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Abstract

We study the evolution of particles in a space which has a degenerate metric.
When the particle propagates into a region where the metric is degenerate
that region is tramsparent for low energy particles and opaque to particles

with high energy. We also present the constraint structure of such theories.
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Singularities have a fundarﬁental role in general relativity [1]. However it is not clear how
to incorporate them into a quantum gravity theory. Surely singularities are an important
feature in quantum gravity as demonstrated by processes like Hawking radiation. However
our inability to follow the black hole evaporation process till its very end shows our present
limitations. The singularities which give origin to black holes manifest themselves in the

- curvature tensor. The effect of this sort of singularity on the propagation of quantum
particles has recently been studied [2]. There is however another sort of singularity for
which the curvature tensor itself is not singular. They appear when the metric tensor is
‘degenerate and therefore has no inverse. If the degeneracy occurs on a set of measure zero
then the curvature remains bounded and the topology of the space-time manifold can change
[8]. Such singularities are milder than curvature singularities and perhaps it should be easier
to handle them in a quantum gravity theory.

In general relativity degenerate metric appears in the Palatini formulation. There we

ab
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start with an action in terms of a tetrad e and a Lorentz connection w®. The action is
5= % [e?eb R%¢ .4 where e® is the tetrad one-form and R = dw + w? is the curvature two-
form. The space-time metric is then g,, = e;';e,b,??ab where 7,5 is the tangent space Minkowski
metric. This action and the equations of motion which follow from it do not depend on the
inverse tetrad. So they are well defined even when the tetrad e? is degenerate. Degenerate
metrics or tetrads have also appeared in other contexts. Ashtekar formulation of general

relativity [4] and gauge theoretic formulations of several gravity theories in two and three

dimensions [5] also allow degenerate tetrads. Also strings can propagate in degenerate

metric backgrounds [6]. It has also been suggested that there would be a topological phase |

of quantum gravity in which the tetrad vanishes and diffeomorphism invariance is unbroken
7l

All this indicates that degenerate tetrads may have an important role in quantum gravity.
At the classical level the main consequence of the degenerate tetrads is to allow topology
change of the space-time manifold [3,8]. Since this is not observed in nature there must exist

a suppression mechanism for it, probably at the quantum level. On the other side quantum
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effects involving degenerate tetrads were not studied. In this paper we will consider the
simplest situation we can think of in order to explore the effects of degenerate tetrads. We
will study the propagation of quantum non-relativistic particles in a classical gravitational
background in which the metric is degenerate in a set of points or in a finite region. We will
show that we can make sense of such situations giving strong support that such degenerate
configurations should be taken into account in a proper formulation of quantum gravity. In

particular we will show that when a particle moves in a degenerate region in one dimension

~ the transmission coefficient decreases with increasing particle energy. When we go to higher

dimensions we find a very rich constraint structure which will be briefly discussed.

Let us consider first the one-dimensional case. Assume a non-relativistic particle of mass
™ moving in a one-dimensional space with ds* = N(z)dz?, N(z) > 0 [9]. If N(z) does not
vanish in any point then it is possible to find a non-singular coordinate transformation which
takes the metric N(z) into 1. In the degenerate case there is no such a transformation. The

équation of motion which follows from the action S = %m [dtNz? is
. 1 ]
Nz + §N =0 (1)

where dot stands for time derivative and prime for space derivative. Notice that neither
the action nor the equation of motion depends on the inverse metric. By multiplying the
equation of motion by Z it is easy to see that Nz? is a constant of motion and we can write
an energy-like equation

A

2+ V(z)=0, V(z)= “FE) | (2)

where A is a positive constant. Near the points where the metric is degenerate the particle

feels an attractive force towards those points. As the particle approaches the degenerate

- points V(z) goes to infinity and the particle velocity also goes to infinity. These points are

then singular in the sense that the space is not geodesically complete since after a finite time
the evolution of the particle is not defined.
We could also consider a finite region where the metric is degenerate. For simplicity

assume that




e

L z|>a
N(z) = (3)

€, |z|<a

in the limit ¢ — 0. By solving the particle equation of motion Eq.(1) in each region we find
that its velocity is constant outside the region where the metric is degenerate and goes to
infinity inside that region (when the limit ¢ — 0 is taken). The degenerate region is also
singular. |

Consider now a quantum particle propagating in a classical space with a degenerate
metric. We will consider the system as quantum mechanical nonsingular if the evolution of
any state is defined for all times. Let us first consider the casé of a degenerate region with

the metric given by FEq.(3). The relevant Laplace-Beltrami operator is

L

1
20 .

and it depends on the inverse metric. We will then look for wave functions for finite ¢ and
then take the limit ¢ — 0 if it is well behaved. It turns out that this limit is well defined

in all cases we considered. For an incident particle of energy E the scattering states are

- described by the following wave function

5T — jkae~?ketke /(1 jka), 2 < a
P(z) =9 e [1 +ike/(1 — ika)], —a<z<a (5)

€—2ika+ik.’t:/(1 — ika), z>a

where k% = 2mE/h*. There are no bound states. We have used continuity of the wave

function and its first derivative at the borders of the degenerate region. Then the S-matrix is
unitary. Its matrix elements can be easily computed and are given by Syy = Sy = e~ %2 /(1 —
tka) and Spy = Sya = —tkae %2 /(1 —ika). Unlike curvature singularities degenerate metric
singularities do not lead to a non-unitary S-matrix. Notice also that although the probability
density |1/|* does not vanish inside the degenerate region the probability of finding the
particle there fdz+/N|i|? vanishes. So even at the quantum level we can not detect the

particle inside the degenerate region. We find then that the quantum theory is nonsingular.
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The transmission coeflicient has a peculiar behaviour. From Eq.(5) we find that |T)* =
1/(14k*a?) so that it goes to one at low energies and goes to zero at high energies. Then a
degenerate region is transparent for low energy particles and opaque for high energy particles
(in a non-relativistic regime). This‘ provides a distinctive signature for the detection of such
regions. Usually we would expect |T'| to have the opposite behaviour. Tf we think of
something like a potential well we know that at low energies the wavelength of the particle
is too large to fit into the well so its transmission coefficient should be very low while for
high energies a large number of particle wavelengths can fit into the well so its transmission
coefficient should be higher. We can have some understanding of what is happening in the
degenerate region if we consider a potential barrier V(z) = V; inside the region and zero
outside. If we let V) depend oﬁ the energy of the incident particle in such a way that ¥, = E,
with Vo — E > 0, we get the same wave function Eq.(5) [10]. We have also analysed the
higher dimensional case and found a similar behaviour [11].

We can now consider the former results in the limit in which the degenerate region
reduces to a point, i.e. ¢ — 0. In this limit the wave function Eq.(5) reduces to 3 = e**®
for any = and the particle does not feel any effect of this particular degenerate metric [12].
In fact we can consider a more general class of metrics degenerate at a point. Consider a
degenerate metric N{z) that goes to zero as |z|P for some positive p. Using Eq.(4) we find
that near the origin the wave function behaves as y(z) = ¢* with s = 0 or s = p/2 + 1
for both ¢ > 0 and = < 0. The wave function is normalizable, near the origin, for both
values of s and any p. We can also check that the first derivative of the wave function is
continuous at the origin. Then in general degenerate metrics at a point are also nonsingular
at the quantum level showing how mild they are. This analysis can be extended to higher
dimensions on the same lines as in [2].

Let us now consider the propagation of classical particles in a degenerate space in higher
dimensions. For simplicity let us consider the situation where we have a [ dimensional
space whose metric is degenerate with rank D — 1 so that it can be written in the form

gi; = gig; with ¢, 7 = 1,...,D. Usually this means that the space is in fact one dimensional
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but as we will see there is more to it. The Lagrangian [ = %mgijdzfcéj gives rise to a set of

D — 1 constraints
qsoz:glpa_gapla QZZ,...,D (6)

where F; are the canonical momenta. The Hamiltonian is then found to be H — R:c‘ -
L+ A%¢, where A* are Lagrange multipliers. Requiring that the constraints Eq.(6) do not
evolve in time gives a new set of constraints

P2
m‘;lz (8oz.gl - alg&) -+ )\ﬁ{¢7on ¢ﬁ} =0 (7)

where the brackets stand for Poison brackets. We can find also that

Tap = {¢o: 85} = Pi[9a(Tp91 — O195) + 95(8190 — Oag1) + 910(wg)] (8)

We can now consider two possibilities for the g;. If they satisfy Ogs = 0 then Top =0

and we have [> — 1 first class constraints. The Lagrangian can be reduced to L = s
by performing the coordinate transformation du = g:dz' and it describes a particle with
just one degree of freedom. The local Lagrangian symmetry generated by the first class

constraints Eq.(6) is

Szt = —0%,

5z = 6%¢, (9)

- where 6(t) is the parameter of the transformation.

If Oj;951 # 0 then I'sp # 0 and our analysis will be dependent on D). For odd dimensional
spaces (D > 3) I'yp has an inverse. Then we can find out the Lagrange multipliers A* in
Eq.(7) so that all D — 1 constraints ¢, are second class. Then the number of degrees of
freedomis (D -+1)/2. If D is even we first analyse the case D = 2. We find that P, = P, = 0
and that they are first class constraints. They generate a local Lagrangian symmetry of the
action of the form

1 felg

bt = 0zt —
v ’ QElmaggm

(10)
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There are no degrees of freedom. If D is even and D > 4 then I'yp has no inverse. This
means that some of the Lagrange multipliers are dependent and that there exists at least
one linear combination of the constraints which is a first class constraint. We find that there

exists only one first class constraint given by

¢ = ¢M2HabD Qﬁﬂzrﬂam .- 'THD—I-“”D (11)

and the remaining second class constraints are
Il’b.a':glpa'_gafpla Off:27"'JD_"'1 (12)

Then there is one first class constraint ¢ and D — 2 second class constraints 1, so that the
theory has D/2 degrees of freedom.

| When the metric is degenerate of arbitrary rank a geometrical construction can be done
when O;g;) = 0 [13]. Assume that we start with the Lagrangian L = smg;;i'a’. The
action is invariant under éz* = —e*K? if the K* are the Killing vectors (¢ runs over the
number of Killing vectors) which generate an isometry (Lxg)i; = 0, with £ being the Lie
derivative. Notice that we do not need the inverse metric. Now assume that the metric
gi; is degenerate of rank D —n and Ul,a = 1,...,D — n, are the null eigenvectors of this
. metric. The canonical momenta are P; = mgij:i:j so that ¢, = PZ-U; = 0. The ¢, are a set
of ) —n constraints and generalizes Eq.(6) for which n = 1. The algebra generated by the
null eigenvectors when Opg;) = 0 is [Uy,Up] = f1 U, which entails the constraint algebra
{#a, s} = —fopdy. This means that the ¢, give rise to a first class constraint algebra and
we find n degrees of freedom. In the case d;g;) # 0 the isometry condition is no longér
satisfied and the preceeding analysis can not be applied.

We have also studied relativistic particles and strings in degenerate metric backgrounds.
We have been able to perform the classification of the constraints and we will report on that
elsewhere [11]
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