p=0.030}
A
q
Wy 100 | A
A
"
)
I
]
=)

5000 |

8 =
9 LA 2048 30.0

FIG, 3. The same as Fig 2, but for the transition probabilitics BE2(7 — .7 - .

We would like Lo call the readers’ attention to a difficulty of ihis approach: if g is a
phase, it is not clear how to calculate the norm of the g—delormed bosonic state. This can
be considered as a minor problen since we are just fitting the data, however this may bring
some donbts on the correctness of this deformation schenme, as apphicd Lo rotational nuclet,

2} g is real and the g—deformed Casimir js taken to be [26],

o - [4], 127 + 12[2J]582 + 2],
790, [ + 22 !

10




{p = /7). In this case, also impressive good [its to rotational spectra of nuclel and molecules
can he cbtained [2]. We would like lo emphasize Lhat this way of g—dcforming the algebra

is free from the normalization discase pointed ond previously.

1V. PHASE TRANSITION IN A (Q-DEFORMED LIPKIN MODEL

Along the years, the Lipkin Hamiltorian [15] has been a theorelical laboratory to test
models in many-body physica. 1t is exactly soluble and is a "quasi-spin like® model. [ts
structural simplicity will again be useful in an altempt to understand the influence of the
g—deformation on the behaviour ol physical systems. In the standard Lipkin model N
fermions ovcupy two N-fold degenerate levels, The Hamillonian of the SLM can be writien
as,

€ V
Hipiin = 5 Yooal jape + 3 S ot ah ety (4.1
Po

nehe

In the above expression p ranges from 1 lo N and ¢ = =1,

Galetti and Pimentel {17] studicd the SLM in the deformed quasi-spio formalism to
investigate the influence of the g—deformation in the phase transition. As a result they
found the suppression of the phase transition with the increasing of q.

Along with this phenomenological approach, a question as emerged, namely, to under-
stand how the general behavior of the many-hady system is modified when the fermionic
algebra is deformed.

In order to have some guidance we have looked at the hosonic case [12}:

In a system of M bosonie harmonic oscillators,
the full Hamiltonian is not just the sum of the
individual oscillators, bul rather 1t is a sum of
Lerms involving coproducts il we want to
preserve the symmetry of the algebra when

deformed, namely, su{M) = su,(M).

1t

For example, in the two oscillators case: N; = r:f-ai yhi = N; + % L= %([h,- + %]q +

[hi — 3]0), i = 1,2, we have,

normal q—deformed
{a.-,a}} =1 dal — qala; = ¢
H=h+h, s =M+ I

sinh(y(hy + h2))
9 o 21V P
-4 2sinh(y/2)

A similar preseription applied-to the g—delormed Lipkin Hamiltonian gives rise Lo

q —
}ff.i:pkx'n —

e . N ) '
m?‘"'l!(g'}'su] + 7(5'3‘ + 54y, (4.2)
s 3 _ 9

where Sq, 53 and S_ are the quasi-spin operators for the g—deformed Lipkin {Tamiltonian.

As a consequence, the mean field is also g—deformed {20].

With this new collective deformed Hamiltonian we study the only phaze transitions jn
this g—deformed model, whicl are of second order, & la Holzwarth {18]. i.e. the spherical
symmetry breaking in the quasi-spin space.

Q-analogues [27] of the su (2) Perelomov colierent states [28] are used to define § and
@ as collective variables. The phase transition s analyzed through the hehavior of the

variationally obtained ground stale energy functional,

{z| H}iin 12) . NI, { cos 0 Xsin?ﬂccs?dy} .
B0, by, N) = ~mmB = = — A + = (4.3}
O M) ==y - 2 \ D) T2 D(w.0)
where
D(7,8) =t +siuh? [%(N - I}] sin?f. ' : {(1.4)
. . . ' VN1, -
In the above expressions, ¢, = m is the g-delormed energy spacing and y = — " isan

effective coupling strength.
From E (0, ¢,v, N) we extract the main information ahout the Lipkin model ground state,
as described by the g—deformed coherent state. The energy depends on the deformation ol

the algebra and is proportional to [N],. The terms enclosed by the curly brackels in Eq.[4.3]

12



" are function of NV and y through the product ¥(N — 1) and of the effective coupling strength

X-

In order to study the ground state energy we must require the conditions

AL, ¢ v, N) _
DE(0, by, N)
— =0 (4.6)

to he satisfied.
From the above cquations we can caleulate the eritical value of the coupling constant x,
which eharacterizes Lhe phase transition. The frate below presents Lhe dilferences between

the non deformed case and the deformed one.

Standard case g—dclormesd

xe=1  xe=11+2sinh?[3(V - 1)]

In the same fashion as discussed by Holzwarlh [18], we would expecl here the second
order phase transition, characterizing the spherical éymmetry hreaking in the quasi-spin
space, to show up as the appearance of Lwo symmetrical minima shifted from the origin
and a maximum at the position of the old minimum. In this g—deformed case, however,
the phase Lransition depends not only on the strengtl of the interaction but also on
the deformation of the algebra and on the number of particles throngh the product

¥(N — 1) [20].

FIG. 4. Figs. da and 4b show 31} views of the scaled energy surfaces (B =2E/f (V],) for vy =1
and 3 respectively, as function of y(I¥V — 1) and of the order parameter 8 = — f. Figs. 4¢ and Ad
show sections of the encrgy surfaces at y(V — 1) = 1 {full tine), 3 (dashed line) and 5 ( dol-dashed

r 3n

line). The behiavior of E for both global minima at @ = § and 5F is shown together by extending

the domain of # from -z to m.

Figures 4.a and 4.b show scaled cner.g‘y surfaces for different values of v as a function
of v(N — 1) and the order parameter ¢ = = — 8 [29], whereas lignres ¢ and 4.4 depicl
sections of the correspocling 3D-pictures for different vabues of v(N — 1), There is a striking
difference hetween the pictures on Lh.s. and r.hs. of [.3":g. 4, nanmely the number of minima.
The reason for tliat behavior in the first case is that v, is always greater than one for any
value of v > 0, as can be seen in Fig. 5. 'Lhis in turn means that there will be no phase

iransition when one increases tie deformation of the algebra for a fixed \ < 1

14
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0‘0 ry '} . L " 1 & 1
0.0 0.5 1.0 15 2.0

Y(N-1)

FIC. 5. The critical value of y as function of ¥(V — 1}. The dashed lines indicate the region of

existonee of phase transition

Figures 4.1 and 4.4, however, present a gradual collapse of the two minima, characterizing
the phase transition, in a new one al & = 0 as -y increases. For low values of v{N — 1),

x = 3 is greater than the value of x., as can he seen from Fig. 4. In this range of y(¥ —1)

~we clearly identify the phase transition. Towever for values of y{N - 1) for which x. > 3,

no phase transition is allowed.
Hecently, temperature was included in the above framework [30]. For each T a behavior
similar Lo the one at T = 0 is obtained, at least hefore the value of g where the system

collapses. @—deformation has the effect of lowering the critical temperature.

V. CONCLUSIONS

The conclusions will be divided in two parts. b the first one, some gencral characteristics
of the g—deformed algebras, as seen from some naive applications to nuclear and molecular
physics, will be pointed out. In the so calied specific conclusions, the focus will be on

characlerislics of fermionic g—deformed nany-body systems.
¢ General

1. g—delormation perhaps may bring rew physics.

2. In some simple systems il is possible Lo attribute a physical meaning to the

deformalion parameter.

3. However, it seems impossible to attribute a universal significance 1o it, particu-

larly due to the different deformation schemes.

4. g—delormation has one intercsting aspect: it seems te incorporate in an effective
way and in an elegant framework the interaction among the constituents of the

syslein.
s Specific
1. It is importaut a careful treatment of the g-deformation, already at the fermionic
level, in order to take inlo account its effects correctly in a mauy-body system.
2. gedeform a lermionic many-hody system gives rise to a g-dependent mean field.

3. The eritical value of ¥ is a function of 4(N¥ — 1). This means Lhal no universal
character can be anymore assigned Lo Y as a system independent indicator of the

phasc transition in a g-deformed system.
4. Inclusion of temperature does not change the geueral helravior.
Acknowledgment D.G., J.T.L. and B.M.P. wete supported by Conselho Nacional de
Desenvolvimento Cientifico e Tecnoldgico, CNPq, Brazil.
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