UNIVERSIDADE DE SAO PAULO

INSTITUTO DE FiSICA
CAIXA POSTAL 66318
05389-970 SAO PAULO - SP
BRASIL

PUBLICACOES

IFUSP/P-1219

FLUCTUATION EFFECTS IN INITIAL CONDITIONS
FOR HYDRODYNAMICS

Yogiro Hama
Instituto de Fisica, Universidade de S&o Paulo

Samya Paiva
[nstituto de Fisica Teérica, UNESP
Rua Pamplona, 145, 01405-901 Sdo Paulo-SP, Brazil

Takeshi Kodama
Instituto de Fisica, Universidade do Rio de Janeiro
CP. 68528, 21945-970 Rio de Janeiro-RJ, Brazil

Maio/ 1990



Fluctuation Effects in Initial Conditions for
Hydrodynamics

Samya Paiva* and Yogiro Hama
Instituto de Fisica, Universidade de Sao Paulo

C.I’.66318, 05389-970 Sao Paulo-SP, Brazil

Takeshi Iodama
Instituto de Fisica, Universidade do Rio de Janeiro
C.P’.68528, 21945-970 Rio de Janeiro-RJ, Brazil

May 21, 1996

Abstract

We have studied the fluctuation effects in proton-proton collisions through
the analysis of its observables. To investigate the role of fluctuations in ini-
tial condilions, we have calculated them using the Interacting Gluon Model
modified by the inclusion of the impact parameter, and have applied them
to the Landau’s Hydrodynamical Model in one dimension. The rapidity and
pseudo-rapidity distributions were calculated using two distinct procedures.
One in which we have considered the fluctuations in initial conditions and
the other the usnal method considering only one fireball with average initial
conditions. The obtained results have shown the importance of considering
these Muctuations.

1 Introduction

It is well known Lhat the hydrodynamical models usually describe well the various
aspects of the multiple particle production phenomena in high energy nuclear and
hadronic collisions. Nevertheless, a simple application of these models may fail
when we try Lo analyze in detail the experimental data that carry information about

*Present Adress: Tnstituto de Fisica Tedrica, UNESP, Rue Pamplona, 145, 01405-901 Sic Paulo,
S.P., Brazil

or even associated with the impact parameter. Usually, the so-called inclusive data
for the final particle distribution is the average over such event-to-event fluctuations
for a given experimental initial condition. Let us denote such an averaging process
by ==. On the other hand, the hydrodynamic models also deal mainly with the
inclusive quantities such as density, mean energy and entropy, which are average
values in momentum space over a statistical ensemble. Let us denote this averaging
process by {-++). In the usual application of hydrodynamic models in describing the
inclusive data, we presumably expect, by means of a sort of ergodic assumption [1],
that the statistical ensemble average {- - -} substitutes the average over event-to-event
fluctuations ==, that is,

o () (1)

However, not all the average of physical fluctuations can be expressed in terms of
the above average over statistical ensemble of the constituent configurations. For
example, the quantum-mechanical and impact parameter fluctuations that occur in
the initial condition of each event can never be averaged out with the use of the
ergodic hypothesis. The main aim of this report is to discuss the effects of such
fluctuations on the observed quantities in a hydrodynamical description.

When we want to introduce fluctuations in the initial conditions of 2 hydrody-
namic system, we must go beyond the hydrodynamic degrees of freedom. They
should be calculated from some microscopic model. For this purpose, we use here
the Interacting Gluon Medel [2] (IGM). This is a simple model which permits us to-
calculate the energy and momentum distribution of fireballs produced in a hadronic
collision. In addition to the dynamical fluctuation of the microscopic degrees of
freedom, we would also like to include the impact parameter fluctuation. (Quan-
tum mechanically, it is in principle impossible to fix the impact parameter. Even if
we could theoretically define the trajectories of the incident particles like in Lieavy-
ion collisions where the incident objects are nearly classical, it would equally not
be possible in practice to fix the impact parameter due to the actual experimental
conditions. We may recall that there exist some experimental techniques to discrim-
inate central from peripheral collisiens in such reactions. But they do not eliminate
fluctuations. So, in any realistic description of nuclear and hadronic collisions, the
impact parameter fluctuation has to be taken into account. Thus, we modily the
original IGM to take account of the impact parameter fluctuation. The fluctuations
we are mentioning become especially important in hadronic collisions rather than in
heavy ion collisions. Thus, in this paper we shall mainly be concerned with pp and
Dp collisions, '

In high-energy pp and pp collisions, it is probable that the inelasticity, that is,
the fraction of the incident energy used to produce the final particles be determined
before the hydrodynamic scenatio sets in. In other words, the inelasticity is the
input for the hydrodynamics. We thus calculate the inelasticity distribution using
the impact parameter dependent IGM. To have a first look on the effect of impact

2




parameter, we compare the inelasticity distribution calculated by the IGM with and
without the impact parameter fluctuation. A sizeable change in inelasticity distri-
bution, as well as in the leading-particle spectrum leads us to verify the sensitivity
of these observables with impact parameter fluctuation. A better agreement of our
results with data suggests that we are in the right way.

After introducing the initial conditions given by our IGM, the next step is to
choose some hydrodynamic model and study the fluctuation effects on the final
particle spectra. For this, we have chosen one dimensional Landau’s Hydrodynamical
Model {3],[4]. In this model, an analytical solution can be obtained over the whole
kinematical region just in terms of the invariant fireball mass. This enormously
simplifies our task of averaging over all the fluctuation considered.

In order to quantitatively analyze the consequences of these fluctuations, we
calculate the rapidity distributions in two distinet ways. One is that we take first
the average of fireballs over all the fluctuations given by the IGM, then calculate the
rapidity distribution applying the hydrodynamics to this unique averaged fireball.
This process would correspond to the usual application of a hydrodynamical model.
The other is that, we apply the hydrodynamics for each event with fluctuating
initial conditions to obtain the event-by-event rapidity distributions and then by
summing up these distributions over al] the events we calculate the averaged rapidity
distribution. The comparison of the above two results reveals us that the rapidity
distribution is very sensitive to fluctuations in the initial conditions, pointing out
the importance of taking care of them.

In what follows, we present in section II the basic ideas of the Interacting Gluon
Model modified by the inclusion of the impact parameter and the calculation of
the initial conditions. The results of the inelasticity distribution and the leading

2 Fluctuations in the Initial Conditions

One of the present problems which high energy nuclear and hadronic collisions are
faced with is the determination of the energy deposited in the reaction or, equiva-
lently, the fraction & of the total incident energy +/s consumed to produce particles.
As mentioned in the Introduction, this fraction, or inelasticity, is an essential in-
gredient for statistical models of high energy hadronic collisions. We apply the
Interacting Gluon Model to calculate this quantity. The main reason for this js
that, in terms of few Parameters, it allows us to obtajn analytically the inelasticity
distribution as functions of the incident energy. This, in its turn, is immediately
related to the leading-particle spectrum, :

The Interacting Gluon Model is based on an idea[3] that in high energy hadronic
collisions valence quarks weakly interact so that they almost pass thorough, whereas
gluons interact strongly. To be more specific(2], the valence quarks are supposed to
be responsible for the fragmentation regions, while the interacting gluons produce
an indefinite number of mini fireballs through gluon fusion, which eventually form
a unique large fireball in the central region. A further simplification in this model
can be made by assuming that there is no fragmentation of valence quarks. That is,
all the remaining energy not deposited in the central fireball is to be found in the
leading particles. In [2], no reference is made about the impact parameter., We here
reformulate the model to introduce this new kind of fluctuation for the description
of proton-proton and nucleus-nucleus collisions.

2.1 Impact Parameter

The role of the impact parameter in providing the initial condition for a hydrody-
namical model is twofold. First, a given value of the impact parameter & defines the
probability density of occurrence of a reaction. Second, once a reaction takes place,
it determines how do the mass and momentum fluctuate in the initial conditions
of the hydrodynamics. To account for the first point, the best way to introduce
the impact parameter in quantum mechanical reaction process is the use of the
eikonal formalism([7). In the impact parameter representation, the total inclastic
cross section of proton-proton reaction can be written as

[ @ F® = i (v3), (2)
where the incident energy dependence of the inelastic cross section is well expressed

as[6] _
;J:el = 56 (\/;)—1.12 + 1816(\/5)016

The function F(l_;) is nothing but the partia! cross section with respect to the impact
parameter 5. We also write

a

F)=1-18@) - (3)

In the IGM where we assume that the inelastic processes occur due to the gluon-
gluon fusion, we write the eikonal function as the convolution of the projectile and
target gluon thickness function. Thus we write

ISOF = exp{~C [ ¥ [ b DF) DEY7(E+ 5 - 51y, (4)

where D(5) is the proton thickness function and C is a constant which should be
determined by the normalization condition (2). For D(b) we take here 2 Gaussian




distribution with the range equal to the proton radius. The function f (B) in (4) gives
account of the finite interaction range of the gluons and is subject to the constraint

ff )db=1. (5)

The simplest choice of f (g) would be 6(5), which represents a point interaction, but
it is not consistent (especially in the case of pp collision) with the finite range of
the strong interaction. We preferred to parametrize it as a Gaussian with a range
~ 0.8 frn, which gives also a better agreement with the data. Thus we have
eventually

D) = i) =~ e, (6)

with @ = 3/2 RZ, where Rp ~ 0.8 fm is the proton radius. Thus we get
= aC
Ff)=1-exp {-— 5] exp(—T)} . @

2.2 IGM with Impact Parameter Fluctuation

Now, to implement the second point mentioned above, we apply the basic idea of
the IGM for each impact parameter b. That i is, having occurred a reaction for a
given b, we assume that the colliding protons form, by _gluon exchange, a central
fireball deposﬂ;mg in it fractions respectively (5) and y() of their momenta. Let i
be the number of pairs of gluons that carry fractions x; and y;. The fractions :c(b
and y(B) are thus a sum over all such gluon pairs

Zn,-z,- = z(g) and Zn;y; = y(g) (8)

From now on, we omit the explicit dependence of z and y on b in order not to
overload the notation, if otherwise necessary. The energy and momentum of the
central fire ball in the center-of-mass frame of protons are given by

3
Bey) = Lo +y),
3 .
Pay) = L) ©)
and its invariant mass M and rapidity Y are
=+sry=kys ad Y= %lng . (10)
5

As in [2}, we can then express the probability of forming a fireball with the
specific energy and momentum as a sum over all the set of gluon pairs {n;} which
satisfies the relations (8).

T(z,u:5 EJ[m(b Zn,x,] [(3)—2‘_:n;y;]]_:1P(n;),- (11).

{nmi}

where P(n;) is the probability of occurring fusions of n; gluon pairs {z;,y:}. If these
fusions are independent, we may take P(n;) as a Poisson distribution

ﬁ"l_"i e -7

P(n) = (12)

n;!

Note that Eq.(11) is normalized,

fda:fdyf‘(m,y; E) =1.

Now, expressing the delta functions by Fourier integrals, one can perform all sum-
mations in Eq.11 and arrive at

™ 1 doo +os 1 5 — 1 _wi{uzy+ay;
Nz, y:8) = (z_w)‘zf_w du/_m ds o) exp{Y myfe et — 1]}, (13)
2

At this stage, we shift to the continuous limit rather than the discrete version con-
sidered above. Then the summation in (13) must be replaced by an integral,

- Vot o
S [ dot [ dy wia',i5), (14)
J .

where w(w,y;g) is the density of gluon pairs that fuse contributing to the final
fireball, with the fraction z of the projectile and y of the target proton momenta,
respectively. This quantity is the central ingredient in the present version of the
model. Within the etkonal model, we may express it as

inel
bp

weud= [ b owi BB G g -y dd, )

where G(z, b) and G(y, b) are the momentum distributions of gluons in the projectile
and target protons at a given impact parameter b and ogqlz Y, 5) is the gluon-gluon
interaction cross section. The function f is the same one as in 4. In this work, we
assume that the dependences of ¢ on & and b factorize, that is, we take

-,

6w H=200), ¢ GwH=10@), (16)



where D(g) is the proton thickness function appeared before, and the gluon-gluon
cross section is parametrized|2] as

O5(@,y) = — (17)

zYs

where ¢ is a parameter of the model

Because of the form of G(z,5) (gluons carrying small fraction of proton mo-
mentum) and of g9, the spectral function is sharply peaked at small (z,y) which
justifies the approximation

e~ = r ) _ 1~ i(ug’ 4 sy') — -1—(uw' + sy')?. (18)

Replacing the sum in equation (13) by the integral given by (14) and using the
approximation above, one can obtain an analytical form for I'(z, y; b) given by

- 1 " -
Iz, y;b) ~ ——=exp{-XTG'X]}, 19
(z,y;8) r /3G p{ } (19)

=(0) (B @) e

with the notation,

where

(emy) = ey @) = [ de [ dyf &y e, (21)

In terms of the total energy F and the momen’sum P the probability density is
calculated as

(B, PyB) = 2% oy s (E))? — aa?), (@)
where
w=b(E@)+ @), ad =) - @) (@)
and
(BY = (e} + (). (24)

Note that {22) is still normalized,
f dE f dP T(E,P;B) = 1. (25)

The expression {19) or (22) describes the relative probability of formation, at a
given impact parameter, of a central fireball with energy E and momentum P. In

these expressions, however, no restriction has imposed neither on the fireball mass
M nor on its momentum P. Nevertheless, there exist natural upper limits on these
variables determined by the total collision energy /s. There is also a minimum -
allowed fireball mass mg ~ m,, which is a parameter of the model. So, in order
to recover the correct normalization, we have to put some additional factor in (23).
Combining this with the probability of occurrence of a reaction with a given impact
parameter as discussed in 2.1, we finally write the probability x{E, P; b) of having

a fireball with energy E and momentum P at an impact parameter b as
X(E, Pi8) = xo(B)T(E, P;5), (26)

where xo(8) should be determined by the condition

f dE f AP x(E, P; ) 0(/(B% — P?)/s — kyin) = ﬁF(E}. (@7)

Pp
Here, knin is related to the minimum fireball mass mg through

My

7

The expression (26) shows that, when the matter overlap is small (corresponding
to a large impact parameter), not only the average fireball mass or the inelasticity
is small as implied by (22) and (15}, but also the probability of such fireball form-

ation is small, This second effect, which we have discussed in 2.1, is a reflection of
quantum effect in impact parameter and has shown to be crucial in our description.

km:'n =

2.3 Inelasticity Distribution

Now we have all the necessary ingredients for the calculation of x(E, P; g) function,
that is our generator function of the initial conditions which includes the energy,
mornentum and impact parameter fluctuations. Note that, in comparison with the
original model, we have introduced a new kind of fluctuation without including any
additional free parameter, except for the geometrical radius of the proton R, which
appear in Eq.(7).

Once x(E, P; g) has been obtained, the inelasticity distribution x{k) can easily be
calculated by integrating it over E, P and & with the inelasticity k = (E? - P?)/s-
fixed, namely

x(k):f dﬁf dE f dP x(E, P;8) 6(/(E? — P?)]s—k) 6(\/(E? = P2)/s=kuin) .

(28)



As for the leading-particle spectrum, assuming an approximate factorization of
zr(= 2py/+/s) and pr dependences, we have

B 55 fe)hon), (29)

where
flpe) =fd5f dP[a!E X(E, P;8) 6(\/(E? — P?)[s ~ kunin) 5(____\/5‘ (25' +P) —p1)
and we have parametrized [g] (30)
h(pr) = g ePT; B 40 GeVTY, | (31)

with 27 = 2pL/\/5..

The only experimental information available on x(k) at the present moment is the
one extracted from [9] corresponding to /s = 16.5 GeV. In this reference, what is
presented is the unnormalized cross section measured in the range 0.08 < k < 0.72.
However, both the original IGM result [2] and the ours are normalized curves in
whole the k range (kmin < k¥ < 1). In order to compare correctly our result with
the data, we gave the latter the same normalization as our curve in the range where
they have been measured. We show in Fig. 1 the comparison of our result with
the experimental data together with the curve obtained in the original IGM [2], i.e.
without impact parameter fluctuations. It is clearly seen that the inclusion of the
impact-parameter appreciably changes the inelasticity distribution. Our curve is
much more uniform compared to the original one. We understand that this is due
to the increase in the probability of the small fireball formation at larger impact
parameters. The increase of (k) close to k = 1 is due to the fact that our ¢ in (17)
is larger than in the original version. Tt is also seen that our result is better.

The result of the leading particle spectrum is compared in F ig. 2 with the
experimental data. Again, we see a better agreement of our result with the data as
compared with the one obtained in the original version. The effect of enhancement
of the formation of smailler fireballs is clearly seen there.

3 Particle Spectra

Having calculated the distribution of fluctuations in the initial conditions, expressed
by x(E, P;b), now we proceed to study their effects on the final particle spectra,
For this purpose, we adopt one-dimensional Landau’s hydredynamical model for an
ideal gas. Despite all the simplifications, this model is known to reproduce the main
features of the measured momentum (or rapidity) distributions and has advantage
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of having an analytical solution over the whole rapidity range. The only input of
the model is the total energy and the geometrical size of the initial fireball. We
will apply this model to the fireballs produced by the gluon fusions as discussed in
the previous section. Note that these fireballs do not contain the leading particles
anymore. In other words, the hydrodynamics introduced here will not affect the
inelasticity calculated in the previous section.

The invariant momentum distribution of produced particles in a hydrodynamical
model is usually given by Cooper-Frye formula [10]
| BES = [ f0rw) p do,, (32
where o{T3) is a constant temperature freeze-out hypersurface, p* is the 4-
momentum of the emitted particle and u* is the 4-velocity of the fluid. Although
it is possible to use more realistic freeze-out criteria [11}-{15], here we limit our-
selves to the simplest choice {32) without sophistication. This will be enough for
our present purpose to study how the initial condition fluctuations affect the final
particle spectra.

3.1 Landau’s Model

In computing the isothermal o and the velocity (or rapidity) distribution of the fluid
in Landau’s model, one has to distinguish two different regions. In the so-called
non-trivial region (o < —£/v/3, € = In(T/To), Ty =initial temperature, o =fluid
rapidity), the temperature T'(z,t) and the rapidity a(z,t) are given in terms of the
potential [16]

W §) =Tl Vet [ ‘f ' Io( \JE2 —a?[3 ) de', (33)

af

through the relations

av 1 9%
= 22 - =25 4
t gT cos.ha Tga sinher, (34)
v, 1 av _
r = ﬁsmha - ‘T%COS}IQ’. (35)

'Here, we are considering only one hemisphere ¢ > 0. The solution for & < 0 can

be obtained by making a reflection. In the simple-wave region,

£
UG (36)

and the fluid velocity is related to (z,t) through

Ehl—v/ﬁ
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Remind that we are supposing that the fluid is an ideal gas of zero mass particles.
The invariant momentum distribution (33), with this solution becomes

E dN g f—ﬁéa mr{cosh(y — e)¢(a) + sinh(y — a)¥(a)] dot
a5 (2n) Jum, exp{mr cosh(y — a)/T.} —1
Vy e—zfd-g_ mr(cosh{y — ag) + /3 sinh{y — ag)] (38)
2 2z exp{mrcosh(y —ag)}/Ty} —1 '
where V5 is the initial volume and

e% [T 920
#le) = A Ty (Eg - %3) ’ (39)

edd {90 H2¥
Pla) = A T (% - %8—5) (40)

and the suffix “d” stands for dissociation (or freeze-out). In (38), the first term
represents the contribution from the non-trivial region and the second one that
from the simple wave.

The formula (38) gives us the invariant momentum distributions of the decay
products (pions in the majority) of a fireball in terms of V; and T, once the dissoci-
ation temperature 7, is fixed. In the original work of Landau, it was assumed that
the total energy /5 is liberated as thermal energy in a small Lorentz contracted
interaction volume v

it
where V is the proper volume of proton and ¥ = 2myp/+/s. The initial temperature
To is then computed assuming the fluid is an ideal gas, L.e.,, p = ¢/3. Nowadays we
know that neither the hypothesis of instantaneous thermalization nor the appearance
of extremely high values of the initial temperature are physically reasonable so
that many people are reluctant in accepting the model itself. However, in spite of
these rather non conventional initial conditions, many of the qualitative and the

quantitative results (average multiplicity, particle ratios, momentum distributions, _

++) are surprisingly good when compared with data. In our point of view, perhaps
the equilibrium is attained at a later time when the system has already suffered some
expansion, but then the temperature and the rapidity distributions at the onset of
the hydrodynamical regime are approximately those of Landau’s model whose initial
conditions correspond to high temperature and energy density if extrapolated back
in time. So, for any practical purpose, we can use Landau’s solution to describe the
system.
Now, as mentioned before, we are going to apply Landau’s model to each fireball
characterized by its mass M and momentum 2. Then, the total energy is replaced
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by M and everything is computed in the fireball’s rest frame (which is bo?sted with

respect to the center of mass of the collision). But, then which is the initial voluime

Vo in this case? It has been shown [17] that, in the case of the incident-particle
fragmentation, v oom
P

W= il v V. (42)

In the case of the central fireball, we do not have such a simple expression. However,

phenomenoclogical analysis [19] of the M dependence of average multiplicity data [18]

has shown that in terms of Landaun’s model those data may well be reproduced if

one assumes (42). So, in the present work we shall also assume (42) and Tp will be

computed by putting M into this volume.

3.2 Rapidity and Pseudorapidity Distributions

We now compute the rapidity distributions in two distinct ways. In the first case,
with the help of our generator function x(E, P;b), we calculate the average initial
conditions, i.e., the average mass with (P} = 0 because of the symmetry. Then the
rapidity distribution is computed as done usually by using the formula (38). In the
other case, fluctuations are taken into account and the rapidity distribution given by
(38) is computed for each event and summed over M, P (or E, P) and b according

to
dN - dN s R T P2 s ko).
dy =/dbfdp,[d dy (E,P;b) x(E, P;b)8(\/(E P/ Kmin) (43}

The results obtained with these two prescriptions at the incident energy /s =
24.0 GeV are given in Fig. 3. Observe that, since we have included also the
simple wave solution, the rapidity distribution for one fireball with the average
initial conditions presents a large peak at this energy. When the fluctuations are
taken into account, such a peak is completely smoothed away.

Although the main purpose of this work is just to show the influences of the
fluctuations in the initial conditions, we may proceed to a comparison with some
data [21]. These are given in terms of pseudo-rapidity. So, we calculate the pseudo-
rapidity distributions for the energies 1/5 = 53 and 546 GeV/, by taking the average
value of mr = 0.41 and 0.49 GeV, respectively. In this approximation the pseudo-
rapidity distribution is given by

aN _dN _ (pr)/(ma))’ +sinb?y ”
dn  dy coshy

The results are shown in the Figs. 5 and 6. The comparison of both results leads us
to conclude that the rapidity or equivalently pseudo-rapidity distributions are very
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sensitive to the fluctuations in the initial conditions. These fluctuations cause a
widening, a smoothing and a lowering of the distributions. Moreover, if we compare
the distributions with and without fluctuations with experimental data, we see that
the behavior of the first ones is more similar to the data than the other ones and
the presence of the simple-wave peaks in each event does not invalidate the overall
agreement with data.

4 Concluding Remarks

We have studied in details the effects produced by the fluctuations in the initial
conditions on the final observables of emitted particles. As a mechanism of fluctua-
tions, we have used a modified version of the Interacting Gluon Model, by including
also the impact-parameter fluctuations. The inclusion of the latter has shown to
be significant, since a spreading in impact parameter causes a corresponding widen-
ing in the fireball mass distribution or, equivalently, in the inelasticity distribution.
This widening causes, in its turn, flattening of the leading-particle spectrum. A
better agreement of our results with data on these quantities, as compared with
the predictions of the original version, may indicate that our version is indeed an
improvement.

The modified IGM allowed us to introduce fluctuations in the fireball energy-
momentum as well as in the impact parameter, through the distribution function

x(E, P; b) ‘We have then studied the effects of these fluctuations on the rapidity
and pseudo-rapidity distributions, using Landau’s hydrodynamical model. This has
been done by computing the rapidity (or pseude-rapidity) distributions in two dis-
tinct ways., First, by the usual procedure in which only one fireball is assumed
with the average characteristics (mass, momentum and impact parameter). Sec-
ond, by taking the fluctuations into account, by genera.tmg each event according
to the probability distribution x(E, P; b) and by summing up over all the events.
The difference between them are found to be quite appreciable. As expected, the
rapidity {or pseudo-rapidity) distributions become smoother, wider and lower when
fluctuations are considered. The version of hydrodynamical model we used shows
peaks in the rapidity distribution( originated from the simple waves) of each event,
Nevertheless, in the over-all distribution they are entirely smoothed away, showing
that even analyses of such a simple quantity as the inclusive one particle distribution
may lead to a complete wrong conclusions if fluctuations are totally neglected.

It is well known that there are several observables which cannot be understood
if fluctuations are not properly taken into account. For instance, KNO distribution
[20], forward-backward correlation [21], [22], semi-inclusive distributions [21] and so
on. However, as is easily be convinced the fluctuations we considered in the present
work are not enough to account for these quantities. One of the fluctuations we
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did not includ here and which seemingly plays an important role is the multiplicity
fluctuation in the firchall decay, given its mass M. Investigation in this direction is
in progress.

In conclusion, despile all the siimplifications made in our description, our results
do show that the fluctuations are indeed a very important {eature in the hadronic
collisions and must be considered in any realistic description of these collisions [23].
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. Figure 1: x(k) for s'/? = 16.5 GeV. The data are extracted from ref. [7]. The
dashed curve corresponding the original IGM, without impact parameter fluctuation
(c = 4), and the solid one represents our result {c = 6.4).
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Figure 2: Leading particle spectrum for s%/? = 14 GeV, the data are extracted from
ref. [8] with pr = 0.3 Gev/c, the dashed curve corresponding the IGM without
impact parameter fluctuation and the solid one represents our result.
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Figure 3: The rapidity distributions calculated in usual procedure and with fluc-
tuations for s/ = 24 GeV. The solid line represents the one with average initial
conditions and the dashed is the obtained with fluctuations.
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Figure 4: The pseudo-rapidity distributions calculated in usual procedure and with
fluctuations for s1/? = 53 GeV. The solid line represents the one with average initial
conditions and the dashed is the obtained with fluctuations. Experimental data [24]

- are shown for comparison.

20



4.0 T ; T

n

Figure 5: The pseudo-rapidity distributions calculated in usual procedure and with
fluctuations for s/? = 546 GeV. The solid line represents the one with average
initial conditions and the dashed is the obtained with fluctuations. Experimental
data [21] are shown for comparison.
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