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1 The graded response neuron model

The graded response neuron activation evolves according to the following delay differential

equation (DDE):

dz
= (1) = M==(t) + no(x{t — 1)) (1)

Where o is defined by:

o(z) = tanh(az) (2)

We suppose A > 0, n = +£1 and & > 1.

Let S :AC[—I, 0] be the space of continuous real functions of the interval [—1,0]. For ¢ in S
there exists a unique real function (¢, $) on the interval [—1, +-co), such tha’t z{t, ¢} = qb(t),
for —1 <1 <0, and z(, &) satisfies equation (1) for { > 0. For such a solution of,the DDE
we denote by z,{¢) the element of S defined by x.(¢)(0) = z(t + 8,¢), for —1 < 9§ <0 ,

8]131;3 re(sle)arch project aims to establish the following description of the global attractor of the

2 Negative feedback

In this section we suppose 7 = —1, Let Ay =0
' | : . o = 0, and Az be the value of the parameter ) at the
kth Hopf bifurcation occuring at 0. For this model, all Hopf bifurcations are supercritical.

T;‘he c.fisclzrete ;l;ime Lyapunov function counts the number of zeros of a solution on an interval
of unit length of the form [¢ — 1,1] such that z(t) = 0 (Mallet-Paret
) (t) (Mallet-Paret, 1988). Let us denote

We define the M , . _ . _
attra,cto: e Morse sets as follows: Sayvi = {¢ : V{¢) = 2N + 1} where ¢ is taken in the

Let &> b*e .the numbe.r of eigenvalues of the characteristic equation at 0 with positive real
pz—}rts. N* is necessarily even. We consider only the cases where there are no eigenvalues
with zero real.pa,rt. Sw- = {0}, for other even values of N, Sy is empty.

Then the family S, forms a Morse decomposition of the attractor of the oscillating solutioné.
For the parameter A in the range: Ay < A < Apy1, we have N* = 2k and
L Sp=0forn>N*

2. Sgp4q for 0 < p <k —1 is composed of a unique limit periodic solution Ch.




Moreover, the stable and the unstable manifolds of the various limit cycles intersect transver-
sally. These are the connecting sets between the Morse sets. There are connecting orbits
between 5, and 5, for all m > g such that the corresponding Morse sets are non empty.

This gives the Morse decompaosition of the attractor. To this decomposition, there corre-
sponds a partition of the phase space 5.

There exists a strictly ordered sequence of subsets of § such that:

LW CWeC-CWo=S5

2. W, is of codimension 2p

3. 2,(¢) tends to C, if and only if ¢ is in Wy — Wy, (with 0 <p< k—1).
4. 2,(¢)} tends to 0 if and only if ¢ is in Wy.

3 Positive feedback

In this section we suppose 57 = +1. Let Ao = 0, and M¢ be the value of the parameter A at the
kth Hopf bifurcation occuring at 0. For this model, all Hopf bifurcations are supercritical.

The discrete time Lyapunov function counts the number of zeros of a solution on an interval
of unit length of the form [t — 1,¢] such that (¢) = 0. Let us denote this function by V'
(Arino, 1993).

We define the Morse sets as follows: Sanv = {¢ : V{(¢) = 2N} where ¢ is taken in the
attractor of the oscillating solutions. '

Let N* be the number of eigenvalues of the characteristic equation at 0 with positive real
parts. IV* is necessarily odd. We consider only the cases where there are no eigenvalues with
zero real part. Sy« = {0}, for other odd values of ¥, Sy is empty.

Then the family S, forms a Morse decomposition of the attractor of the oscillating solutions.

For the parameter A in the range: Ax < A < Agypy, we have N* =2k + 1 and

1. S, =@ for n > N*
2. Sy for 1 £ p < k is composed of a unique periodic solution .
Moreover, the stable and the unstable manifolds of the various limit cycles intersect transver-

sally. These are the connecting sets between the Morse sets. There are connecting orbits
between 5,, and S, for all m > ¢ such that the corresponding Morse sets are non empty.

This gives the Morse decomposition of the attractor. To this decomposition, there corre-
sponds a partition of the manifold W of oscillating solutions.

There exists a strictly ordered sequence of subsets of W such that:

LWecWe C---CcWo=W

2. W, is of codimension 2p + 1

3. x4(9) tends to C,, if and only if ¢ is in Wy — W, (with 1 < p < k).
4. zy(P) ténds to 0 if and only if ¢ is in W;. |
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