‘CAIXA POSTAL 66318
05389970 SAO PAULO - s‘

ConCIFUSPARZIS

. ANYONSIN 141 DIMENSIONS ARE ANOMALOUS -

A

::'T_J Gamboa \ O Rnelles J Zane]h]3 -

L ?:"_‘1) Depauamento de Fzsma Uﬂl\ emdad de Salmago de (,hile - o
T Cabl”’i xO/ Sanmero”‘ Clnle e

R “} Inamum de FlSlC'l Um\ e151dade de Sao Paulo

w) Cemro de Estudms Clentlficos de Sant1ag0
Cas1 la 16443 Santlago 9 Clnle '

- Maio/1996 - o




soor Termions, Bul ot

nd' T ZANELLI

I de Sanifugo de. Chile,

Jyitunii niééhanical
lian gauge ficld,:
It is

by e particle orbits 4s guantized; and-
smiinelries would be'
ind-Lhg éxjts{g)a'l_ce_‘of abelian .

P -




ILis the aimi of theoretical physics to provide economical explanations for the fundamental
features of natlure. Two brilliant examples of this are the quantization of spin in multiples of
R f2, and the connection between spin and the (anti-) symmetry of the wave funclion under
exchange of identical particles. [t has been powerlully stressed however, that both results
are crucially dependent on the fact that the rotation group in three spatial dimensions is
non-abelian. Sinee this fails to be.so for lower dimensions, spin is not necessarily quantized
and the states need not be symmetric or anlisyminetric under particle exchange.

In the last ten years intense rescarch on the physical and mathematical properties of
planar - d.c.. (24 1)-dimensional - systems has taken place. From the mathematical point of
view, the discovery of topalogical quantam field theories {1} and fractional statistics [2] are
surely the most important results, On the other hand, the fact thal spin and statistics could
be Tractional and their potential applications is, probably, one the most exciting discoveries
in theoretical physics.

However although there are many well established theorelical {3} and experimental
results[1] for lincar i (11 )-dimensional - systems, a deeper understanding of their origin
is slill lacking.

One of these intrigaing vesuits s Uhie bosonizalion in one-dimensional (1+1) systems. IL

is generally helieved thar besonization occurs naturally in those systems because there is

it rolalion group i utie dismension and, a5 a consequence, the spin could be considered a
matter of convent ..
There are two appron: s 1o basenization: A non-lincar. non-local ficld transformation

that maps a fermionic action inte a hosenic ane 3.6} and the more recent two-dimensional

constriction of Polyakov [7] wiiere the fermions aze integrated out and Lhe resufting effective

action is writlen in terms of purels Twsonie felds . These two approaches seem {o be refat

as it can be argucd in the context of duality

In all approaches, 1opulogy plavs 2 kev role. The uteser spint excations are found to

exisl ina topologically e trivi

seviol of Dhe breeadzed ey, The resubting {effoctive

action bas a howndary term of 1opolozicad o

worespnsible lor ihe antisvonnetry

of the wave funetion under particle exchange, thus respecting the lermionic statistics in
“bosonized” theory.

In the construction hased on the non-local mapping, the appearence of this topolog
boundary term is not explicit hecause the identification is cither made at the classical
grangian level, or it is pertarbative. Hs is therefore of interest Lo investigate a simple sys
where the topological fealures of the mapping can be studied in the quantum theory .

In the approach based on the infegration over the fermionic ficlds can be cxempli
with a relativitic spinning particle in two spatial dimensions. Upon integra.t‘.i.o-n of the ¢

degrees of freedom in Lhe action S[r, 0], the resulting effective action reads (9],
g Vi LW
Seff = (T[?H J +-9‘ ],

which is just a bosonie way of deseribing a relativistic particle of spin one-half. The writl
number, W, is a topological invariant which classically does not contribute to the equati
of imotion bul quantum mechanically is responsible for the non-lrivial character of the B.
Fermi transnitalion. The factor iz is procisely the spin of the particle.

One could alsa note that {1) ix a particular case of a more general construction, In f
when one couples a spinless particle Lo an abelian Chern-Simons field A, in a planar syst

the action reads] 1]
S = / dr[m Vit 4 A"+ ?}0- ] a7 A,0,A7,,
ntegrating out the gange field, one finds the effective Lagrangian
Lepr = mvat + {;W,

which is exactly (1) for o = 27, The cocfliciont T corresponds to Lhie spin of the eflec
systemand, in this sense, (3) deseribes a quantum particle with fractional spin and statis
HIL Do one spatial dimension Lhe rotation group is diserele; its representations are ¢
dimensional and labeled by a pliase. Spin is associated with the symmelry or andisymmn

of the states under the excliange of identical particles. This plsase (spin} tn Lurn can




shown 1o be determined by the class of houndary conditions that render the Hamiltonian
sell-adjoint [12]. If no further constraints are imposed on this phase, the spin can take any
real value, interpolating continuousty between besons and lermions. If one takes seriously
this idea, then a quantum field theory in 141 ditmensions should be anyonizable and not
just bosonizable, as is conumonly assumed,

The purpose of this letter is to show how it is possible to write an expression analogous
Lo {3) for a simple gquantum mechanical syslem in one dimension, and to discuss some
subtleties associaled with the hosonizalion procedure. In particular, we will show how, after
bosonization, the system remembers that it comes from a fermionic one.

In order Lo deseribe our results let us proceed in analogy with analysis of [7} and [9],

starting with a non-relativistic spinning particle deseribed by the aclion
N f2 | -2 £ % t:
§= [ a5 Vi) +ullio + A, )
Jn 2 2

which for A = V' is ¥ = [ supersymmetric quantuin mechanics (S8SQM), where V() is the
superpotential,
This action (1) has two classical symmetries v.i.z,

i) lnvariance wuder focal {7{1) gauge transformalions

’

¢ = (), (1) = e ™pi(1), (5)
where the gange polential A transform as [13]
Loy A (6)
A=A+ —.
dl .
it) Invariance under “charge-conjugation” i.e.
¥ e ot Ao - (7)

The partition function is defined as

7= j DrDeDyie ™, (%)

It is customary to asswine the orldts (o be periadic in the bosonie coordinates, w
cither periodic [11] or antiperiodic {15] in the fermions. Since we want lo investigate
possibility of having anyvons, which should nol be expected to obes neilher periodic

antiperiodic houndary conditions, we will allow for Lwisted boundary conditions, namel;
x(th) = x{ta),
and
J(2) = (e, (
where e is an arbitrary real number.

Integrating over the fermionic vartables,

e i 'z,f fj2_1y2
zn = /‘D-T' (li‘t(?()t + A]aeIJrq ‘(2 5 )|
As usual, the determinaut of an operator € is computed as det(?), = 1. )‘La)‘ wh

Al are the cigenvalues, Using (10). the eigenvalues are

f; .
MW= o [ gy - Ee T

I, 7
wliere T' = f; — (), and the lermijonic determinant hecomes
I'(A) = det{idy + A,
n=oo i 9 :
= [lj’ dLA(2) + M] |
] 1N ]

n= =
In order Lo compule the nfinite produet, one can isolale the n = 0 eigenvalue, t

standard manipulations lead to

s 1 A . ¥+ 21’
I(/‘) = T(y + 2?1'(}')}—:]:] (T) 712 H [l — LL—IEE)—],

n=1

with y = fr‘l’ dlA(2} and, using well known klentities, we arvive at [16]

ty
Io(A) = ‘Vsin[/ dt(%/l + -”I—“)]
l|‘|




where A s a normalization constant independent of .

This formula reduces to the known results when a = 0 (bosons), and & = 1/2 (fermions).
This can be checked by direct caleulation in SSQM [13].

The determinant {15} can be understood as follows. Assume one starts with some definite
boundary condition for the fermions, say periodic boundary conditions. Then eq. {24) can
be viewed as the reselt of 4 gange Lransformation on the gauge potential A of the form (6}

with w given by

(=1t} ' (16)

As a consequence, there is @ one Lo one cotrespondence bedween gauge transformations of
the class {16} and ihe swist chosen for the fermionic boundary condition (10). Thus, by
means of successive gauge transformations one can continuosly interpolate hetween I'yo(A)
(bosons) and I oy 75{A) iferions).

Thus, the complete partition fnuction is
e 12 Lvez
Z.= [Dr v BIHGEET (17)

ALl this point one can ask wlether the classical symuelrics of the model are respected
in the quantin theory. s order 1o address this question, one notes that gauge invariance

requires 'y (4) = Do 1} and therefore either
) o =2, {18)
or
) ¢={2n+1l—-als, {19)

- (T - \ - . .
where & = [ diA s the flux enclosed by the parlicle orbit in Euclidean space {instanton).

Ou the other hand, invariance sndes charge conjugation buplies To(A) = Tu(~A) and hence,
r) a=n+l : : {20)

or

-
o} d = _/9 diA = 2um, (

It i clear Trom this that if the flux were nof quantized, it would be impossible to resp

hoth symmelries simultancousty. Farthermore, il acZ, then

Fa(A) = (_1)"5571[f dtA), (

is an add funetional of A, which combined with charge conjugation invariance tplies 1
Pal A} =0, aud the theory would be ineconsistent, Thus, the only contbination of the ab

condilions thal ensures consistencey and absence of anomalies is b and ¢, namely.

O={m+1/)r, o=n+1/2, n-—m=odd (

Thins, we see that
- , 012 Al
P (A) = A (o) ol 2L (
where V(o) is a normalization constant, and the cffective action (17) is

tz 1 1 1
S= -+t — V2 2 Al
, ff dif5i? = SV 4+ =] (

. TR . . . . i
In conclusion, (25) is the two-dimensional analog of (3) with the flux § f7 tA =
plays the role of =W in 2+1 dimensions. llowever, this analogy is not correct unless

flux is quantized, which oceurs for the cases 3 and 4 as shown in the the followi: g table

b a|Gauge Tnv.|Ch, Conj.|Anomalous
I iarbitrary 2n yes no yos
2 |arbitrary n4 12 no yes yos
3 2urw noninteger no yes yes
tim 2= n4 12 you yes 1no
{1 — ) odd

oo




Possibility 3, however does not preserve gauge invariance and the theory is anomalous. and $1-053/GR from INCYT-USACH. V.O.R. was partially supported from CNPq-Bre

Case' 4 is more interesting because it shows that the two classical symmetries are preserved : J.Z. wishes 10 also acknowledge partial support by a group of chilean private compar
and o takes on ball-integer values only. ‘This means that the particles deseribed by the (COPEC, CMPC, CCE, MINERA FESCONDIDA, NOVAGAS, BUSINESS DESIGN A
bosonized action (23) arc not bosons -as naively expected-, nor anyons —as the elementary and XEROQX-Chile).

group-theoretical analysis suggests-, but in fact fermiona.

In the path integral {or partition function) it is customary to integrate over periodic
(antiperiodic) arbits for hosonic (fermionic) variables. The reason for this is essentially
classical: it is under these conditions that the action has an extremum on the classical
orbits [18]. Nevertheless, it is not obvious that this is necessarily so at the quanturmn level.
What one learus from the preceding analysis is that unless fermions are antiperiodic, the
theory would not respect gauge and charge conjugalion invariance.

This result can also be reached througl a geomelrical analysis. The boundary condilions
(9} and (10) correspond 1o superimposing a gauge transformation on the orbit so that the
" spinor comes back to jlsell. module a fnile gauge transformation, when  completes a
full turn. "I'his Smplies that the family of boundary conditions considered splits into the
homotopy classes in 8 (SO(2)/0701)) ~ IL(17(1)) = Z. These classes are labeled by a value
of o €Z, or « €Z+1/2 {14]. The additional requirement of charge conjugation invariance,
rales oul the integer vahiues for o.

The flnx quantization results from the compactification of the time direction as a conse-
quence of the (anti-) periodicity of the fields. This is analogous to the quantization of the
abelian Chern-Simmons coetlicient in 241 dimensions when the theory is defined on a multiply
connecled manifold [20). The fact that the flux enclosed by the orbits is quantized can also
be interpreted as a condition for guantization of the orbits, similar to the Bohr-Sommerfeld
rule.

The extension of these resubis 1o higher dimenstons and their connection with non shelian
anomalios will discussed ehewbere s

Several enlightening discusions with X, Brafic aie warmly ackrowledged. This work was

partiatly supporled by grants 1930275 and 15005 by FONBDECYT-Chiie, gramis 04-9583/71
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