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Abstract

A time-dependent projection technique is used to treat the initial-value problem
for self-interacting fermionic fields, On the basis of the general dynamics of the fields,
we derive equations of kinetic type for the set of one-body dynamical variables. A
nonperturbative mean-field expansion can be written for these equations. We treat
this expansion in lowest order, which corresponds to the mean-fleld approximation, for
an uniform system described by Chiral Gross-Neveu maodel. Literature static results
are obtained such as dynamical mass generation due to chiral symmetry breaking and
a phenomenon analogous to dimensional transmutation. The time evolution of the
one-body dynamical variables initially displaced from equilibrium is discussed.
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1 Introduction

Over the last decade interest in the initial-value problem for quantum-field theoretical models
stems mainly from two different areas. The study of the inflationary scenario of the early
Universe which involves control of the time evolution of a driving scalar field [1}; and also by
propertics of hadronic matter manifest themselves through transient phenomena in globally
off-equilibrium situations in high-energy collision [2]. In either of the two contexts nonper-
turbative methods must be employed. Any sufficiently microscopic model will involve a set
of mutually interacting quantum fields, which can be thought of as interacting subsystems
forming a large, possibly autonomous system. The quantum state of each of the different
subsystems can be described in terms of density operator which in general will evelve nonuni-
tarily on account of correlation effects involving different subsystem [3] [4]. The nonunitary
effects will manifest themselves through the dynamical evolution of the eigenvalues of the sub-
system density matrices, so that individual subsystems usually behave in a nonisoentropic
manner [3]. .

The overwhelming complexity of such a picture is considerably reduced whenever oné
is able to find physical grounds to metivate a mean-field-like approximation which consists
in assuming isoentropic subsystem evolution under effective, time-dependent Hamiltonian
operators for each subsystem [4]. In this case the dynamics of the subsystem density matrix
can be formulated in terms of a Liouville-von Neuman equation governed by an effective
Hamiltonian , e.g., from the point of view of the functional field-theoretical Schrodinger
picture, as proposed by Jackiw [4]. Unfortunately the resulting problem involves in general
nonlinear Hamiltonians, and cannot be solved without further approximation. In the field-
theoretical context, this has been implemented through the use of a Gaussian ansatz for
the subsystemn density functional in the framework of a time-dependent variational principle
supplying the appropriate dynamical information.

It is not difficult to see that this last approximation amounts to a second mean-field
approximation, now at microscopic level of the single-field, nonlinear, isoentropic effective
dynamics. Actually, the Gaussian ansatz, having the form of a exponential of a quadratic

form in the field operators, implies that many-point correlation functions can be factored



in ferms of two-point functions. This is well known in the context of the derivation of the
Hartree-Fock approximation to the nonrelativistic many-body problem [5). This factorization
has been used by Chang [6] to implement the Gaussian approximation for the A¢* theory. The
dynamics of the reduced two-point density becomes then itself isoentropic, since irreducible
higher-order correlation effects are neglected.

The focus of this work is a reevaluation of this second mean-field approximation through
a time-dependent projection approach developed earlier for the nonrelativistic nuclear many-
body dynamics by Nemes and Toledo Piza [7]). This approach allows for the formulation of a
mean-field expansion for the dynamics of the two-point correlation function from which one
recovers the results of the Gaussian mean-field approximations in lowest order, i.e., this ap-
proach permit to include and to evaluate higher dynamical corrections effects to the simplest
mean-field approximation. Moreover, the expansion is energy-conserving {for closed system)
to all orders [8]. The resulting dynamical equations acquire the structure of kinetic equations
which eliminate the isoentropic mean-field constraint describing the effective dynamics of a
selected set of observables [7].

This approach was recently applied for the solution of the self-interacting A¢* theory
in (1+1) dimensions [9]. Lin and Toledo Piza find that the mean-field approximation fails
qualitatively and quantitatively in the description of certain field variables. These failures are
partially corrected by the collisional terms. Motivated by success obtained in description of
time evolution of a off-equilibrium uniform boson (scalar field) system beyond Gaussian mean-
field approximation in quantum-field theoretical context, it becomes interesting to study the
fermion case in this approach.

In this paper we develop an analogous formulation to treat the initial-value problem in the
case of an off-equilibrium spatially uriform many-fermion system described by Chiral Gross-
Neveu model [10}. On the basis of the general dynamics of the fields, we derive equations
of kinetic type for the set of one-body variables in lowest order, which correspond to the
mean-field approximation. The detailed consideration of collisional correlations is deferred
to future work.

The outline of the paper is as follows. In Sec.IT we obtain the dynamical equations

which describe the time evolution of our (1+1) dimensional uniform fermion system. These

equations are the groundwork for the implementation of our projection technique. This tech-
nique and the approximation scheme are described in Sec.III. In Sec.IV we implement in the
quantum-field theoretical context the projection technique and obtain in mean-field (isoen-
tropic) approximation the dynamical equations which describe the effective dynamics of a
off-equilibrium spatially uniform (1+1) dimensional self-interacting fermion system described
by Chiral Gross-Neveu model [10]. In Sec.V we use the static solution of these equations in
order to renormalize the theory, leading to the well-known effective potential obtained by
Gross and Neveu using the 1/N expansion. In this same section, we show also that other
static results which have been discussed in the literature such as dynamical mass generation
due to chiral symmetry breaking and a phenomenon analogous to dimensional transmutation
can be retrieved from this formulation in a mean-field approximation. Finally we study the
time evolution of our system. Sec.VIis devoted to a final discussion and conclusions. Seme

points of a more technical nature are discussed in the Appendix.

2 Kinetics of a self-interacting fermionic field

In this section, we shall describe a formal treatment of the kinetics of a self-interacting
quantum field. Although the procedure is quite general, we will adopt the specific context of
a fermion field in (1+1) dimensions and assume spatial uniformity. We will illustrate all the
relevant points of the approach and cut down inessential technical complications. Features
of more general contexts are discussed in Ref. [11].

The idea of our approach is to focus on the time evolution of a set of simple observ-
ables. We argue that a large number of relevant phyéical observables are one-body operators.
Consequently, the time evolution of observables which involve field bilinear forms such as
P(x)$(z) , Y(2)¥(z) , .... is desirable. These observables are kept under direct control when
one works variationally using 2 Gaussian functional ansatz which will therefore be refered
to as Gaussian observables. In order to keep as close as possible to the formulation appro-
priate for the many-body problem, we work instead with expressions which are bilinear in
the creation and annihilation parts of the fields in momentum space with periodic boundary

conditions in a spatial box of lenght L, defined in terms of an expansion mass parameter m.



We begin by expanding the Dirac field operators 1(z) and $(z} in Heisenberg picture as

40 = S(R)" [rateorst0 S + hateorato ]

k

(1)

50 = £(R)" [uontoTE +hatmioZ] |

where bill and b1 [b};‘2 and by o] are fermion creation and annihilation operators associated
to positive[negativel-energy solution u;(k) [uz(k)] of Dirac equation.
Canonical quantization demands that the creation and annihilation operators satisfy the

standard anticommutation relations at equal times

{b;‘l(zo),bk,_,..(z;,)},°=,5 Sexrfay for LA =1,2
(2)

{blft..\(wﬁ)l bL,)-' (35)}=u =z}

{ba (), by () agmey = 0

In Eq.(1) x is the spatial coordinate only and we use the notation
(ko)? = (k)* +m? and kz=kozo—kx .

At this point it is convenient to analyse the difference between spatially uniform and
nonuniform systems, Uniform systems exhibit translational invariance (homogeneous system)
and rotational invariance (isotropic system). In the case of (1+1) dimensions we say that

uniform systems exhibit invariance under translation and under reflection (parity).

The state of the system (assumed spatially uniform) is given in terms of a many-body

density operator F in the Heisenberg picture. F is therefore time independent, non-negative,
Hermitian, and has unit trace. The corresponding mean values of the relevant bilinear forms

of field operators are

R arpa(20) Tr{(8) s(zo)bica(zo))F] for AN =1,2

(3)
Tri(be,y(zo)biea(20))F] for A X =1,2 .

M 31,1 (Zo)

The Hermitian matrix R and the antisymmetric matrix II are the one-fermion density
and pairing density respectively. Using these objects we can construct the extended one-body
density [12) '

Bx(zo)  Mk(zo)

(B po(zo)bua (o)) (boser(2o)by(2o))
- (4)

OPNICYLANED I CRVEN L ANEN)

R (xo) =
' [ —i(ze) Iz — Rxe(xo)

This object summarizes all information on the Gaussian observables and provides an
adequate starting point for our kinetic treatment. The first step is standard and consists in
reducing the extended one-body density to diagonal form. This can be achieved by subjecting
the creation and annihilation operators to a canonical transformation of the Bogolyubov type

with coefficients defined by the eigenvalue problem
A (zo)Ru(z0) Xk (20) = Qu(zo) )

where the matrix Xy (zo) which diagonalizes Ry(zp) has the structure

Xe ¥ Xk %

X = and A= (6)

e X v X}

Qr(xo) is the extended density matrix in generalized natural orbitals basis (Bogolyubov

quasi-particle basis)



V(o) 0 ] l(ﬂi.x(wo)ﬁk.a(ma)) {B=k,3 (0} B (o)) )

Qk(-‘ﬂo) = ‘: = .
(B (z0)B, 5 (%0)) (Bue,v(z0) B} 5 (za))

0 Iy — w(zo)

The matrix 21(zo) is diagonal with eigenvalues 141 € 1 2 which are quasi-fermion occupation
numbers for the paired natural orbitals. Because of the assumed reflection symmetry one

must have
(o) = voxa (o) - (8)

The unitary conditions for Ax(zq) can be interpreted as orthogonality and completeness
relations for the natural orbitals which read

Al =1 and B =1, , (9)

or in terms of Xj and Y matrix [see Eq.(6)]

Kyl+xaxli=1, , %XF+xyl=o0,,
(10)
WY+XIXG=0L , YWX+XiY=o0,.

Finally, from Eq.(6), we write the fermion operators bﬁ“\(zo) and by y(zo) in terms of the

new quasi-fermion operators ,BE'A(zu) and By a(zo) for A =1,2

[ bk,l ] FX]_]_ le Y;‘i YE‘I ] ﬂk.l ]

bx,2 Xz Xa2 ¥y Y233 Pr.z
: = . (11)
L L Yu Y X5 X ,B.T.k_1

L b'-r-l:,zj Yo ¥ sz ng L ;@.f.k,g |

With the help of Eq.(11) it is an easy task to express ¥(z) and %(x) [Eq.(1)] in term
of ﬁlt‘_;\(l'u) and By (o) for A = 1,2. In doing so, one finds that the plane waves of ¢(z)
and ¥(z) are modified by a complex, moment-dependent redefinition of m involving the
Bogolyubov parameters, ‘The complex character of these parameters is actually crucial in
dynamical situations, where the imaginary parts will allow for the description of time-odd
(i.e., velocity-like) properties,

What we have achieved so far amounts to an expansion of the fields ¥(z)} and (2) such
that the mean values in F of Gaussian observables are parametrized in terms of the Xy (k)
and ¥y,a(k) and of the occupation numbers w (o) = T'r (ﬁ;"\ﬁh)‘f) for A = 1,2 In
general, all these quantities are time dependent under the Heisenberg dynamics of the field
operators, and we now proceed to write the cotresponding equations of motion.

The next step is to obtain the time evolution of the mean values of gaussian observables
in the context of the initial-value problem, i.e., we want the equations of motion for the Bo-
golyubov parameters Xy (k) , ¥a,a(k) and quasi-particle occupation numbers vy 5. Taking
the time derivative of eigenvalue Eq.{5) and using the unitarity condition (9) we get

MRy X = Qu — B Qi — QA . (12)

We now evaluate the left-hand side of this equation using the Heisenberg equation of

motion {o obtain

) Tr ([ﬁlt,xﬁk.)\s H ] F) Tr([B-xxBra HF)
X Ry = . (13)
Tr ([Btnsn H| F) Tr ([erBl s H] F)

The right-hand side of Eq.(12) can also be evaluated explicitly using Eq.(6) and (7) :
a o . it o ARl —gk + (o gihs
i (Qu ~ Xy — QX = v (14)
v 3 + {Vklgk}'f- '—“/k + [Vkahk]""

where the hy and g matrix are given in terms of X and Yy matrix



he = —i(¥7Y + XEXo)

(15)

g = —i(WX+XK) .

From Eqs.(13) and (14) we obtain (2x2) matrix dynamical equations which describe the

time evolution of our {1+1) dimensional uniform fermion system. One immediately finds

e ohll = Tr (BB HIF)

(16)

-0 + {ve gk )+ Tr([BxxB H|F) .

Eqs.(18), together with the unitarity condition (10), determine the time rate of change of
the Gaussian observables in terms of expectation values of appropriate commutators. They
are, however, clearly not closed equations when the Hamiltonian H involves self-interacting
fields or when the initial condition itself contain many-fermion correlation. In this cases, the
time derivatives of the Gaussian observables are given in terms of traces which are in general
not expressible in terms of the quantities themselves, i.e., the traces will in general contain

many-fermion densities.

3 Projection technique and approximation scheme

In this section we introduce the time-dependent projection technigue [7] which permit to
obtain a closed approximation to the equations of motion (16). It developed earlier in the
context of nonrelativistic nuclear many-body dynamics was recently applied in the quantum-
field theoretical context to the self-interacting Ag? theory in (14+1) dimensions [9].It allows
for the formulation of a mean-field expansion for the dynamics of the two-point correlation

function from which one recovers the results of the Gaussian mean-field approximations in

lowest order. If carried to higher orders it allows for the inclusion and evaluation of higher
dynamical correlation corrections to the simplest mean-field approximation.
In order to develop our treatment of the equations of motion (16) we begin by decomposing

the full density F as
F =Rty +F{t) , (an

where Fo(t) is a Gaussian ansatz which achieves a Hartree-Fock factorization of traces in-
volving more than two field operators (Gaussian observables). This is what we refer to a.s.
the mean-field approximation of the equation of motion. Jy(t) is chosen as having the form
of a exponential of a bilinear, Ilermitian expression in the fields normalized to unit trace [5].

In the momentum basis, it reads

exp [Z(kl,kzl Ay ey b;rqbkz + Bk:,kzbalbitcg + Chy s b1y bkz]
0= B
Tr {exP [E(kl,kg) Ay, .kzbltqbk: + By, .knbrqbag + Ck:‘kzbki bkz]}

(18) .

The parameters in Eq.(18) are fixed by requiring that mean values in Fp of expressions
that are bilinear in the fields reproduce the corresponding F averages [see Eqs.(20) below].
Fo is a time-dependent object, which acquires a particularly simple form when expressed in

terms of the Bogolyubov quasi-fermion operators

Folt) = IT [ a(@0)Bia(zo) + (1 = e )Bea(zo)Bh alz0)] - (19)

kA

It has unit trace and the properties below

Tr(BuF0) = Tr (BuF) = Tr (B1F) = Tr (81F) = 0 ;

Tr (BufsFo) = Tr (BufsF) =0 ; |
Tr (818 Fa) = Tr (B18]F) =0 ; (20)
Tr(B18:F0) = Tr (B16F) = vadep and

Tr (BuB]Fo) = Tr (BB} F} = (1 = va)bas -

10



The “remainder” density F'(), defined by Eq.(17), is a traceless, pure correlation density.
As already remarked, a crucial point to observe is that F(t) can be written as a time-

dependent projection of F, i.e.,

Fo(t) = P()F with PEYP(t) =P(2) . (21)

P(t) is an operator acting on a linear space of densities, sometimes called super-space. Such
operators are correspondingly sometimes called super-operators. In order to construct the

projector P(t) we require that, in addition to Eq.(21), it satisfies
iFo(t) = [P(t), L) F = [Folt), H) + P(t) [H, F] , {22)
where £ is the super-operator called Liouvillian which is defined as
£-=[H, -], (23)

H being the Hamiltonian of the field. Eq.(22) is the Heisenberg picture counterpart of the
equation &, [P(f}).F] = 0 which has been used to define P(t) in the Schrédinger picture [g]. It
is possible to prove that condition (21) and (22} make P(¢) unique {3, 8, 9].

Once P(t) is obtained, the next step is to obtain a differential equation of (). This
follows in fact immediately from Eqs.(17), {21} and {22). It reads

(8 +PRILYF(t) = (T -PRNLF(E) . (24)
This equation has the formal solution
F(t) = g(¢,0)F(0) - i[: at' G(t, ) (Z - PN LFe(t) (25)

where the first term accounts for initial correlations (initial condition). The object G(t,t') is

the time-ordered Green’s function

11

Gt t) =T (exp [z' f: ' dr‘P(f)C]) . (26)

We see thus that F'(t}, and therefore also F [see Eq.(17)], can be formally expressed in-
terms of Fo(t') (for #' < t) and of initial correlations 7 "(0). This allows us to express also the
dynamical equations (16) as traces over functionals of Fu(t'} and of the initial correlations. -
Since, on the other hand, the reduced density Fo(#') is expressed in terms of the one-fermion
densities alone, we see that the resulting equations are now essentially closed equations.
Note, however, that the complicated time dependence of the field operators is explicitly
probed through the memory effects present in the expression {25) for F'(t). Approximations
are therefore needed for the actual eveluation of this object.

A systematic expansion scheme for the memory effects has been discussed in Refs. [8, 9].
The lowest approximation which includes correlation contribuitions corresponds to replacing
the full Heisenberg time-evolution of operators occurring in the collision integrals by a mean-

field evolution governed by

Hy=PI)H .

Consistently with this approximation, £ is replaced in (25) and (26) by £o - = [He, - |. In
this way correlation effects are treated to second order in H in the collision integrals.
An important feature of this scheme (valid also in higher orders of the expansion) is that

the mean energy is conserved, namely

where
(H) =Tr Hfo(i) +Tr H}-‘(t) .

The resulting scheme can be interpreted as follows. The dynamical evolution of the field
is split into a pure mean-field part, related to the contributions to the dynamical equations
involving the projected density Fau(t), plus correlation contributions, approximated by the

contributions involving the adopted form for F(2).

12



4 Effective dynamics for a uniform fermion system de-

scribed by the Chiral Gross-Neveu model (CGNM)
in mean-field approximation

We use the general expression obtained in the preceding section to discuss a uniform fermion
system described by Chiral Gross-Neveu model (CGNM). We will consider only the lowest
(mean-field) approximation in this paper, corresponding to F'(¢) = 0. Collisional correlations

will be discussed elsewhere,

4,1 The CGNM Hamiltonian

The Hamiltonian density for the CGNM is given by

N 2 (1 n 2 N 2
come = 3 {F' [-mdl v} - 5 {[2 47"*#"] ~¢ {_):; :B‘-fsw'] } ;@
= i i=
where £ is a constant which indicates whether the model is invariant under discrete +s trans-
formation (¢ = 0) or under the Abelian chiral I/(1) group (¢ = 1).

In the form considered here, this is a massless fermion theory in (1+1) dimensions with
quartic interaction. The model contains N species of fermions coupled symmetrically, where
' is a complex Dirac spinor transforming as the fundamental representation of SU(N) group.
It is known that the actual symmetry of the theory is not SU(N) but rather O(2N) [13]. The
transformations forming this group mix not only particles but also particles with antiparticles.
This model is essentially equivalent to the Nambu-Jona-Lasinio model [14], except for the
fact that in (14+1) dimensions it is renormalizable. Moreover, it is one of the very few know
field theories which are assimptotically free. To leading order in 1/N expansion [10], the
CGNM exhibits a number of interesting phenomena, like spontaneous symmetry breaking
[15], dynamical fermion mass generation and dimensional transmutation. The model possess
anl infinite number of conservation laws, and a3 a consequence, the S-matrix may be computed
exactly [16]. 7

To obtain the time evolution of Bogolyubov parameters we have to obtain the CGNM
Hamiltonian [see Eq.(16)]. From the Hamiltonian density {27) we can to evaluate the Hamil-

13

tonian of the system by integration over all one-dimensional space. This involves, in par-

ticular, choosing a representation for the v-matrices. Here we have to be careful, since a
bad choice of representation can spoil manifest translational invariance. In Appendix A (see
also Ref.[14}) we give the representations for the y-matrices that preserves the translational
invariance of the system. We choose the Pauli-Dirac representations for the 'r-matri;es,

namely

Yo=o3 ; n=ioy and Yy =yon =0y . (28)

In this representation the spinors u;(k) and u;(k) are given by

N e e e

(ko + m) (ko —m)

Substituting in Hamiltonian density (27) the fields ¢ and %* given in (1) and using (28)
and (29), we can calculate the CGNM Hamiltonian by integration over all one-dimensional

space. The CGNM Hamiltonian is given in full in Appendix B.

4.2 Effective dynamics for a uniform fermion system described by
the CGINM in mean-fleld approximation

We now evaluate the time evolution of a uniform fermion system described by the CGNM,
when the chiral symmetry of the system is broken. The Bogolyubov transformation defined in
(11) breaks both chiral and charge symmetries, but we restrict the following development to
a special Bogolyubov transformation (to be called Nambu transformation) which breaks the
chiral symmetry of our system only. The elements of this Nambu transformation, parametrize

consistently with unitary conditions (10), are given by

Xyt =Xy =cosipx and Xj3 =Xy =10
(30)

Yig= —Yu —singre’™ and Y =Yy =0 .

14



In the special case of a Nambu transformation, the elements of the ; and gx matrix [see

Eq.(15)] are given by

hyz = hay = Y sin® g
hu=hu=gu=gn=0 : (31)

g1z = —ga1 = [igk — Fk sin i cos g et ™ |

On the other hand, in the mean-field approximation one finds that F5(t) commutes with

number operators’

Tr {Hceﬂulfuaﬁz,jﬁk,l]} =Tr {HCGNM[fO:ﬁlt.zﬂk.ﬁ]} =0, (32)

while, due to the Nambu transformation (or charge conservation of the system), we obtain
also

Tr {[ﬁlt,iﬁk,m Hccnu]fo} =17 {[ﬁﬁ,zﬁk.la Hcam.:}}-n} =0
(33)
Tr {[ﬁ-k.lﬁk,h HCGNM]}-G} =Tr {[ﬂnk,zﬁk.m HCGNM}FD} =0 .

Substituting the elements of the Ay and g matrix given in (31) and the results (32) and
(33) in the matrix dynamical equations {16}, we obtain the equations which describe the time

evolution of our system
By =0 and ya=10 (34)

Tr ([B-x,1Bx,2, HoaxulFo)
(1~ 1 —n) '

fidx + e sin i cos o] e~ = (35)

15

Equation {34) shows that the occupation numbers of the paired natural orbitals are con-
stant, i.e., we recover the general isoentropic character of the mean-field approximation. The
complex equation of motion {35) describes the time evolution of the Nambu parameters,
Writing the CGNM Hamiltonian, given in Appendix B, in the Nambu basis using Eqs.(11)
and (30), and substituting this Hamiltonian in Eq.{35), we obtain the explicit dynamical
equation which describes the time evolution of the Nambu parameters. The calculation of

traces is lengthy but straightforward. The resulting equation of motion is

3 2 i
ey #REP—-Z-('D—" = -(-l—q-sinZ(,ak - m;M [sin2 <pke'i"“ — cos? tpke‘"”‘] +
2 ko ko
(36)
gm*y (E+1) [ ikl . a2 2,
+ (?) T sin 2y + oy (sm pre™™ — cos? pye ”“) (L+ L)
where I) and [; are the divergent integrals below
dk’
Il = [—F—COS 2<pkr(]. — My — ykf‘z)
0
(37)

' K| .
Ig = /H;‘ sin 2cpkr cOos "}'k‘(]- il L8 uk’-z) -

We take the case N = 1 for simplicity. Splitting the complex equation (36) into real and

imaginary parts we have

Y = sinﬂyk-l}lii [m - (E‘:Tm) €+ 1)L+ Iz)]
hosindp = 202 {k’ + (QZ’:z) (€+1)(h + -’2)] + (38)

+ 2cos 2 cosqk%ni- [m - (g_j;) (€+1)(h+ Iz)]

16



Finally, the mean-field energy is evaluated as

(Hoguu) = TriHcamsFolt)} = ( ) (f~ L)~ (F) €+ 1)(11 + L) +
(39)
(ngiz) 2D [+ s - mea) [~ s + )

where the Hamiltonian in the trace is in Nambu basis again. The divergent integrals [, and

I; are given in (37) while I; is given below

dk' (K'\?
Iy = f " (E) €08 2ipe(1 — Mg — ) (40)

We can verify that all results above contain divergent integrals. Therefore a renormaliza-

tion procedure is required.

5 Renormalization

In order to handle the infinities found above it is necessary to introduce a renormalization

technique that will render physical quantities finite. In general, renormalization procedures
consist in combining divergent terms with the bare mass and coupling constants of the theory
to define finite (or renormalized) values of the mass and coupling constant. In other words,
the bare mass and coupling constants are chosen to be cut-off dependent in a way that
will cancel the divergent terms. In the present case, however the divergent integrals (37}
and (40) involve the dynamical variables themselves in the integrand, so that their degree
of divergence is not directly computable. In order to handle this situation we will use a

self-consistent renormalization procedure inspired in Ref.[17].

5.1 Self-Consistent Renormalization

This technique involves consideration of the static solutions of the dynamlca.l equations (38).

They are determined by the solution to the equations

17 .

a1 (£) €nine ] 0 @

~[kim (L — (¢"/47) (€ + 1)(11 + [o)]
((k)? + (¢*m?/4m) (€ + 1)(0 + L))

tan 2¢k e = CO8 Y |eg - (42)

There are two possible solutions for equation (41) which correspond two possible phases

of the system. They are

2
symmetricphase : 1-— (%F) E+)(L+L)=0
with - sin Yxleq # 0 (43)

broken phase :  5inqxleg =0
2
with 1— (;%;) E+1)(h+0L)#0 . (44)

From Eq.(42), we see immediately that the first phase has as solution
tan 2pyleq = 0 = pi|oq = nw for n = 0,£1,42,... . (45)

If we substitute the solution (45) in the Nambu transformation [see Eqs.{(11) and (30}], we
obtain an identity transformation. Thus, this solution corresponds to the situation in which
the chiral symmetry stays intact.

For the second phase we will solve a self-consistency problem. In order to préceed we
introduce a regularizing momentum cut-off A and neglect contributions that vanish in the
limit A — co. The renormalized coupling constant for the CGNM can be obtained from thg

minimization of the CGNM vacuum energy density with respect to m, namely

% [Tr(chNMﬂwuum(t))] =0, | .(46)
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where Hoguy is given in Appendix B. From this calculation we obtain (see also Ref.[18])

4r A\
s=wr o (m)] )
We assume that the integrals [y and f; have logarithmic divergence
2
I]_ = a + bl]l (%)
(48)
2
L = e+dln ('é"!') y
m

where ¢, b, ¢ and d are finite constants. Substituting (47) and the ansatz (48) in the static
equation (42) we obtain for the second phase given in (44) that

—(=1"mik|{l - (6+ a)f
(k)2 +m2(E+d)]

tan 2px[.q = {49)
where the divergence problem is controlled, since b and d are cut-off independent. Moreover,
from (37), (48), and (49) we obtain the finite constants a, b, c and d (see Appendix C). From
the self-consistency requirement we have b = 1 while d remains arbitrary. Substituting this
results into {49) we have the renormalized static equations which describe the second phase

of our system in mean-field approximation

(=1)*mjkld

m with d#0

tan 2y |eq =
(60)

Yleg = nw for n =0,£1,42,...

We observe that our theory contains only one free parameter, say d. This is altogether
reasonable since our starting point was a massless fermions theory which was determined

by cne dimensionless coupling constant g. We end up with a theory determined by one
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free parameter d after the self-consistent renormalization procedure. What is needed is an-
interpretation of the parameter d. We begin by writing the fields ¥(x) and $(x) given in (1)
in the Nambu quasi-particle basis using (11}, and (30). We find that the new Dirac spinors

in this basis are given by

ui(k) = cosipx ur(k) + sin gy ™ uy(—k)
(51)
uh(k) = cosey uz(k) — singg €™ u; (k) .
From the renormalized static solution (50} we have that
- Eﬁ [(koz + mlkld)/? + (ko — mlkld) 7]
0
(52)

. a1 |
sinpihg = (~1)"g—= [(koz + mik|d)'/* - (koz — m|k|d)"/]

where z = [k? + (1 + d)*m?]/2, Substituting the solutions (52) and the particle spinors (29)

in (51), we obtain the new spinors in quasi-particle basis. They are given as

1 1
e [ +me) ] [ ey [ = me)]
uy(k) = [—2”%7— k y up(k) = ey k
(k5" + mey) (ks = mep)
(53
where
(K} = (k)2 + (ma)? and my = (L+d)m (54)

Comparing the spinors {53) in quasi-particle basis with the spinors (29) in particle basis,
we see in Fq.(54) what amounts to a redefinition of the mass scale. The use of the Heisenberg

equation in (13) leads thus to mass generation and the chiral symmetry breaking of the system
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(#x|eq # n7} . Therefore, the renormalization procedure effectively replaces the dimensionless
coupling constant g for a free parameter d associated to a mass scale {see Eq.(54)]. This is
analogous to the phenomenon of dimensional transmutation found by Gross and Neveu [10]
in the 1/N expansion. Finally, aside from the over-all mass scale {characterized by d) there
are no free adjustable parameters.

Using Eqs.(38), (47}, and (48), we finally rewrite the renormalized dynamical equations
that describe the mean-field time evolution of this system in the broken chiral phase (d # 0

OF M.5 7% m) as

bk,1'= ¢ and 91:.2—"-0

o = (—l)mdlkﬂsin'rk
0

hsind = ZRZ2 [+ m¥(1 4 )] +

- 2md| lcosZgok cosSYk .
We next calculate the ground-state of our system in mean-field approximation. Taking

Pk = iz = 0 in (39) and evaluating the divergent integrals (37) and (40) from renormal-
ization ansatz (47), and (48), we obtain

(H&%L},)mm = (21«) [1+( )(£+1)}

- ()2 {1—1:1[(-1-1;-‘5)—2]} , (56)

where we use the finite constants a, b and ¢ given in Appendix C. The quadratically divergent
term represents the vacuum energy density of this system. This can be verified by calculating

the energy density to massless spinors instead of the mass spinors (29). We obtain
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(m = Ol HY N m = 0)
L

mm,*‘@—;) [1+(§;) (§+1)] . (7). |

The presence of this divergent constant has no physical consequences, since only energy differ-

ences, not absolute energies, are mensurable. We shall follow usual practice of redefining the
zero of the energy scale. Therefore, in terms of effective mass given by (54), the renormalized

energy density to the ground-state of our system in broken chiral phase is given by

(Hcguni>“°““"’ _ (’;‘:) ("‘*f ) [1 +2mI2~1In (":n’ ) ] . (58)

In Fig.1 we see the renormalized energy density of the ground-state of our system as func-
tion of effective mass m.;. This figure reproduces the well-know effective potential obtained

in the case of 1/N expansion [10].

5.2 Time Evolution of One-Fermion Densities

In the rencrmalized dynamical equations (55) the quasi-particle occupations numbers iz
and vy do not evolve in time, while the time evolution of the Nambu parameters ¢ and
4 describe the time evolution of the Gaussian variables in terms of {30). In this section, we
discuss numerical solutions of these nonlinear equations for given values of the renormalized
parameter d.

First, we verify that (d+ 1) = 0 = m,; = 0 from (54). On the other hand, takingg =0
in the Hamiltonian density (27) and calculating the kinetic equation (35) for a free fermion

system we obtain
l;'k‘l =0 and ﬁk,2=0
Pr = ml——lsin"nt (59) -
k|

Fksin 2 = -B-- sin 2y + 2m-— cos 2y cos e .
ko ko
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Comparing (55) and (59} we verify that (d+1) = 0 corresponds to the free fermion system.
Therefore, in the case of a free fermion system the minimum situation is massless (m.; = 0).
In Fig.2 we show the phase-space of the Nambu parameters for the (141) dimensional uniform
free fermion system. We take m = [k| = +/2 and {d+ 1) = 0 to several initial-values ¢i® and
~+{". In this case, the equilibrium points are given by

Pkleg = (—% + ng) and leg =2nw for n=0,%1,£2,....

and

Pkleq = (+%+ng) and Wleg=(2n+1)r for n=10,+1,42, ...

The phase-space trajectories exhibit two types of behavior. For initial-values @i® and 7" near
the equilibrium-points the Nambu parameters oscillate around then, while for izitial-values
distant of equilibrium points the v Nambu parameter varies monotonically in time.

From Eq.(50), we know that for (d+1) = 1 (or d = 0} the chiral symmetry of our system
stays infact. In this case, the Nambu parameters not evolve in the time. For any values of
the parameter d, except (1 + d) = 1, the phase-apace of Nambu parameters exhibit the same
two types of behavior observed in Fig.2. On the other hand, the equilibrium points change
as (d + 1) increase. For (d+ 1) — oo, and m = |k| = +/Z, the equilibrium points go to

Pkleq = (+% + ng) and Yi|eq = 2nm for n=10,+1,42,....
and

3
Pkleq = (+?" + n%) and ileq=(2n + )7 for n=0,+1,42,... .

6 Discussion and conclusions
We have described a treatment of the initial-values problem in a quantum field theory of

self-interacting fermions. Although the formalism is quite general, we have specilize it to
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the treatment of a relativistic many-fermion system described by Chiral Gross-Neveu model '
(CGNM).

We have obtained the renormalized kinetic equations which describe the effective dynam-
ics of the Gaussian variables in the mean-field approximation and in broken chiral symmetry
phase to a relativistic uniform (1+1) dimensional fermion system described by CGNM. We use
the static solution of these equations in order to renormalize the theory, leading to the well-
known effective potential obtained by Gross and Neveu using the 1/N expansion. We show
also that other static results discussed in the literature such as dynamical mass generation
due to chiral symmetry breaking and a phenomenon analogous to dimensional transmutation
can be retrieved from this formulation in a rﬁean—ﬁeld approximation. Finally, we discussed
the time evolution of the Nambu parameters (Gaussian variables) of our system.

As a final comment we note that, unlike the situation found in connection with the 1/N
expansion, the use of the Gaussian ansatz, Eq.(19), parametrized by the canonical transfor-
mation leading to the quasi-fermion basis, allows for the direct dynamical determination of
the stable equilibrium situation of the system [see Eqgs.(43) and (44)], including symmetry
breaking and mass generation.

As an extension to this work we could take the quasi-particle occupations no-vanishing
what corresponds to include finite matter density in our calculation. In this case, we have
to take 143 # 0 and x4z # 0 for positive-energy states up to the Fermi momentum kr. The
dynamical equations themselves will consequently depend on kp.

On the other hand, we can use the projection technique {7} to include and to evaluate
higher dynamical correlations effects to the simplest mean-field approximation. In this case
the occupation numbers are no longer constant, i # 0, and their time dependence affects
the effective dynamics of the Gaussian variables (see reference [9]). A finite matter density
calculation beyond the mean-field approximation allows one to study collisional observables
such as transport coefficients [19]. Finally, we comment on the extension to non-uniform case.
In this case the spatial dependence of the fields ¥(z) and ¢(z) are expanded in the natural

orbitals through the use of a non-homogeneous Bogolyubov transformation {see reference

[91)-

24



Acknowledgments

One of the authors (P.L.N.) was supported by Conselho Nacional de Desenvolvimento

Cientifico e Tecnolégico {CNPq), Brazil; and by Fundacio de Amparo & Pesquisa do Estado

de Sdo Paulo (FAPESP), Brazil.

Appendix A : Uniform system and the representations
for the y*-matrices

An uniform system has to be translational and reflection invariant. The reflection invari-
ance implies that the motion equations are direction independent, i.e., the motion equations
are [ki dependent.

Let us define then the vacuum corresponding to the two solutions. Let

w(m}(w)' = (Lk("‘!)) [ mi), (ﬂu) k)e'-kx+b(m1)i (mtl(k) -th] (60)
A{mt (m b —ik.x my ). (m1 ik.x
$rz) = ( k(m,) B aa0e s v amamagets] (e

be quantized fields satisfying the Dirac equation with mass m;

(i@ - mpt™(z) =0 , (62)
and let
12
‘f)(m’}(m) = ; (—_LZ::H)) [bl(az)ugm’)(k)eﬂ“" + bigz)fugm)(k)e—ik.x] (63)
0

) [ mz}f. {m3) k)e—ik.x + b](:";z)ﬁgmz)(k)eik.x] (64)

Frl(z) = ;(
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be quantized fields satisfying the Dirac equation with mass my

(i@ — ma)p™)(z) =0 . (65)
By imposing a condition that
P2y = p™(z) for t=0 (66)

one can show that the operator sets (a{™, &™) and (a{™, ™) are related by canonical

transformation given below

(m2) my\ /2 (R 2 (ma) .y, (m1) (o)
hal o= (‘,‘,‘;;) e Y (kJuy " (k) g by +

(87)
my\ /2 kgmn) 1 2 () (m)f '
+ 13 (kpuf™ (k) 1 B
(mz) 1/2
(ma) _ m Y (kg Z(m1) )y, mad gy b gme)
bk; = "'{(mz) kc(,ml) Uz (k)ﬂz n(k) bk,z +
(68)

1/2 k(ﬂiz) m . ot
B {(mz) (k(ﬂu)) (ko ’(k)}b‘_kﬁ :

In the case of uniform system, the coefficients of canonical transformation are invariant
under k — —k transformation. Therefore, the conditions for a system to be uniform are .

given by
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0™ k) = " (k™ (k)

B (k)™ (k) = &™) (~k)uf™ (k)
(69)

Mk = ™~k (k)

™ (™) = 2™ gul™) (k) .

We verify that only two representations for v*-matrices satisfy the uniformity conditions

{69). We have that only the Pauli-Dirac representation
Ye=03 ; N =ioy e F=YoNn =0y (70)
and the representation below
Yo=03 ; M=i0L & B=pPNH=—01 , (71)
provide uniform solutions. We choose the Pauli-Dirac representation (70} which has as uni-

form solution of Dirac equation the spinors given in (29). On the other hand, we must be

careful becanse the spinors given below

1 k
1/2 12§ s
u(o = (ftm | mto= () TER
Torm) 1

also are solution of Dirac equation for Pauli-Dirac representation, but they no satisfy the

uniformity conditions (69).
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Appendix B : The uniform CGNM Hamiltonian
In this appendix we show explicitly the Hamiltonian of Chiral Gross-Neveu model which
preserve the reflection invariance of the system. In Pauli-Dirac representation (see Appendix

A) the CGNM Hamiltonian is given by

Heonm =

EZ[(k,},+m,]1,, {3917 (8L 10us1 — b bl 0) =l (bug by + 8L 1810 ) } o+

i=l k'

() B! i }
2L ] 530 e gy | [0 + mP PR o m2 ()2 4 m? A7) w24

{bl':;,16u;f.1bL;g:,16k;f",1 (6 (i pma () 0 (O Yy () — i e (8 0 Yo ()] e e
b{, bicy by gbL,.,2 (&2 (v () o (1) yys (k™) ~ i (I Yy (k") 0o (B (1)) G e et
bk, ben 16,‘": 1 .‘m.,, [ (v ua (0 )8R} Yys a (k™) ~ iy (k] (kY )0 (K Yua (i) ]Jk:+k;"+k;'",k:{
b 1 bucp, i, abum 1 (€8 (I tn (2B s iy (KP7) — i (1 () () Y (kF")] G s et s
51:;.:514;,251;;_",;61:;"',1 [€a2a (il ) s ea (K} Vaia (K Yvmen (™) — tha (g (K Vi (A sy (KF)) Ot s e 41
bn;,zbLinlsz;",sz;,m,z (€82 (k) s wa (1 Yo (I} Yrm sz (™) — (Y (kf ) B (ke Yua (™)) Bty s
b, 2bly 5 Lm 1 Lm,z (€t} ol ) (Y vs wa (™) — @ (fyua O i (k) r2 ()] G g
by 2bl b, 2y (€ (1Y vs ey ) aa () v s (") = (] b ()2 (1 s ()] Ot ey e ks
B by o, B, (€02 v wa (7 i () v (") — il s (5 Yua (")) B et g
bl bl i 2t o [0 () vo o (i) oa (I Vs o (5) — i (] g (0} (Y I™) ] Byt e e
bk' 1”1;" zbk”' 1516"' 2 (€80 () vs (e Yita (K" Yysuallc™) — iy (G Yua (' }iia (kY hea (k™)) bt PRI
b{b1541,251:;.".25::;."'.1 (€ (ki) ys ua () o (i s un (k") - O Yua () B (I Y101 ()] duc et s
bk“..2bk;’,lbL?1,1bk?".l [ (1 ys e (K'Y (0" Yys a (F™) — i (1 )y () (K (1] L R
bn;,251:5'.151:;".25{:;;",2 (88a (k) ys i (e Yia (k) s wa (™) — o (et e (e Yo (e (™)) Bt st s
bk;,zbk;',zbf:;,u,;51";:::,2 [Ea2(b Yy e (Y (e Yy ea () — a1y (K'Y (K Yo (™) S g

bue abicyr 1 by abum, 1 (€22 (k])veenn (K]} (k) s wn (") — (k) un (K Yo (I Yur (™)) B 44k +|:;"',o} .

+ + 4+ o+ o+ o+ o+ o+ + o+

(73)

The CGNM Hamiltonian above is in particle basis. In dynamical equations (35} we have
to use the CGNM Hamiltonian in Nambu quasi-particle basis. Th1s task is realised from
Nambu transformation defined in (11}, and (30).
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Appendix C : Self-consistent renormalization

From (49) we obtain that

_ —(-1)°mlklf1 = b+ )
s 2§0kieq = ko{kz _:nmz(b + c(i)ﬂluz ]

(74)
(k2 + m?(b+ d)]
co8 20y feg = kol[k? + m2(b 4 d)2)1/2°

Substituting (74) in I and I; given in (37) and making the integration follow that

—_ +A dk [];2 +m2(b+d)] _ A2
ho= -[-A &%+ m?) [k: + m?(b_l. d'):g] =a+ blq (F)

d
a = ["(Tnfz—_‘ﬁu—z“ct““[“*d)z‘”m*'“ [u—ii)'z‘] and b = 1

when (b+d)?> 1
(78)

_ d 14+{1-(1+d)%}/2 4 _
* T E-a+amenl [1— - +d)2}v=] i ["_‘(1 +cn=] and b =1
when (b+d)? < 1

I

Ak i A?
WD [ ety = o+ (%)

~2d 4
= U+ap - arctan[(1 + d)* — 1J*/2 4 dIn [m] and d = d

when (b4d)? > 1

(6)

= o [1+{1— (1+dPps3
T AT T L+ T
when (b+d)? <1

]+dln[(—17:d-T] and d = d

We verify that the ansatz (48) is self-consistent. From (75) and (76) we have the values
of finite constants a, b and ¢. We must observe that ¢ stays arbitrary in this calculation.
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Figure Captions

Figure 1 - The mean-field effective potential for ground-state of an uniform fermion system
described by the CGNM in broken chiral symmetry phase as function of effective mass m,;.

Figure 2 - Phase-space of Nambu parameters for }k| = m = +/2 in the case of free fermion
system [(d + 1 = 0) or m.; = 0. The various curves correspond the following initial-values
off-equilibrium
Dotted line : o} = (—0.2 + nr/2), 4* = 2nw and ¢ff = (+0.2 + nn/2) , 42 = (2n + )7,
Dashed line : jf = (—0.1 + nr/2) , 4" = 2n7r and & = (+0.1 + nx/2) , A = (2n + L)m,
Solid line : @} = (—m/4 4 nn/2), 4P = 0 and ¢ff = (0 + nn/2), 4P =0,

Dot-Dashed line : ¢! = (r/8 4+ nr/2), 4 = 0. '
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