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Abstract

We compute the mass correction at finite temperature and with ex-
ternal boundary conditions in an interacting scalar field theory. Some
remarks are made about the validity of the resuit at one-loop order.
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Finite Temperature Quantum Field Theory (FTQFT) has an outstand-
ing interest, whose range goes from condensed matter physics to QCD and
costmological problems. On the other hand, field theories defined on man-
ifolds not homeomorphics to R displays a lot of appealing features, such
as dynamical mass generation, vacuum instabilities and symmetry breaking
or restoration [I). This is the case also in the FTQFT. In both cases, the
mathematical background underlying these (quantum) effects is the same -
the nontrivial fopologica.l properties of the spacetime in which the theory is
defined.

The Casimir effect {2] also illustrates the effect of global constraints on
the dynamical properties of the theory. Besides, there is some controversy
on the thermal effects in Casimir energy calculations (see for instance (3D.

In this letter, we generalize the computation of the dynamical mass gen-
erated by the imposition of Dirichlet boundary conditions {BC) on a pair of
hyperplanes in a scalar field theory with a A¢* self-interaction {4, 5, 6}, includ-
ing finite temperature effects 1. Although the theory is not renormalizable
for D # 4, we perform the computation for generic I (at the one-loop order
the infinities can be safely controlled). Moreover, for D = 4, renormalization
properties are not affected by the thermal and boundary corrections [8].

In fact, external BC (Dirichlet, periodic, Neumann or any other) affect
not only Feynman diagrams associated with energy calculations, but all dia-
grams: diagrams with and without boundary conditions can have finite nu-
merical differences. So, other physical quantities (such as masses, coupling

constants, anomalous magnetic moments (9], pair production probabilities,

'During the completion of this work, we became aware of a similar calculation in
D = 4 for the same model, but with periodic conditions in both imaginary-time and
spatial coordinates [7} (in [7], the behavior of the coupling constant was also investigated).




etc.) could, in principle, be affected by these external BC, Hence, as argued
by Casimir, Wick normal ordering postulate is no longer valid for a field in
these situations, and the diagrams usually discarded by the Wick prescription
could contribute for the value of these quantities.

We conclude with some remarks about the validity of the results obtained,
and we point out the needed for a resummation of the perturbative expansion
into an effective expansion.

1. The bare Euclidean action is

Stgol = [ 2[~3g00 do + Smidh + J241]. (1)
The parallel plates are located at zp = 0 and zp = L, where we have
the following BC: ¢o(y, zp = 0) = ¢(y,zp = L) = 0. Also, adopting the
imaginary-time version of FTQFT, the field is periodic in the imaginary
(Euclidean} time zq, with period 8 := % (k= kg = ¢ = 1). The lowest order
contribution in A to the topological mass comes from the tadpole diagram
(without propagators in the external legs)

which represents the 1P1 self-energy part to order A. Due to the formal
analogy between the FTQFT and the Casimir effect (5, 6], the Feynman rules
which describe the.effect of the plates are similar to those that incorporate the
effects of the temperature [10, 11]. The analytical expression of the diagram

is then
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where & = (ky, .skp_1), mg is the renormalized mass, and u is 2 mass scale
(~ L7} introduced to keep =) with the right (~ L~?) dimension. We are
using the dimensional regularization method, | -;—);-f-g = D %,
and an analytical continuation to the neighbourhood of w = D is to be
performed after the identification and elimination of the polar part. The

mass and wave function counterterms are defined by imposing the limit

lim Zy[p® + 23 (m}, + 6m?) ~ £ (3)
be finite [12] (Z4 = 1+ 62;). At this order, there is no coupling constant

renormalization,
With the aid of the relation

d°k = |kED Ld|k|, (4)
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the integration of the continuous part leads directly to

- - wf2-2

which we write as (see the appendix)
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Using the analytical continuation of the inhomogeneous Epstein function,
collected in the appendix, equations (A2) and (A3}, we obtain (v = 2&L)

Apw/2=1,D=uw w—3
o o _ [ad
H2my-t 4\/—1} w/2)
+ % & Kujpa(2maln) A\/E(Lﬂ)alz'“'ﬂ

m
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* n,lz=1 (1’12_'*‘14’2) KW/2—3/2(TV n? 4+ VZ) . (7)

The polar part of Z() is given by I'(1 ~ w/2) (poles in w = 2,4,6,...; D
even), and ['(3/2 — w/2) (poles in w = 3,5,7...; D odd). For D even, the
relevant part of D) js

Aﬂ.w[ﬂ—lpﬂ—w mtﬁ—!!
2Zryt an Il —w/2). (8
Expanding (!} around the simple pole in w = I, we obtain (n = D/2 —

L e=25)
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We can obtain from (3) the mass counterterm to the order A. Thus,

(=1)Pf2-t \pDI2-2
(D2 = 1) 402r

dm? = —
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There is no field scale renormalization to this order. The result (10) agrees
with those of [13] for D =4,

The renormalized self-energy to the order A is given by
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Taking the limit mg —+ 0 (for D > 3), we obtain

AﬂD/z -2
S0 {npmo= WCB( 2)I(Df2 - 1)
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Here we have used the expansion
Y Kule) = 5T +0(E), (>0, z<) (13)
and identified the Riemann zeta function
d)=3Y n"d (14)
n=l

According to definition {3), the square of the topological mass is given by

the negative of this value. Hence,
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In the zero temperature limit, 8 — oo, we can use the approximation

Tl
Efe) = (1) e, (2>>1) (16)
to obtain
2 ApP/a-2

mi(L,T=0) = WCR(D -20(D/2 -1). (17)

For the relevant case of D = 4, we get from (15) and (17),
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The first term agrees with the result of [5, 6]. The second term contains the
thermal correction to the topological mass.

2. To check the above result, we take the limit L = oo. In this limit, the
first term of (18) trivially disappears. For the second term, we must consider
that

3 5() = [ Zra (19

Thus, in the limit L — oo:
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where in the second line we used (4), the reflection formula K, (z) = K_,(z),
and defined z = H;.-l Then, with the aid of the formula [14]

f&fmﬂmz—fmgx (21)

and the expansions {13) and (16), we obtain

mi(T,L = 00) = ;—4T2, (22)

which is just the (leading) result for the thermal mass according to [11].
Thus, our result, eq. (15), reduces to the well known cases when T = 0,
eq.(17) for D = 4, and when L — oo, eq.(22).

3. We observe that the resuls (15} is also valid for D even. In this case,
however, the counterterm is not given by (10). In fact, it is L-dependent:

the model is not renormalizable for D # 4, anyway.

CONCLUSIONS

We can see from (15) or (18) that the combined effects of the thermal and
topological (one-loop) corrections is to increase the mass. In a theory with
a spontaneously broken symmetry, this result indicates the possibility of a
symmetry restauration when T increases andfor L decreases. This conclusion
agrees with those of the reference 7). Nevertheless, the result (12) is the first
term of an expansion for mg very small; the virtue of this is to isolate the
purely topological and thermal corrections (the generalization for mp # 0
is straightforward). The real problem is for m% < 0. In this case, the
summations in (2) are ill-defined, and the expression for £*) has real poles
(not of UV nature). This is related to the instability of the effective potential
found in [11].




On the other hand, a well known problem in high-temperature field the-
ory are the hard thermal loops, for which the relevant infrared cutoff in loop
diagrams is the thermal mass. Thus, an infinite subset of diagrams formally
of higher order in the perturbative expansion can contribute to 2 given lower
order. This signals a breakdown of the perturbative expansion at some order
of the coupling constant (note that the result (22) is ~ AT?). The improved
solution is to resum the perturbativ.e series into an effective expansion, sys-
tematically including all effects to leading order in the coupling constant {15].
In FTQFT, this program has been worked-out up to the three loop order and
beyond [16]. We observe that a similar problem can also oceur in the case
of compactified space (for both periodic or Dirichlet boundary condition):
analogously to eq. (22), eq.(18) shows that the purely topological mass is
{(~ AL7?). Thus, in principle, we expect problems for loops with “soft” ex-
ternal momenta (po and |5] of order AY2L~1} and “hard” internal momenta
(ko and |E| of order L~1), for L™} >> AY2L~1 5> .,

There is also the interesting (and novel) question of breakdown of the
perturbative expansion due to both thermal and topological effects. In this
case, the resummed effective expansion can involve two parameters, 3 and
L. These questions are under study, and will be the subject of a separate

letter.

APPENDIX

Here, we give the analytical continuations of the modified inhomogeneous
Epstein functions used in the main text. For details, see (17, 18]. This

function is defined by

Eﬁ(s;al,ag,...,aN) = i i i 1 (A.1)

) 2 ]
ni=lng=t nam1 10178 + ..+ annd + D

where ay,...ax,¢ > 0, N is an integer, and R s is large enough. The above
series converge only in a definite range of s. The analytical continuation to

a meromorphic function in the complex s plane is, for N =1,

2 _ 1 \/FF(‘B - 'l')
Elsl) = Tom T 21"(3)1/2"'21
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TT(s) ,,gl (7) K,_y (2mnv), (A.2)
where K,(z) is the modified Bessel function of the second kind. Similarly,
for N=2

- i 1 — 3
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