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Abstract

Isoscalar collective modes in a relativistic meson-nucleon system are investi-
gated in the framework of the time-dependent Thomas-Fermi method. The
energies of the collective modes are determined by solving consistently the
dispersion relations and the boundary conditions. The energy weighted sum
rule satisfied by the model allows the identification of the giant ressonances.
The percentage of the energy weighted sum rule exhausted by the collective

" modes is in agreement with experimental data, but the energies come too
high.
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I. INTRODUCTION

Renormalizable relativistic quantum field theories of hadronic degrees of freedom, called
quantum hadrodynamics (QHD), have been studied for some time [1,2]. At the level of the
mean-field theory (MFT) and one-loop approximation, these models have proven to be a
powerful tool for describing the bulk properties of nuclear matter. The binding energy of nu-
clear matter in MFT arises from a strong cancellation between repulsive vector and attractive
scalar potentials. Such potentials are comparable to those suggested by Dirac phenomenol-
ogy [3,4], Brueckner calculations [4], and finite-density QCD sum rules [5]. Thercflore, it is
not obvious that QHI would be able to reproduce the spectrum of finite nuclei, involving
energies of the order of tens of MeV. However, it has been shown that it can realistically
describe densities, single-particle energies and the spectrum of collective excitations of finite
systems [1,2,6-9].

Collective modes of a relativistic many-body system are characterized as poles of the
meson propagator. However, in the one-loop approximation, the meson propagators have
also poles at space-like momenta, which arise from polarization effects of the Dirac sea
[10-13]. While the existence of these poles does not rule out meson-nucleon field theories as
useful descriptions of nuclear systems at low g, it may restrict the range of validity of several
approximations to these theories. To avoid this problem, in this work we will study collective
excitations of finite nuclear systems in a semiclassical approximation to the Walecka model.

In refs. [14,15] a semiclassical approximation to the Walecka model was introduced to
study collective modes in nuclear matter at zero and finite temperature. It was found that
the results obtained are compatible with microscopic calculations of the meson propagators
[16,17). We want to generalize this semiclassical approach to the description of collective
modes of finite nuclei by using a nuclear fluid-dynamical model [18,19], which incorporates
monopole and quadrupole distortions of the Fermi surface. This nuclear fluid-dynamical
model has recently been applied with success to the description of temperature effects in
collective excitations of finite nuclei [20].

In ref. [9] (which is a generalization of the works presented in refs. [7,8]) isovector and
isoscalar collective modes were calculated in the Walecka model, by introducing local hy-
drodynamic variables to describe the nucleon fluids with the assumption of irrotational flow
and in the limit of large masses for the vector mesons. As suggested in ref. {9], we lift these
restrictions and in this work we calculate the isoscalar collective modes in the Walecka model
in the framework of the time-dependent Thomas-Fermi method.

In Sec. II we extend the formalism developed in refs. [18,19] to the Walecka model.
Collective modes are described by allowing the meson-fields and the nucleon densities to
acquire a time dependence. The nucleon motion modifies the source terms in the meson
field equations producing corresponding time-dependent changes in the meson fields. Since
the nucleon dynamics is in turn specified by the meson fields, collective modes of nuclear
motion arise naturally in this approack. In Sec. IIl we derive the equations of motion,
boundary conditions and orthogonality relations that the normal modes must satisfy. The
dispersion relations, which solved consistently with the boundary conditions, determine the
eigenvalues, are presented in Sec. IV. In this section the sum rule satisfied by the model is
also given. We identify two rather collective monopole modes at 28 MeV and 35 MeV. These
large values are expected since the isoscalar monopole excitation is a compression mode and,
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therefore, its energy is related to the compressibility of nuclear matter [21], which is known to
be too low in the Walecka model. For the other multipolarities, we also observe that the most
collective states come at higher energies than the experimentally observed giant resonances.
It is true that our lowest modes coincide with the modes obtained by [9). However, these
modes only catry a small percentage of the energy weighted sum rule and therefore should
not be identified with the giant resonances. Finally, in Sec. V we give our numerical results
and conclusions.

II. FLUID-DYNAMICAL MODEL

In a classical approximation to the Walecka model the energy of a nuclear system is given
by {14]

dBad?
E =1 [ 1m0 {llp - 9.V) + (M - 0.0)]" + 010}
Lfa i . 2 %
+ d*z ([I2 + Vo -Vo + mie*)
2
+ %fdsm [H%r‘ - 21'[1;,.8.-\/0 + VYV, V¥ — 831/;81]/3 + m,"’;(Vz - VOZ)] s (2.}.)

where the distribution function, f(x, p, %), is restricted by the requirements

dizd®p
_ 2
N=4f G TP (2.2)
FAx,pt) - flx,p,t) =0, (2.3)
and its time evolution is described by the Viasov equation
i}
Y iismy=o, (2.4)

where i = \/(p - 3.V + (M — g,0)249,Vp = e+¢,Vp is the classical one-body Hamiltonian
and {,} denote the Poisson Brackets.
The time evolution of the fields is given by

8'2

T Vi +mlio = gyps(x,1), : (2.5a)
vy 2 g {0V,
5 —~ V2V + miVo = gupp(X,t) + 5o 57 ( 5 +VV {(2.5b)
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with

po(x,t) = 4[ d—pf(x,p,t) M;Eg‘i , (2.6)
(x,t) = 4[ 5 f(xp,t), (2.7)

. PV
) =4 [ P gy, p, ) BTIY 2.8

Using the Vlasov equation, Eq.(2.4), it can be easily shown that the four-current satisfies
the continnity equation, and that the components of the vector field are related through [14]:

B VE =0, (2.9)

Therefore, the second term on the righi-hand side of Eqs.(2.5b,2.5¢c) vanishes..
In our calculations we will assume that the density of a spherical nucleus in the ground-
state is constant inside the nucleus and zero outside, and is given by

/ @) (x,p} - (2.10)
wifh
folx,p) = Olpi(r) - p’], (2.11) .

where pr(r) = 5@[Ry—7], P Is the nuclear matter Fermi momentum, and Ry is the nuclear
radius. The ground-state distribution function fy is determined by the particle number A
and by the minimization of the energy and the equilibrium nuclear matter density, 7y, is
calculated from equations (2.11) and (2.18)

po(r) = PO Ry — 7].

Giant resonances manifest themselves as small amplitude highly collective modes. There-
fore, they are described at the microscopic level by the RPA equations. In the classical limit,
these equations are obtained by the linearization of the Viasov equation. In this context we
begin by expanding the distribution function around its equilibrium value fo{x, p):

f(x, pvt) = fﬂ(x1 p) + {Sa fﬂ} + %{Sv {Ss fO}} + ... 3 (212)

where S(x, p,1) is a generating function which describes small deviations from equilibrium.

In its more general form, the distribution function, f(x,p,t), should include static as
well as dynamic deformations of the nuclear system. For this reason we decompose the
infinitesimal generator S(x, p,?) into a time-even and a time-odd part

S(x,p,t} = P{x,p,1) + Q(x,p,1), (2.13a)
Q(xa Pat) = Q(X, _pat) H (213]))
P(x,p,1) = —=P(x,~p.1) . ' (2.13c)



The time-even generator, (}{x,p,t), takes into account the dynamic deformations. The
static deformations are described by the time-even distribution function, which includes the
ields responsible for the deformations of the Fermi surface. In the present approach, it is
sxpressed in terms of the time-odd generator P(x,p,t)

feG6,B, 1) = folo,) + (P, fo} + AP, P, fo}} + ..

= O = holx, P) ~ W(x,1) ~ 5pipsxis(, )] (2.14)
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The scalar field, W(x, t), is related to the deformations which preserve the spherical form of
she Fermi swrface. The tensor field, xi;{x,t), introduces deformations in the Fermi sphere.
Hopefully, the scalar and tensor fieids will provide an adequate description of the monopole
and quadrupode deformations of the Fermi sphere. In Eq.(2.14), ho(x, p) = /p? + M=*(x)+
7. VE(x), with M*(x) = M — o9(x), and a¢(x) and V’{x) are, respectively, the equilibrium
values of the fields # and V4. The Fermi momentum is related to A through

A=y pk(r) + M2(x) + 0,V5(x) = er + g, V5 (%) (2.15)

The introduction of the generator Q(x, p,t) destroys the time reflexion invariance of the
:quilibrium distribution function. It will allow for the appearance of transverse flow [22] in
‘he nucleus. The simplest choice which includes this possibility is given by [19]

Q(xap1 t) = ¢(X, t) + %Pipj’?sij(xrt) ) (2'16)

vhere ¥(x, 1) and ¢;;(x,t) are, respectively, scalar and symrmetrical tensor fields.

The time evolution of the generator $ and the field fluctuations are determined by the
tppropriate Lagrangian. For small deviations from equilibrium it is enough to consider the
juadratic Lagrangian

= 2] il pd = fol5,8) +[d3xn a+]d%nvv E® (2.17)
Jsing the ansatz Eqs.(2.12), (2.14) and (2.16), decomposing the boson fields into a static

ground-state) contribution and a small time-dependent increment and imposing the barion
wmber conservation, we get

St feun 3 o) 5+ 24)

p2P 8 . Gii s . Bx.
+ foo (X:’j - "'Slek) (Qsij - ’3_J¢kk):| +/d2-5RPn (#” + %¢is) : | (2.18)

E‘?J—fcza [”F”"W? + Ty i+ L bep V¥ Vit F;’g"“ (%+J)

+ ’l’g*"’ (Vi Vit + 201p0;5) + 2”8%”" (40,650t + Vi - Vs

+ 2V - Vi + 48,8:;0: 0 + 468;0;00)] + deSU [(gsM™dc

— auerdo) (HEW 4 L) + L0y, (a,-qb P 0t za.-qsij))]
+ fd3 (2 + Vo - Véo + (m? + Am2)(60)] + = de 2,
- 2y, 86V + VEVi - VaVi — 9;6V;8:8V; + (m? 4+ Am2)(6V)?
— m28Vp)Y + f d5.0R (9,5,580 — 9,7,6V%) . (2.19)
The surface integrals in the above equations take into account possible surface displacements

parametrized by a vector field, §R(x). Our choice of the even distribution function allows

explicitly for this effect. In Tq.(2.19), Am? = g2220 and Am? = g2py/ep.

III. EQUATIONS OF MOTION, BOUNDARY CONDITIONS AND
ORTHOGONALITY RELATIONS

The equations of motion a.nd boundary conditions that specify the dynamics of the fields
are obtained from Eq.(2.17) through the Euler-Lagrange equations. We get

§o =11, (3.1a)
I, — V%o + (m? + Am¥)do = —g, M~ (EEEEW + %Xﬁ) , (3.1b)
e
8V = Iy, — A8V, , {3.1¢)
Vi — V28V 4 (m? + Am2)§V; = ——pg (aw +2E {a bii + 20 gi)u)) , (3.1d)
.. 2p p

8o = V6Vo + miaVe = ~guer (LW + 2y, (3.1¢)

PR Pr 2 9uP}

rF . _ FPF v R
W= g Vet g 0eE E (Vi + 200, %) T Vi, (3.10)
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TJ-" + pF¢n - W + _“Xn - (gu‘s‘/[] - gs

: ~s0) | @1y

. 2. . 2. 2
('t,l! + F;—gﬁbkk) & -+ %fi’ij =Wé; + % {xeli; + x5~ 85 (91:5% - ) , (3.1h)

2 2
(W + == ka) 6;3 “}‘ 5 X,J e};‘.. (VQ’d)éij + 2818J¢) gva(ak(SVk{s” -+ d (SV

+88V;) + [ i (5720 + i) + Vs + Didioh + 20:0hcbs + 2050h] - (3.11)

35 2
It is worth mentioning that Eqs.(3.1a) to (3.1i) are valid only in the interior of the nucleus.
Therefore, we replace pr, €p and py in these equations by their equilibrium values. At the
surface, the variational fields satisly the following boundary conditions

24(080 + 9B oS Bty = 0, | (3.22)
’Ek(akai/; - 6;5Vk)|r=Ru = s (32]3)
2i(8k8Vo + 8V; + g,,ﬁUJRk)L:RO =0, (3.2¢)

=0, (3.2d)

_..2 i
Ty, (3k¢’ + %(ak¢ii + 20ihi1.) + g, 5Ve + EF5Rk)
T=Ro

=2
Z [53;45:; + = (3A¢5u + Opdie + O din) + %(&fﬁu&j

1
+ Bibudi + Gidyibis + Bl + §5k¢rr5='j + 31.-@3‘ + Oiin -+ Bibyr)

+ P08+ 8Vt + 8Viba) — (66 + €56)| | =0, (3.2¢)
; .
L T Fi]
Y+ TEdi+ 9.6V - 9,200 =0, (3.21)
10 Po le=pry

In order to ensure that the current density is not singular at the surface the following
boundary condition has also to be imposed [19]

Tx il g, =0 {3.3)
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In Eq.(3.2e), ¢ is a vector Lagrange multiplier that takes into account the restriction (3.3).

We look for normal-mode solutions where all the fields oscillate harmonically in
time. This means that the ficlds are described by a supelposmon of the real parts
of {11(™), (™, svin), qﬁ(") T EAWNET A A S QI : T 1 (12 zx,(J }exp int where all the
quantities within the braces are only functions of X. Thls normal-mode analysis leads to the
RPA coupled equations for the eigenmodes:

w,bo™ = | (3.4a)
—wi8a™ . F255™ | (m? - Am?)de™) = —g, M* (2p Lyt 4 P ”, 11‘}) , (3.4b)
—wn V™ = — gy (3.4¢)

w28V, — Vz(gv(n) + (m?+ Am )V(") Erﬁo (8,-1/}{")

P (065 + 20,8)) | (3.44)

n 2“ 2 ki)
—26V™ V2 4 26V = g, (—EZEW(“) + B0 J) , (3.4¢)
m

S =2 =2
Wa (],V(n) + B@:XL")) pF vz f,(n) 4 LE pF (\72(’5(") + 28:8; qb(“)) g“;;Faié‘w(“) ’ (34[‘)
ol

6 '3_2 30eL
" n (n n n M* n
—n (’1/)(1} Pr¢( ]) ! + ]éxfz) (gvé.vo( = gsgéo*( )) ) (3'45)
P BN T R .
W62 i = Xij (Z ‘_I'é .7) 3 (34 ])

n 2 fif: n k3 n
wxly) = 00 + TV + 80,603 + 2000047 + 20,007
F F

+ FOIVI 90y (i45). (3.40)
P

It is clear form Eq.{3.4h) that x.; and ¢;; are canonically conjugate fields,
The solutions of the the above equations satisfy the following orthogonality relation

ZPF m P m p n P m 6: m n i' n
e 225 (w4 ) (g0 o)y 0 (0B (g g

‘*\/‘dafﬂn((;n)ao'(m) +]damng')5vsn} +/d25R(m)p-0 (d)[n} + pF ¢(n)) 6711.11, ] (E



IV. DISPERSION RELATIONS AND SUM RULES
A, Dispersion Relations

The eletric modes are described by the same kind of solutions as constructed in ref. [19],
i. e., by two kinds of transverse fields

(1], = {(0:8; — 8 V) — [&(V x 1); + 8;(V x 1)]
= [(V x D)V x 1); + (V x D;(V x D]}k Yoo {4.1)

[Giily = [BV x 1); + (¥ x Dl fi(kar)Yio (4.2)

and by one longitudinal tensor field
8 .
[#ijly = (8,-63- - ?’Vz) Ji(kar)}Yio . (4.3)

The advantage of using the above combination of the four linearly independent angular
tensor functions: 8;8;Yi, &:;Yi, (2:0; +x;0:)Yn, and 2;z;Y, is that all solutions given above
are traceless. In particular, the transverse fields also verify the relations

8,- [(}553']} ={) and B,—E)J- [(I',f),'j]2 =0. (44)

For each multipolarity, all scalar fields are proportional to f;(kr)Ys, and the vector fields are
combinations of two linearly independent vector functions: &(j;(kr)¥}) and (V¥ xl)ljl(kr)Ym
Using these combinations in Egs.(3.4a) to (3.41) it is straightforward to show that the
transverse solutions do not couple to the scalar fields, and one has [do]12 = 6V5)h2 =
Whea = [¥hz = )1z = 0. For solutions of kind 1, the vector fields are also zero:
[0V]y = ]y = [6R:): = 0 and the dispersion relation f01 this particular solution is given
by

Wi = ;’_’; K (4.5)
This is the same relation as obtained in ref. [18]. This should be expected since the meson
fields, which are the new ingredients in the model used here, do not couple to the solution
of kind 1.

For solutions of kind 2, we still have [§R;]; = 0, since, from Eq.(3.2a), the vector field
SR is directly related to the scalar field So. However, the vector fields [6Vi]; and [IIy]; are
coupled to the tensor fields. We get
Gy (k2) Gu(ks)

oGy 3Gy

[6Vil. = o, [¢:s);, =

where

9

PrEI(V x 1)i7i(ker) Yoo _ (4.6)

GuPy -
= 4.
Gv(k) EF(W,% —kZ— Tflzz) b ( ‘)

and m!% = m? 4 Am?. Using the solutions of kind 2 in the normal mode equations we get

22 21252 =
(w2 _ 3k2PF) (w? — k2 —m??) = 9.53P#Po (4.8)

n 7€ " Y 1

which give us two different solutions for k2. For g, = 0, one of the solutions is exactly
the same which is obtained in ref. [19]. This solution is now modified and a new solution
appears, due to the coupling between the vector meson field and the fields introduced to
describe the nuclear deformations.

The longitudinal solutions, [#;;],, couple to all other fields and give

Wl = £(ks)iCkor)Yo (4.92)

W]s = — g’f;b]j:) , (4.9b)

7k = o s Wl = k)i Vi (4.90)
$V6ls = o 2P W = V)it Yo, (190
64 = L) (1) - PR kv (1.9
w[8R; = W%[%:Jg e (4.0

plus the corresponding solutions to the canonically conjugated fields. In the above equations
we have introduced the functions

2pik (14 Go(k})Gos (k)

B =— .
Jtk) 15(38%w? — pk2(1 + G, (k) Gos(k)) {4.10)
and
2pp 925} g2M*2
k = — v . 3
GOS( ) 1 TTEEF (wi k2 ?ng w‘zl — k2 Tfl:z : | (411)

with ¢7,(k) defined in Eq.(4.7).
. The dispersion relation obeyed by these solutions is
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-2 2 kz
327 (5—55’_ - ﬁ) (2~ B — m?) (e — K = m?) =

n 3—7% 7
= 9(Ewlk: — ﬁ—pkg)(wz — kS —mi)(wk -k -m?®) — 22, (522 wik?
: Fn'v3 7 n 3 v n 3 a 'TF?EF Fon 3
9 . . .
-~ 713%’%‘) 972k (wy — f — m3?) — T M2 (wh kT — ml)] . (4.12)

There are four solutions of kind 3, two more than the number of this kind of solutions found
in [19]. This should be expected since, besides the vector meson field, the scalar meson field
also couples to the longitudinal solution [¢;;]s. It is easy to show that for g, = 0 and g =0
one recovers the two solutions of ref. [19].
Therefore, the Walecka model leads to the appearance of 7 different values for k for a
fixed frequency w, in contrast with the model of ref. [19], which gives only 4 different values.
There is still a fourth kind of solution for the tensor fields, which can be chosen to be

[$i5]a = [xssls = 85, F (r) Yo, (4.13)
coupled to the scalar fields
ﬁ?.
[Wls = [le = -7 F(r)Yoo , (4.14)
and to the meson fields
[60]y = [6Vols = [dVi)s = 0, (4.15)

where F(r) is an arbitrary function. This solution is not trivial because of the boundary
condition Eq.(3.3).

The general solution, for each normal mode, is a linear combination of the eight particular
solutions: '

$5) = culbii(kir)l + 3 conlehis(hanr )z + Zl Conlis (Ranm)ls + caldis ()]s, (4.16)

n=1
with similar expressions for the other fields.

To avoid zero frequency modes linked to the surface motion, we introduce in the model
a surface energy which, in a classical approximation, is given by

03“ " ~
E® = s+ 1) - 2)/ dB.6R AR5 | (4.17)

where 0, is the surface tension coefficient. This term does not alter the equations of motion
and, therefore, the dispersion relations. It only changes the boundary condition Eq.(3.2f) to

- _2 -
b+ T+ g,8Vo 9:5%87 — 5Pl 1) - 2} - R

=0. (4.18)
r=Rg
Using the general solutions in the boundary conditions Egs.(3.2a) to (3.2e), Eq.(3.3) and
Eiq.(4.18) we get the equations (6.1a) to (6.1h) given in the appendix. The eigenvalues are
letermined by solving consistently the dispersion relation equations, Eqs.(4.5), (4.8) and
4.12), subjected to the boundary conditions.

1

B. Sum Rules

Sum rules can be regarded as a test to the validity of a particular nuclear mode]. Suppose
that a nucleus is excited from its ground state |0} to an excited state |n), with an energy
FEy, due to interactions with an external field. One can define momenta, weighted in energy,
of the excitation strength distribution

mg = Z(Eﬂ - Eﬂ)ki(nlolo)lz ) (4-19)

T

where O is the one-body hermitian operator, responsible for the excitation. In the above
expression, £ = 0,+1,42,... and |n} stands for a set of eigenstates of the hamiltonian of
the system. A sum rule is obtained when it is possible to relate a momentum with a known
quantity.

The energy weighted sum rule (EWSR), m,, is obtained through the calculation of the
expectation value of a double commutator

my = Y (Ew — L)) = S(0[(0, [#,0)l0) (4.20)

T

In the present problem, the general solution for the variational fields is given by the real
part of

lI’(X,i) = Zan . {1;1)(}() e_iw"i , (421)

where the coefficients a, are determined by the initial conditions. In order to derive the
EWSR for the electric modes we consider the following initial condition

#(x,0) = D(x), (4.22a)

c,b.-,-(x,O) = x,-j(x, 0) = I’V(X,U) = (5R(X, 0) = (5V(X, 0)
= do(x,0) = $Vj(x,0) = II,(x,0) = My (x,0) = 0, {4.221)

with D(x) to be specified. We then expand the fields ¥(x,0), I1,(x,0), ¢;;(x,0) and §V(x, 0)
as 9(X,0) = T, 4™ (x), where, from the orthogonality relation Eq.(3.5), we get

2‘SF]':’F n P2 n — n
ay = fd%-? (W( nt %Exg) D(x) +p0de.JR{ )D(x) . (4.23)
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The coefficients @, are related to the expectation value of the transition operator, a, =
v2(n]0}0}. Therefore, the EWSR can be written as

my =3 |an|*w, = 2E®) (4.24)
and, for the initial condition given in Eq.(4.24), the EWSR reads

S P = /dsmg—ﬁVD.VD . (4.25)

V. NUMERICAL RESULTS

We have performed our calculations with two different sets of the mean-field values of
the parameters in the Walecka model;

L g? =122.88,¢% = 169.49, 5, = 1.3fm™", M~/M = 0.522
IL g2 = 91.64, 92 = 136.20,pp = 1.42fm~, M*/M = 0.556

where M = 938 MeV and M* is the effective mass. The effective mass and the Fermi
momentum indicated for each set correspond to the values at which saturation of nuclear
matter is obtained with an energy per nucleon E/N = —15.75 MeV, using m, = 550 MeV
and m, = 783 MeV. The surface tension, from the liquid drop model (23], i8 04y = 1.017
MeV/fm?. The results were calculated for a nucleus with A = 208. The radius Ry is obtained
from the value of pr corresponding to the chosen set of parameters.

For the excitation operator introduced in 4.22a we will use

D(X) = 7'2Y00., [ = 0 y (51&)
= r'Yp, [>2, : (5.1h)

Table T shows the energies of the normal modes together with the corresponding per-
centage of the exhausted energy weighted sum rule (EWSR), for the two sets given above
and for different multipolarities. The EWSR is fragmented over the whole range of ener-
gies and only the nuclear modes which exhaust more than 0.1% of the sum rule are given.
The distribution of the EWSR between the nuclear modes and the mesonic modes {energies
larger than the meson masses) agrees with the results obtained in [14], where it is shown
that in infinite nuclear matter and for small momentum transfer about 62% of the EWSR
is exhausted by the continuum nuclear modes and about 38% by the vector meson modes.
For instance, for { = 2* and for set I, we find a vector meson mode at huy = 984.56MeV
which exhausts 27.30% of the EWSR. The other mesonic modes are not as collective as
this one and are distributed over a large range of energies. This pattern is reproduced for
the two sets of parameters and for all multipolarities. The EWSR is fulfilled considering
all the nuclear and mesonic modes. In non-relativistic calculations using the same nuclear
fluid-dynamical model used here [18-20}, the mesonic modes are not present and, therefore,
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the EWSR is distributed only through the nuclear modes. From this Table we can see that
for set 11 the collective modes come at a slightly higher energy than in set | and that the
strength is more concentrated at higher cnergies. '

In table IT we give for set T and for {™ = 0%, 2%, 37, 4% the energy of the normal modes
with energy below 100 MeV (first column) and the corresponding percentage of the energy
weighted sum rule (EWSR) (third column). In the second column we present a renormalized
percentage of the EWSR, renormalizing the strength distributed among states with energy
below 130 MeV to 1. The renormalizing factor is m| (I} = 0.56, 0.60, 0.61, 0.56, respectively,
for{ =9, 2, 3, 4. This is done so that we can compare more easily the results obtained in the
present work with previous results oblained in a non-relativistic fuid-dynamical model, [20],
{colurnns 4 and 5) and experimental data (columns 6 and 7) [24]. Looking at the modes with
energy below 100 MeV, we may immedialely conclude that there is a certain correspondence
between the states obtained in the present approach and the ones of [20], if we identify the
states by the percentage of the exhausted EWSR. However, the corresponding states come,
in the present relativistic approach, at higher energies. For instance, the quadrupole low
lying mode and giant resonance come, respectively, at 10 and 20 MeV and exaust 8% and
77% of the EWSR while the experimental modes come at 4 and 11 MeV and exhaust 15%
and 70% of the EWSR. Another possible way of identifying the modes is done by comparing
the current transition density (2.8) and the transition density (2.7) for these two modes with
the ones of ref. [20]. In figure I and 2 we plot j;, j_, juw (arbitrary units) defined by the
eQuations:

J(r) = 54 (") Yirar o) + 5-(r} Ym0 0(9),

9 -§(r) = jan(r)Yio
The Tunction jg, is related to the transition density dp (p = —V - }). For the 10.03 MeV
mode, j4 and j_ have oposite signs and ju;, is close to zero, characteristic of a surface mode.
These are typical properties of a low lying mode. For the 20.15 MeV mode, 7, and j_ have
the same sign and g, comes diferent from zero for r/ Ry > 0.5. This behaviour is closer
to the behaviour expected from a giant resonance. We conclude the identification we have
done is correct.

We note that our modes with the lowest energy have energies similar to the ones obtained
in ref. [9], however, these are not. the states that exhaust the largest percentage of the EWSR
and, therefore, they should not be identified with the giant resonances. The breathing mode
comes at a very high energy, but this was expected owing to the high incompressibility of
the model. ‘

While in ref. [9] only the lowest modes were determined, we have found all the modes
that exhaust a significant fraction of the corresponding EWSR (which we also derived).
Furthermore, we have shown that the lowest mmodes are not the most collective ones.

From the present results we conclude that the dynamical properties of the muclei are
not so well described by the Walecka model as the static properties such as densities anc
single particle energies. In our calculation we have taken for the ground-state of the nucleus
a Slater determinant derived from a square-well instead of the the self-consistent ground-
state. We believe, however, that for large nuclel such as the *®Pb nucleus this is a good
approximation which allows us to obtain analytical expressions for the equations of motion
and the boundary conditions.
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VI. APPENDIX

Using the general solutions in the boundary conditions Egs.(3.2a} to (3.2¢), Eq.(3.3) and kL,  Zpw,
E he followi ti : - : Ta C31.7((k3| ) =
q.(4.18) we get the following equations: 15 9P e
2
(2 =11+ D))(rd, + Degilkar) + 3 [2!(! +1)—2rd — 2~ kgnrz] canfilkanr) .y ‘ ~
" | I = [wnf (kai) — g Va(kai) -+ LL00 (ki)
- WP o g
+ Z(rar - l)CBle(kSnr) =0 (613’)
n=1 r=Ro ___ﬁ“sup { -2 k310, i1 (K
L (104 1) = 2)o k)3 esilFar)|
2 - v .
11+ 1)(2 — 10+ D)eriilker) + SO 201+ 1)(rd, — 1)canji(kznt) with the functions o{k} and Vu{k) defined in Egs.(4.9¢) and (4.9d).
n=1
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2 [kfrz(ra,. -1 +6(rd, +1) — 5 1'8,.] ergillyry — 2 [6(rd +1)
. n=1
4
+2k2,7 — 3U(L + 1)) ezni(kar) Z (rd, — Neamiilkser)| =0, (6.1¢)
n=1 r_Ru
{1+1) [kf1-2(ra, 1) +3rd +12- 311+ 1)} crji{fer)
2 2
+3 Ul +1) (gkgnrz + 6rd, — 12) anji(kant)
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4
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n=1 r=Rp
2
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Y 2) Prkgd (L + Vegigilkar) + 3 [Volksi)
=1 i=1
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TABLES

TABLE I. Energies and fractions of the energy-weighted sum rule for different mullipolaritics
and different sets of parameters.

TABLE Il. Comparison between the energies and fractions of the energy-weighted sum rule’
obtained in the present work (first column}, in [20] (second column) and experimental data (third
column) {24].
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FI1G. 1. j; (full-line), j—

I =2+ E=10.03 MeV mode.

FIG. 2. j, (full-line), j_

"= 2_+ E=20.15 MeV mode.

FIGURES

(dashed-line). and jy, (dash-dotted-line) in arbitrary units for the

(dashed-line) and ju. {dash-dotted-line} in arbitrary units for the
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Table

? I IT

fiw;(MeV) my (%) [fwi{(MeV) m, (%)
07| 2856 14.06 | 3727 855
0f| 3550 2746 46.12  30.34
0f] 5095 230 | 6159 213
07| 6825 132 | 8114  0.25
0f| 7120 594 | 86.73  8.59
0F| 8851 058 | 9392 0.7l
0| 105.01  1.07 | 13358  3.22
0F| 107.87  2.57
27 10.03 467 | 1190  1.46
27| 20.15 4532 28.07  42.51
23| 2832 078 | 33.77 5.2
2f| 3532 395 | 39.94 048
2| 3582 031 | 4233 4.64
oFt 4935 052 | 59.72  0.35
251 6420 193 |- 7559 0.96
251 6991  0.10
37 1293 1142 1586  0.32
37| 1444 109 | 1777 5.7
37| 32.84 3548 4214 3524
37| 3720 070 | 44.95  4.09
35| 4233 0.08 | 47.65  2.17
35| 4503  3.90 | 5198  7.00
37| 5755  0.64 | 68.89  0.53
47 1806 1341| 2235  0.69
47| 2046 137 | 2493 721
47| 43.94 1644 | 5432 1032
47| 4591 1454 | 57.52 2027
47| 48.84 205 | 6247 1142
45| 54.83 347 | 7341 0.1
47| 6546  0.68 | 77.68  0.64




"able 11

7 present [20] experimental [24]
T (MeV) mal %) (1) m (%6) [hesi [(MeV) my(B)]  Fuwi(MeV)  my(%)

0F | 28.56 25.23 1406 | 1587 9515 13.9 100.
oi 35.50 49.28 27.46 | 1895  2.26

01 50.95 4.14 230 | 2814 0.0

01 68.25 2.37 1.32 ! 36.83  0.03

0Ff | 7L.29 10.66 594 1 41.29  1.46

0f | 88.51 1.03 0.58
total 99.99 55.72 | 98.98

2§ 10.03 7.67 4.56 373 30.90 4.09 15.
23{ 20.15 76.99 4579 | 11.76 64.19 109+ 0.3 70.0
21 28.32 1.29 077 | 1745 217

21 35.32 6.35 378 | 2054 110

27 35.82 0.53 0.31 | 2112 1.00

2;; 49.35 0.88 052 | 27.30  0.06

at | 64.20 3.15 1.87

2;; 69.91 0.17 0.10

2% | 87.43 0.29 0.17
total 99,88 59.46 99,32

37 | 12.93 18.74 11437 292 34.10 2.61 33.
3; | 14.44 L7 1.04 8.43 0.29

35 | 32.84 58.70 35.70 | 18.53  43.44 18.4 £ 0.8 36.
3; | 37.20 1.15 0.70 | 22.80 10.88 21.8 + 0.8 27.
35 | 45.03 6.06 369 | 2687 518

3: | 57.55 1.05 0.64

37 | 78.43 2.96 1.81

3 | 82.04 3.10 1.89

35 | 95.87 0.46 0.28
total 100.00  61.00 97.64

41 18.06 23.10 13.06 [ 451  34.10 432

43r 20.46 2.35 133 1 1226 2.05 12.04 0.3 10+£3
47 | 43.94 29.21 16511 2336 2239

4;: 45.91 25.77 14571 2764  8.86

41 48.84 3.62 205 | 2067 17.10

47 | 54.83 5.81 398 | 3345 845

47 | 65.46 1.20 0.65 | 3538 418
total 100.00  56.52 97.13
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