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1 Introduction

Experimental studies of the behavior of self-connected single neurons have shown that the time it
takes for a signal to be transmitted (referred to as delay here) from the neuron to itself can influence
the discharge pattern of biological neurons (Vibert ef al., 1979; Diez-Martinez & Segundo, 1983).
The influence of delay on neural behavior has alse been analyzed in theoretical and computational
studies of self-connected single neuron and recurrent neyral network models (an der Heider, 1981;
Plant, 1981; Pakdaman ef al., in press; Chapeau-Blondean & Chauvet, 1992; Destexhe & Gaspard,
1993; Destexhe, 1994; Lourengo & Babloyantz, 1994; Vibert et al., 1994; Gerstner, 1995; Houweling
et al, 1995). Such results indicate that the delay is an important control parameter in living
nervous systems.,

In artificial neural network {ANN) applications, delayed inter-unit transmissions may render the
networks more versatile, for instance by allowing the storage and retrieval of time-varying se-
quences in discrete-time networks (Sompolinsky & Kanter, 1986; Herz ef al.,, 1988). Nevertheless,
in some ANN applications, the delay may deteriorate network performance. In a continuous-time
content-addressable memory network, information is stored in stable equilibrium points of the
system. Retrieval occurs when the system is initialized within the basin of attraction of one the
equilibria and the system is allowed to stabilize in its steady state (Hopfield, 1984; Hirsch, 1989).
Delays, which arise in hardware implementation of the ANN, may interfere with information
retrieval by rendering the equilibria unstable (Marcus & Westervelt, 1989).

The above examples indicate that determining the contribution of the delay in the shaping of
neurat dynamics is helpful for better understanding a variety of neural network behaviors. This
work deals with the influence of delay on the behaviot of networks composed of continuous-time
nonlinear graded response units, which have been used as models of living neuron assemblies
(Cowan & Ermentzout, 1978) as well as in ANN applications (Hopfield, 1984).

An important issue in the study of neural network dynamics is to determine the long-term behavior
of the system. Sufficient conditions have been given that ensure (almost) convergence of the
continuous-time neural network {with or without delay), that is, (almost) all trajectories eventually
stabilize in a steady state corresponding to one of the equilibrium points of the dynamical system
(Marcus and Westervelt, 1989; Burton, 1991; Marcus et al., 1991; Roska & Chua, 1992; Roska et
al., 1992; Bélair, 1993; Burton, 1993; Civalleri et al., 1993; Roska et al., 1993; Gopalsamy & He,
1994a; 1994b: Ye et af., 1994; 1995; Finnochiaro & Perfetti, 1995). Such behavior zllows efficient
storage and retrieval of information in the network (Hirsch, 1989).

We study the influence of the delay in the behavior of a network composed of N graded response
neurons forming a ring where each unit is connected unidirectionally to the next one. The asymp-
totic behavior of ring networks, also referred to as chain networks, have been studied in (an der
Heiden, 1981: Atyia & Baldi, 1989; Hirsch, 1989; Blum & Wang, 1992; Pasemann, 1993). These
studies have been concerned with the (almost) convergence of the network, and the conditions
under which this property is lost due to the presence of stable non-constant periodic solutions.
We suppose that the ring contains an even number of inhibitory (i.e. negative) connections.
The behavior of such ring networks is the same as those containing only excitatory connections.
Indeed, in a ring network containing an even number of inhibitory connections, the effect of a

perturbation on one unit is reinforced by the feedback, so that the global effect is similar to th
of a positive feedback loop. Schematically, this mechanism can be expressed as “negative tix
negative is positive”.

The positive feedback constraint ensures that the network is almost convergent both with a
without delay, and that no stable undamped oscillatory pattern can occur. Qur analysis focus
on the long-term behavior of the negligible set of the trajectories that de not eventually stabili
in one of the stable equilibria of the system. We show that in ring networks with delay, the
trajectories play an important role in shaping the transient regime of converging trajectories. T
results presented here generalize our work on the behavior of a single self-exciting neuron and al
on two-neuron networks (Pakdaman el al., 1995a; 1995b; 1995¢).

We present the study of the system behavior without and then with transmission delays {Section:
and 3). The results are discussed in (Section 4).

2 Instantaneous inter-unit transmission

In this section, the continuous-time N-ring neural network model with instantaneous inter-ui
transmission is presented (Section 2.1), and its asymptotic behavior analyzed (Section 2.2).

2.1 The model

The dynamics of an N-ring neural network are determined by the [ollowing system of ordina
differential equations (ODEs):

d.??,'
€itl d;-l (t) = w:[;;_‘_;(t) + I’Vi-i-.lo'ai“(zi(t)) (

In ODE (1), as well as in all subsequent expressions the index 7 is taken modulo &, so that 1
instance ¢y = wg. z;(1) represents the activation of unit 7 at time ¢, ¢; > O characterizes the dec
rate of the activation, #; is the connection weight indicating the influence of unit i — 1 on unit
and oy, is the transfer function of unit'z defined by:

g% _ gmoa
O'Q(ﬂ) = tanh(o:a) = m. (

For ¥ = (yo,--,yn_1) € MY, there is 2 unique solution of ODE (1), denoted z(¢,¥)
(2o{l,¥), -+, zn1(¢, 7)) and defined for all ¢ € IR, such that z(0,¥) = Y, and z(t,Y) sat:
fies QDE (1) for ¢ € R. Moreover, it can be seen that z(t, Y} is bounded as ¢ —+ +oo0. We dena
by z the flow associated with ODE (1), that is, z(Y) = z(t,¥). To simplify the notations, t
dependence on the initial condition ¥ will not be indicated unless necessary. -

System (1) satisfies the positive feedback condition when b = oWy - an_ Waor > 0. Aft
an appropriate change of sign of some of the activations, system (1} with the pesitive feedba




:ondition can be transformed into an irreducible cooperative system (Hirsch, 1989) satisfying the
nore restrictive constraint Cor oy W > 0, for all 1.

rom here on we suppose thai ODE (1} satisfies Co. Under this condition, QDE (1) preserves
he order of initial conditions. That is, if an initial condition is larger than another one then the
.orresponding solutions wiil have the same property. The activations corresponding to the larger
nitial condition remain iarger than the ones corresponding to the smaller initial condition. More
srecisely, let ¥ = (yg, . ynv—1) and ¥ = (y,- -, yh—,) bein R", we say that V is larger (resp.
trictly larger) than Y” denoted ¥ > Y7 (resp. ¥ 3 Y”) if for all { we have y; > ! (resp. v > y!).
jystem (1) generates a strongly order preserving flow, that is:

for Y and Y’ in RY such that ¥ 2 Y and ¥ # Y7, we have: z(Y) 3> z(Y") forail t > 0, (3)

.2 The asymptotic behavior

\ constant solution of system (1) is referred to as an equilibrium point. Let v = (ag, -~ ,an-1) €
¥, 2{t) = r, for { € R is an equilibrium of ODE (1) if and oply if r is a root of the following
ystem:

—Qit1 + W’H.]O'QH_I(G;') = O, for all 1. (4)

“his system has been studied in (Blum & Wang, 1992; Pasemann, 1995). Equation {4) has the
wique root rg = 0 for b = agWo - ay-1 W1 < 1. Tor b > 1, equation (4) has three distinct
cots denoted 7| = ~(ag, - ,an-1}; T2 = 0 and r3 = {ag, -, an—1), with a; > Q, so that ry = —rg
nd rz o =03 .

.ocal analysis by linearization at the equilibria yields the following results {Selgrade, 1930: Mallet-
*aret & Smith, 1990).

socal stability. 1) For b < 1, ro = 0 is lecally asymptotically stable, ii) for b > 1, r, and r; are
ocally asymptotically stable while ry = () is unstable.

“he basin of attraction of an equilibrium represents the set of initial conditions whose trajectories
end to this equilibrium point. The monotonicity property {3) and the special form of cyvclic feed-
rack involved in the N-ring network imply that the asymptotic behavior of solutions of ODE (1}
annot be complicated (Appendix A).

3lobal behavior. 1) For b < 1, rg = 0 is globally asymptotically stable so that the trajeciories
f all initial conditions tend to ry. '

i} For b > 1, the union of the basins of attraction of r1 and r3 is an open dense subset of R
ts complementary, denoted B, is a codimension one mapifold formed by the union of the stable
nanifold of r; = 0 and stable manifolds of unstable periodic solutions. Furthermore, let ¥ 2 B,
ad V' e BY, fY > v* (resp. Y' 2 Y)andY £ Y then z{t,Y") = ry {resp. ry}ast — +o0.

S

Conversely, let Y' € RY, if z{t,Y") —+ ry (resp. r3) ag t — +oo, then there is ¥ € B, such tha
YoV (resp. ¥/ 2 ¥)and ¥V £ Y.

The above result shows that ODE (1) does not admit any undamped oscillatory solution for b <
and N > 1,and also b > 1 and N € 3. In fact, for b > 1 and N = 1, we have B = {rp}, ant
for ¥ = 2 or N = 3, all solutions on the boundary tend to ry, so that ODE (1) is convergent
For ¥ > 1 and ¥ > 4, B may contain undamped oscillatory solutions. These are necessaril;
unstable and asymptotically periodic. So that in this case, solutions on the boundary B are eithe
asymptotically periodic or damped to r3. Selutions “below” the boundary tend to ry, and thow
“above” it, tend to rs, while those on the boundary are unordered, in the sense that for ¥ and ¥
in B, we have neither Y > Y/ nor Y* 3 Y. This leads to the following description of the solution:
on the boundary B.

Let Ko = {¥ € RY, ¥ » 0} and K_ = {Y € IRY, 0 3> Y} be respectively the positive anc
negative cones in IRY, From the description of the boundary given in the previous paragraph, i
can be seen that the cone J(_ (resp. ) is in the basin of attraction of r, (resp. ra). Therefore
Y isin B if and only if (¢, Y) ¢ K4+ U K-, for all t € R. Tn other words, Y is in B if and only i
for ali ¢ € IR, there is i such that z;(f,¥) x zi41{f, ¥} < 0. We refer to such solutions as weakl;
oscillating®.

‘Weak oscillations. All solutions in B are weakly oscillating.

For N = 1, the only weakly oscillating solution is the constant solution z(t) = = 0. For N =2
if 2(¢) # 1y is weakly oscillating then zp(£) x z1(¢) < 0 for all ¢ € IR, so that neither z(t) nor =, (¢
change sign. In general, for & even, there is always a weakly oscillating solution 2(t) tending &
rq a3 § =+ 400, and T € IR such that zp{t) X ««- X zx_1{#) # 0 for all £ > T. Thus none of th
compenents of this solution takes the value () once t is large enough. Therefore the components of :
weakly oscillatory solution are not necessarily oscillating scalar functions. However, non-constan
periodic solutions, whenever they exist, are strongly oscillating, that is, cach of their component
is a scalar oscillating function.

2.3 The transient behavior

The characteristic return (resp. escape) time to a stable (resp. from an unstable) equilibriur
point, resulting {from small perturbations near the equilibria is given by 1/[R({A)|, where A is th
eigenvalue of the linearized system with the largest real part denoted by R{)). For ODE (1), A i
real negative at the stable equilibria and real positive at the unstable equilibrium rs.

The map from Ky to IR* which to £ = (e, -+, en—1) associates 1/|A(F)|, the absolute valu
of the inverse of the real eigenvalue of ODE (1), with parameters e;, is strictly increasing (witl
respect to the order in X). For ¢; = ¢ for all 1, 1 /| M E)}| = K¢, where /& is a constant dependin
on the equilibrium point. Herce, in general, we have 1/IME} — Qas E - {0,.--,0), E € K4

!This is a stronger definition than the usual one which states that a map 4 from R to R is weakly oscillatin
if for all T € I, there is £ > T, such that u(t) € Ky |J K. However, for solutions of QDE (1), the two noticn
coincide.




Thus close to the equilibria, the characteristic return and escape times of the system decrease and
tend to zero as £ decreases and teads to zerc.

ie1, ihe transieni regime refers to the dynamics before the system reaches
rgmished from the equilibrium point within some given precision.

tere ¢ = me, with ; > 0 fixed for all i, Under this condition, rescaling
sforms ODE {1) into a similar system, with the same weights W; and
are s=t 10 n;. This shows that, the trajectories of solutions of QDE (1) in the
independent of the parameter ¢, Therefore this parameter does not affect the
: of the phase portrait of ODE (1). However, the speed with which the state
svolves zlong a given trajectory increases as e is decreased, and for any converging
ransient regime duration is proportional to €. Thus the transient regime duration
: Linearly to zero as € = 0.

FIGURE 1 HERE

Figures 1-A1 and 1-B1 show the temporal evolutions of zo and 2, and the corresponding trajectory
iin |2 for a symmetrical two-neuron ring network (i.e. Wo = Wy, ag = au) for two values of €. In
igure 1-Al, it can be seen that it takes longer for solutions of the system with the larger ¢ (= 5)
thin dotted line: zo(t), thick dashed line: z1(2)) to stabilize at their steady state value, than for
olutions with the smaller ¢ (= 0.4) {thin solid line zo{t}, only visible for ¢ close to 0, is covered
apidly by the thick solid line representing z(t)). Both solutions move along the same trajectory
tepresented by the thick solid line in figure 1-B1. For this system, the basins of attraction of ry
and r; are the sets {Y € R® yo 4 1 < 0} and {¥ € R? yo + y1 > 0} respectively. The boundary
separating the two basins corresponding to the stable manifold of rs, is the negatively sloped
diagonal yo + 71 = 0. The thick line in figure 1-C shows the transient regime duration (TRD} for
a given initial condition in the basin of r3 as function of €. It can be scen that the TRD increases
linearly with e.

3 Delayed inter-unit transmission

in this section, the continuous-time N-ring neural network model with delayed inter-unit trans-
mission is presented {Section 3.1}, and it is shown that the asymptotic behavior of most solutions
is simitar 10 that of ODE (1) (Section 3.2). The transient behavior of solutions is then analyzed
{Section 3.3} '

3.1 The model

The dvnamics of an N-ring neural network with delay are determined by the following system of
delay differestiial equations (DDEs}): ‘

1

—— (1) =~z (1) + Wipioa,, (2t - 1))

where without loss of generality the delay is set to 1 (Appendix B). The phase space of DDE
is the space of continuous functions from the interval [—1,0] to IR™, denoted S = C([—1,0], 1
For & = (¢p, -, ¢n-1), there is a unique solution of DDE (5) (Hale & Verduyn Lunel (199
denoted z(#,®) = (zo(t, ®), -, zn-1(t, @), defined for all ¢ > —1, such that z(t,®) = &(¢)
—1 £t <0, and £(1, ) satislies DDE (5) for t > 0. Moreover, z(t, ®) is bounded as { — +oo.
denote by z, the semi-flow associated with DDE (5), that is, z(®) € 5, and z(®)(8) = =(t + &
for all —1 < ¢ < 0. To simplify the notations, the dependence on the initial condition ¢ will
be indicated unless necessary.

From here on we suppose that Cp is satisfied, that is o;W; > 0 for all 4, so that DDE (5) is
irreducible cooperative system. Therefore, as for the ODE (1) obtained by setting the delay:
zero (Section 2.1), DDE (5) preserves the order of initial conditions. Let @ = {dg,- -, ¢n_1):
@' = (¢f, -+, ¢w_1) be in 5, we say that @ is larger (resp, strictly larger) than ¢ noted & =
(resp. & > @) if for all § € [—1,0], and for all 1 we have ¢:(8) > &:{6) (resp. (8} > &if
System (5) generates a strongly order preserving semiflow, that is;

for ® and @ in 5 such that ® > ® and ® # @, we have: z,(®) 2> (9 forall t > 2.

3.2 The asymptotic behavior

Throughout the rest of the paper, constant functions in § are identified with the value they t
in RY. r = {ag, -,an-1) € R", is an equilibrium of DDE () if and oaly if r is a root of
Therefore DDE (5) and its related ODE (1} have the same set of equilibria.

The monotonicity property (6) and the special form of cyclic feedback involved in the N-
network imply that the asymptotic dynamics of DDE (5) and its related ODE (1) are essenti
the same (Appendix C).

Global behavior. 1) For b < 1, ro = 0 is globally asymptotically stable.

ii) For b > 1, the union of the basins of attraction of r| and ry is an open dense subset o
Its complementary, denoted B, is a codimension one manifold formed by the union of the st:
manifold of r; = 0 and stable manifolds of unstable periodic solutions. Furthermore, let ® &
and @' € S, if & > 4 (resp. & > &) and & # & then 2({,9') — r| (resp. r3) ast = 4
Conversely, let @' ¢ &, if z(¢,9") = =, (resp. r3) as{ — +oo, then there is & € B, such ¢
$> P (resp. ' > &) and D £ ¢

The above result presents many similarities with the description of the asymptotic behavior of
ODE. System (5) admits only damped oscillatory solution for < 1. For b > 1, B may coni
undamped oscillatory solutions. These are necessarily unstable and asyrptotically periodic.
that in this case, solutions on the boundary B are either asymptotically periedic or damped to




Solutions “below” the boundary tend to r;, and those “above™ it tend to r3, while those on the
boundary are unordered, in the sense that for & and @' in B, we have neither & > @' nor & > &,

As for the ODE, the boundary B can also be characterized in terms of oscillating sclutions. Let
Ki={®2 €8 ®>»0}and K. = {& € S5, 0> &} be respectively the positive and negative
cones in S. A solution z(t) of DDE (5) is weakly oscillating if z(¢) ¢ Ky UK_, for ali t 2 (.

Weak oscillations. All solutions in B are weakly oscillating.

Let u be a scalar function from R* to IR, v is strongly oscillating if it changes sign at arbitrarily
large times, that is for all T > 0, there are times £ > ¢ > T such that w(t) x u(¢'} < 0. This
definition is extended as foliows. Let u = (ug,- -, un—1) from RY to BRY, v is strongly oscillating
if each of its components u; from IR* to IR is strongly ocscillating, that is for all T > 0, for all
i, there are times ] > t; > T such that () x w(t}) < 0. Then we have the following results
(Appendix D; see also Arino & Niri, 1991):

Strong oscillations. When the characteristic equation of DDE (5) at r, has no root with zero
real part, all solutions in B — {r,} are strongly oscillating.

Therefore the components of a weakly escillating non-constant solution are necessarily strongly
oscillating scalar functions. For instance, for N = 1, any non-zero solution in B, changes sign at
least once in any interval of length equal to the delay (unit length).

3.3 The transient behavior

The local characteristic escape and return times for DDE (5) can be defined in a similar way as
for the ODE (Section 2.3) {Brauer, 197%a; 1979b). The characteristic return (resp. escape) time
to a stable (resp. from an unstable) equilibrium point, resulting from small perturbations near
the equilibria is given by 1/|R(A)|, where A is the eigenvalue of the linearized system with the
largest real part denoted by R(A). For DDE (5}, A is real negative at the stable equilibria and
real positive at the unstable equilibrium r.

The map from i(; to R* which to E = (¢p, -+, €n-1) associates 1/|M{ £)|, the absolute value of the
inverse of the real eigenvalue of DDE (5}, with parameters ¢, is strictly increasing (with respect
to the order in /'y ). However in this case, when F decreases to zero, the characteristic return and
escape times tend to a strictly positive limit g > 0 whose value depends on the equilibrium point:
L/|ME) - gas E = (0,--+,0), E € K,. Thus close to the equilibria, the system is finitely
accelerated when F tends to zero.

Globally, the transient regime of a trajectory converging to an equilibrium may drastically change
as I is decreased. This illustrated in figure (1)-A2 which represents the temporal evolution of
activations of a two-neuron network for E = (3, 5) (dashed lines) and £ = (0.4, 0.4) (solid lines) for
a given initial condition. It can be seen that for “small” F, this solution of DDE (5) displays long-
lasting transient oscillations. The difference between the transient regimes of the two solutions is
also reflected in their trajectories in the {&q,))-plane as shown in figure 1-B2 {F = {5,5) thick
line, £ = (0.4.0.4) thin line}. The onset of these transient oscillations considerably increases
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the TRD of the trajectories. It can be seen in figure 1-C representing the TRD as function of
(E = e.¢), that for large ¢, the TRD of the system with delay (thin line) is close to that of i
system without delay (thick line}, and decreases almost linearly with . Whereas for small ¢, t!
TRD of the system with delay abruptly increases due to the onset of the transient oscillations.

The change in the transient regime of some trajectories of system (5) is due to the fact that f
small B, the trajectories follow transiently the trajectories of the following system of differen
equations (DEs) obtained by setting £ = {:

xi-é-l(t) = "Vl'+la-0.‘+1(zi(t - 1)) (

The foliowirng result shows that the transient behavior of solutions of DDE (5}, for E close
{0, --,0), can be obtained from the analysis of DE {7).

Transient behavior. For & € § such that ¢1(0) = W04, (i(-1)), T > 0, 7 >
exist By > 0 such that for all 0 < E.< By, ||2(E, £, &) — 2(0,1,®)|| < nforall 0 £t < T,

The constraint on the value of the initial condition at 0, can be relaxed. For arbitrary initi
conditions in §, the solution of DDE (5) remains transiently close to the solution of DE (i
except nearby integer time values. These results are obtained by generalizing the analysis of t
scalar case presented in (Sharkovsky et al, 1993) to the case of systems.

In contrast with DDE (5), which does not have any stable non-constant periedic solution, DE (
has infinitely many periodic solutions with non negligible basins of attraction (Appendix E). F
DDE {5) with small enough E, trajectories of initial conditions within one of these basins a
transiently attracted to the corresponding non-constant periodic solution, hefore escaping to o
of the stable equilibria, and therefore they display transient ascillations.

4 Discussion

We have studied the dynamics of ring GRN networks, with an even number of inhibitory conne
tions in the loop, with and without delay. Tle analysis of the behavior of this system allows
point out the similarities and the differences between the system with and without delay.

4.1 Similarities

There are two main similarities between the behavior of the ring GRN network with and witho
delays. These are both due to the fact that we deal with a positive feedback system, whi
generates a strongly order preserving (semi-) flow (Hirsch, 1988; Smith, 1987; Roska et al, 199!

The first similarity between the two systems is that the local stability of the stable equilibria
not affected by the delay. In other words, the ring networks with and without delay have exaci
the same set of locally stable equilibria, and hence also the same set of unstable equilibria.

10




The second similarity is that both the system with and without delay are almost convergent, in
the sense that almost all trajectories converge to one of the locally stable equilibria. This is a
remarkable property because the system without delay evolves in a finite dimensional phase space,
whereas the one with delay is defined over an infinite dimensional phase space. In fact, there are
examples of GRN networks with delay, which display stable asymptotic behavior that have no
counter-part in the corresponding network without delay (Gilli, 1993; 1995).

4.2 Differences

The dynamics on the basin boundary.

One difference between the cases with and without delay resides in the fact that in the latter the
boundary B has a finite dimension whereas in the former it is “infinite dimensional”. For this
reason, for rings made of less than three neurons (V < 3), there are no undamped oscillatory solu-
tions in the system without delay. Whereas for the system with delay, it is known that even scalar
delay equations generating an order preserving semi-flow can display undamped periodic solutions
{Arino & Séguier, 1979; 1980; Arino & Benkhalti, 1988; Aring, 1993). Such periodic solutions
have been shown to exist in scalar equations (an der Heiden & Mackey, 1982; Sharkovsky et al.,
" 1993} and alse in two-variable systems (Pakdaman et al, 1995b) of delay differential equations
similar to DDE (5).

The transient regime.

Small perturbations displace 2 system stabilized at one of the equilibrium points. The charac-
teristic return time indicates how fast the system will stabilize again at the equilibrium. For the
ring network without delay, this quantity tends linearly to zero with the parameter E. At the
limit £ = 0, stabilization is instantaneous (the system is infinitely accelerated). A similar local
analysis for the ring network with delay indicates that in this case, the return to the equilibrium
point is never instantaneous: the system is at most finitely accelerated. This is an “expected”
consequence of the presence of delay, which slows down the feedback, and hence the return to the
equilibrium, as compared with the system without delay.

A global analysis shows that when the parameter E tends to zero, along an appropriate direction,
the phase portrait of the system without delay does not depend on E, Only the speed of evolution
of the system along the trajectories is linearly accelerated. This is in accord with the local
analysis yielding the characteristic return times to an equilibrium point. For the system with
delay, decreasing E causes some trajectories to display transient oscillations that have no counter-
part in the system without delay. These oscillations induce a considerable lengthening of the
transient regime duration in the corresponding trajectories. Solutions of the initial conditions
that are prone to display such oscillations were determined by the apalysis of the asympiotic
behavior of the difference equation obtained by setting £ = 0. In this sense, the behavior of the
ring network with delay is intermediate between the behavior of the system without delay and
that of the discrete time network.

i1

4.3 General considerations

Transient regimes have received little attention compared to steady states in theoretical st
of neural network model behaviors. Nervous system operation can be described as a succe
transients between steady states. Experimentalists have long recognized the importance of
sients in neural behavior as a means to convey information about environmental as well as int
changes (e.g. (Segundo et al., 1994). The information contained in the transient regime is a
more important when the system evolves in rapidly changing environments such that the n
networks involved in information processing does not dispose of the time lapse necessary to
a steady regime.

Determining the different parameters that shape the transient behavior of neural network m
is thus important for understanding how nervous systems operate. The study of the dynam
GRN ring networks shows that converging neuronal networks may display oscillating trans
during extremely long time intervals. In fact these transients can be so long that, practically
system will not reach its steady state during the observation window.

QOverall oscillatory patterns are frequently observed in the activity of nervous systems; their
are either clear as in respiration or obscure as in the electroencephalogram. Overall oscill:
patterns are observed when units discharge periodically and synchronously. It has been prog
that these latter patterns could be important in a number of functions such as respiration
information processing (e.g. Cohen et al.,1992; Skarda and Freeman, 1987; Gray et al., 1989).
long-lasting transient oscillations in the GRN ring network arise thanks to the presence of i
unit transmission delays, and are also expected to oceur in other network architectures. In |
nervous systems, delays are ubiquitous, ranging from a few to several hundreds of millisee
They are due to action potential propagation along axons, synaptic delay etc. Delay-ind
long-lasting transient oscillations could thus take part in various nervous system operations.

In ANN applications relying on the convergence of the network to a steady state, control ove
transient regime is also an important issue. Large increase in the transient regime duratio
those observed in the networks studied here, can seriously deteriorate the network's perform
by slowing down the system.

5 Conclusion

We have studied the behavior of ring GRN networks containing an even number of neg
weights. We have shown that for instantaneous as well as delayed inter-unit transmission,
trajectories tend to equilibrium points, and that the remaining ones tend to unstable per
solutions. For the system with delay, the presence of such non-constant periedic solutions, inc
long-lasting transient oscillations, which can be analyzed through the study of $he behavior o
corresponding discrete-time network.
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A Asymptotic behavior of the N-ring network without de-
lay

Global behavior. 1) For b < 1, ro = [t is globally asymptotically stable so that the trajectories
of all initial conditions tend to rq.

ii-a) For b > 1, the union of the basins of attraction of ry and r3 is an open dense subset of RY.
ii-b) lts complementary, denoted B, is a codimension one manifold formed by the union of the
stable manifold of ry = ( and stable manifolds of unstable periodic solutions. ii-c) Furthermore,
letY € B,and Y' € RN, if Y > Y’ (resp. Y' > Y) and Y # Y then z(t,Y') = r1 (resp. ra) as
t =+ +oo. Conversely, let ¥’ € RY, if z{t,Y") = r| (resp. ra) as t — +oo, then there is Y € B,
such that Y > Y (resp. Y' > Y)and Y £ Y.

Proof

i) and 4i-a). System (1} is an irreducible cooperative system (Hirsch, 1988; Smith, 1988), this
implies that for b < 1, the equilibrium point ry is globally asymptotically stable and for & > 1, the
two equilibrium points r; and rs are locally asymptotically stable, while r; is unstable, moreover,
trajectories of most initial conditions tend to the stable equilibria in the sense that the union of
the basins of attraction of r; and r3 is a dense open subset of IR", whose complementary, denoted
B has measure zero.

#i-¢). This point is deduced from the properties of of cooperative irreducible systems given in
(Hirsch, 1982; 1985) Let u be in IRY, such that u » 0. There exists a continuous, strictly
decreasing (with respect to the order defined on IRY) map, b, from R™ to IR such that:

1) For all Y in R, ¥ 4 b,{Y ). is the unique intersection between the line going through ¥ and
directed by u (i.e. the set {¥ + Au, A € IR}) with the boundary separating the two basins of
attraction.

2) the set {Y € RY, b,(Y) > 0} is exactly the basin of attraction of ry;

3) the set {¥ € RY,b,(Y) < 0} is exactly the basin of attraction of ra;

4) the set {Y € RY,5,(Y) = 0} is exactly the boundary separating the two basins of attraction.
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ii-b). From the characterization given above, we can deduce that the boundary has a “regula
structure. Indeed, let u 3 0 be in R™, and H be a hyperplane supplementary to u. So that f
all Y in'IRY, we can write in a unique way: ¥ = A + Au, where h € H and A € R. Auis t
projection of ¥ onto the line IRu along the direction H. We denote pu(}¥') = —X. Then, p.(¥)
the unique real number such that ¥ + p,{¥)u belongs to H.

Let ¥ belong to the boundary B, we can write ¥ = A—p, (Y )u. From the definition of by, we knc
that b,(%) is the unique real number such that A+5b,(f)u belongs to B, so that we have necessaril
mlY) = —by(h). Therefore, the map ¥ = Y + pu(¥)u from B to H is 2 homeomorphism wi
inverse: A — h + by(h)u from H to B. Hence B is homeomorphic to the linear hyperplane H.

We remark that B contains necessarily the stable manifolds of ry as well as those of unstable pe:
odic solutions (if they exist). There are ne other solutions in B. To prove this result, we show th.
there are no homoclinic orbits through r; (see the lemma below). Thus the Poincaré-Bendixse
theorem for feedback systems similar to ODE (1) (Mallet-Paret & Smith, 1990) yields that f
Y & B, one of the following holds: 1) z(t,Y) is damped to r2, 2) Z(t,Y) tends asymptotical
to a non-constant periodic sclution. This shows that Y is either in the stable manifold of rs, -
in that of an unstable periodic solution. The description of the basin boundary in terms of ti
stable manifold of neighboring unstable points and limit cycles is in fact valid for a wide class
systems (Chiang et al., 1988).

Lemma. There are ne homocfinic orbits through re.

proof. We follow the strategy described in (Arino & Séguier, 1979; 1980; Cac, 1990; Arino, 1993
System {1) admits an integer valued Lyapunov functior V. That is, ¥(2(¢)) is non-increasing alor
solutions i.e. V{(2(2)) € V{z(¢")) for all ¢ > t' (Mallet-Paret & Smith, 1990).
Let z(¢} and 2'(t) be two non constant solutions of ODE (1), tending to r; as ¢ — +oo ar
t = —oo respectively. We suppose that the linearization of system (1) at ro does not have a1
eigenvalue with zero real part. Then:
Z(t) = tTe*p(t) + O™ 'e*)  as t = 4o0; .
(1) = t"e"'q{t) + O(" 'e*)  as it — —oo; S

where {™e*'p(t) and ¢"e**q(t) represent solutions of the ODE obtained by linearizing ODE (1) :
g, with 4 < 0 and ¢ > 0. The Lyapunov function is constant along such solutions of the line:
equation, and we have V. = V(t™e*p(t)) > V. = V(i"e*'¢(t)) (Mallet-Paret & Smith, 1990
This inequality and the fact that V(z(t) = V4 as { = +oc and V(z'(1)) = V_ as t = —o
show that there can be no non-constant solution of ODE (1) tending to r; at both ¢ — 400 an
t— —ca,

B Rescaling the delays
We consider the following system of delay differential equations (DDEs):

dy;
C:#?Tl(t’) = —yir1(t) + Winr0a,, (vt — Air)) !
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with dp > A; 2~ > Ay > 0. Let A= {Ag+--+AN_1)/N, Ko =0, K, = pA—(A1+ -+ A,)
for 1 <p < N—1and uft') = w(t' — Ki). Then the variables u; satisfy DDE (9) with 4; = A
for all . By rescaling the time unit to the delay A that is t = /A4, & = ¢//A, the new variables
zi{t) = ui(t'/A) satisfy DDE (5).

C Asymptotic behavior of the N-ring network with delay

Global behavior. i) For b < 1, rg = 0 is globally asymptotically stable.

ii-a) For b > 1, the union of the basins of attraction of r; and r3 is an open dense subset of S.
ii-b) Its complementary, denoted B, is a codimension one manifold formed by the union of the
stable manifold of r; = 0 and stable manifolds of unstable periodic solutions. li-c) Furthermore,
let @ € B,and & € 5, if @ = @' (resp. ' > @) and & # &' then z(2, ') = r (resp. r3) as
t = +oo. Conversely, let @' € 3, if z({, 3"} — r; (resp. v3} ast — +oo, then there is & € B, such
that & > @' (resp. ¢’ > &) and ® # &',

Proof.

i) and #i-a). System (5) is an irreducible cooperative system (Smith, 1987), so that the asymptotic
behavior of DDE (5} and ODE (1) are essentially the same in the following sense. (P1) The
equilibriumn r of DDE (3) is locally asymptotically stable if, and only if, the same is true of the
related ODE (1}; (P2) the union of the basins of attraction of the stable equilibria of DDE (5) is
an open and dense set in the phase space §.

ii-¢). A result identical to that for the ODE (Appendix A) holds for the system of delay differential
equations.

it-b). The boundary B is a positively invariant unordered codimension one Lipschitz manifold
containing r; (Takae, 1991}). The proof of the remaining results is similar to that for the ODE
(appendix A). The boundary B contains the stable manifolds of r; and that of any unstable
periodic solution. The Poincaré-Bendixson theorem (Mallet-Paret & Sell, 1994b) and the fact
that there are no hemociinic orbits through r; {see the lemma helow), show that there are no
other sclutions in B.

Lemma. There are no homoclinic orbits through r,.

Proof. The proof goes along the same line as for the ODE. Mallet-Paret and Sell {1994a) have
extended the integer-valued Lyapunov function V' to systems with delay, and they have estimated
the value taken by V on solutions of linear systems. Therefore, we only need to establish that
an approximation similar to {8) holds for the selutions of DDE (5) tending to rp as ¢ —+ ++oo.
Sufficient conditions for this have been given by Arino and Niri {1991).

We rewrite DDE (5) as
dz
I =Lz + flz) . (1)
where L : § — R" is the linear map defined by L(®) = M®(~1)+ M'® (0), with M and M. two
N x N matrices defined as:
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0 0 eulfe = 0

"’Q:V 0 0 0° =L 0
M=|0 =g 01 and M= “ 0
-1

0 .. eNaWao 0 0 e 0 eN—t

EN )

{1
and f = (fo, -+, fv_1) : § = IRY is the map defined by

W|+l
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S (®) = [Caisr (@ =1)) — i i(~1)] {1
For Y = (Yo, -+ yn-1) € R, we denote by ||Yl] = |yol + - + lyn-i1|. Let W = ma:c.-({%il) S
a = mazi{|o;]) and g: IR — IR the real function defined by:

glu) = NW{an - g,{u)} (1

We have g(u)/u — 0 as u -+ 0 and

1£(@)Il < g(ll®(=1)ID- (1

Thus proposition 5 in (Arino & Niri, 1991) stating that system: (10) does not have any supert
ponential solutions can be applied.

D Strong oscillations

Strong oscillations. When the characteristic equation of DDE (5) at zero has no root with ze
real part, all solutions in B — {r,} are strongly oscillating.

Proof. All solutions in B — {r;} are weakly oscillating, so that we prove that in fact all weal
oscillating solutions are strongly oscillating by showing that DDE (5) satisfies all the hypotheses
theorem 3 in {Arino & Niri, 1991). The first three hypotheses are deduced from the fact that 1
DDE (5) is an irreducible cooperative system, and that the image of a bounded set by the rig
hand side of DDE (5) is a bounded set {Smith, 1987). Hypotkesis 5 regarding the non-exister
of superexponential solutions tending to rq has been checked in appendix C. From (14) we dedr
that:

Al = O(lI12]%)- (

So we need only to check hypothesis 4, that is:
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Lemma. Let z(¢) be a weakly oscillating solution, if there is T > 0, such that z;(1) £ 0, for all
¢> T, then z(t) =5 0 as £ = +oo.

Proof. Let z = (2o, --,2y-1) be 2 weakly oscillating solution of DDE (5} such that z;(¢) # 0,
for all t = T and all 1. There iz necessarily j, such that z;(¢) < 0 and z;4,(t) > G forall t > T.
Thus z;4:(¢) is a strictly decreasing bounded function, and we have z;4,(t) -3 ;4; with {j4; > 0,
as t = -+co. From this we derive that for all &:

Tisk(t) 3 L1k as § = +oo, where liyx = Wipkoay o Wikko10a,00, (- Wigaoa,,, (L)) 2 0.
(16)

In particular for k= N — 1, we get ;(f) = [; = 0, hence [; = 0, and consequently & = 0 for all 1.
Thus z(t} — 0, as ¢ ~» 0.

Finally, when the characteristic equation of DDE (5) at 0 does rot have any roots withk zero real
part, theorem 3 ({Arino & Niri, 1991), p.281) yields that at least one of the components z;(¢) is
oscillating. For the special case of DDE (5) this implies that all are oscillating. In fact, let z{¢)
be oscillating for some 4, then for all T > 0, there are 2, > ¢; > {3 > T + 1 such that: zi(te) > 0,
z:(t) < 0 and wi(tz) > 0. Let ¢ and ¢” such that to < t' < &y <t < ty, zi(t) = z(t") = 0
and z;{(t} < 0 for all ' < ¢ < ¢, and &:(t) > O for all ¥ < ¢t < 5. There are & and & such
that #' < § < t; and 1" < 0" < 1, such that £2(¢) = &) < 0 and &i(p) = 23} 0 Thus
—zi{8} + Wioa,(zi1(8 — 1) < 0 and ~z{8') + Wioo,(@i-1(8' ~ 1)) > 0, so that: z;4(f — 1) < 0
and x;1(¢" — 1) > 0. This shows that z:; is oscillating and we can apply a similar method to
1 — 2, etc.

E Asymptotic behavior of the discrete-time N-ring net-
work '

We denote by z(E, t, @) the solution of DDE (5) with parameters E = (¢, -+, ey_1) 3 (0,---,0),
and (0,1, ®} the solution of DE {7) obtained by setting ¢ = 0 for all i.

The asymptotic behavior of DE (7) for initial conditions in S is derived from the description
given in (Blum & Wang, 1992; Pasemann, 1995). We introduce the following notations. For 6§ =
(8o, -, dn-1) such that &; € {—1,0, +1}, we define the shift of order i by 5;(§) = {8:, 8541, -+, bic1)y
and k(d) > 0 the lowest strictly positive integer such that sy = 6. For § such that 6; # 0, for
all i, we denote by K; the cone in IRY defined by Ks = {z = {z0,- " 2n) € RY @ bz >
00 <i< N1}, and by W; the wedge in IR defined by Wy = K; U K_;. There are 2V
such cones and 2V~! wedges. We denote by W the union of the wedges. The complementary
of the union of the wedges is formed by the union I of N hyperplanes H; in IRY defined by
Hi={z = (20, -, zn-1) € R : 3, =0}

We remind that the equilibria of DDE (5) are denoted by r, = ~{ag.---,an_1), r2 = 0 and
r3 = (@o,- -,en_y), with a; > 0. These are also the equilibria of DE (7). Let & be defined as
above, then the solution z(0,t, P} of DE (7) with initial condition P; € § defined by Pi(8) = &;a;.
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is k(&) periodic with z{0.¢, Ps) = (diao, §izrt1,- -, Gicraw—y) forall i = L+ nk(8) < t < i+ n.
with ) <¢ < k(8) and n > 0,

Asymptotic behavior of selutions of DE (7). Let ® € 5,

1. if &(#) € W for all —1 £ & £ 10, then there is § with & > 0 for all 4, such that #(0,¢,4
Ko forall i — 14+ n.k(8) <t €7+ nk(é) with 0 <1 < k(é) and n = 0, moreover,
increases to infinity, 2(0,t, ®) tends to the £(&) periodic solution z(0,t, Fs),

2, in the same way if ®(¢) € H; for all =1 < ¢ < 0, there is § with 4; = 0, such |
2(0,¢,8) € Hips forall i — 1 +n.k(d) £t <14 nk(é) with0 <4 < k(é) and n :
moreover, as ¢ increases to infinity, 2(0,1,®) tends to the k{§) periedic solution z(0,¢, f

3. for arbitrary ¢ € S, we have O (W) = U (l, 8}, and &'(H) = U,c[m;,mi)
®{(!;, 1)) C K, for some & with & # 0, and &({m;, m})) € Hy for some &k € {0,---,]
1}. The analysis performed in the two previous cases, shows that for § € (m.m!) (r
8 < (1i.11)), 2{0,8 + n, @} tends to the periodic sequence F5(0 + n) as n — co.
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FIGURE LEGENDS
and

FIGURES

Figure 1: Transient behavier.
Al: Temporal evolution of zo(t) (thin solid line and doited line) and (1) (thick solid line ¢
thick dashed line) for a two neuron ring network without delay, for o = ¢ = 0.4 (solid lin
and ¢g = ¢ = 5 (dashed and dotled lines). Abscissa: time; ordinates: neuron aclivation.
Trajectory in the zo,2, plane of the salqtions presented in Al Abscisse: activation zo, ordina
activation z,. A2: Temporal evolution of xo(t) (thin solid line and dotted line) and z(t) (th
solid line and thick dashed line) for a two neuron ring network with delay, for ¢ = ¢, = 0.4 (st
lines) and €y = €| = 5 (dashed and dotted lines). Abscissa: time; ordinates: neuron activation. .
Trajectories in the zq,x, plane of the solutions presented in AL, Thin sofid line for ep = & =
and thick solid line for eg = ¢y = 5. Abscissa: activalion zp, ordinales: activation z;. C: transt
regime duration for the system withowt delay (thick line) and the system with delay (thin i
as function of €, for the same systems and indtial condition considered in A and B. Absei
¢, ordinafes: transient regime duration, TRD, Parameters used for the figures: Wy = W =

tg = oy = 5. Initial condition of the selutions (—1,2).
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