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Abstract

An effective hamiltonian for heavy quarkonia is derived from QCD
by separating gluonic fields in background and quantum fields and
neglecling anharmonic contributions. Mesonic states with nonpertur-
bative gluonic components are constructed. These states are invariant
under gauge changes of the background fields and form an orthogonal
basis. The effective hamiltonian is diagonalized in this basis in a sys-
tematic 1/m- and short distance expansion. For very heavy quarkonia,
we obtain an effective potential similar to the phenomenological fun-
nel potential. The results to order 1/m for pseudoscalar meson masses
and wave functions are shown and compared with those of the Cornell
model. Special attention is given to the color octet wave functions
which, in our approach, can be computed and not just parametrized
as it is the case in ost of the literature.

1 Introduction

Calculations of heavy quarkenium annihilation rates have acquired a
rigourous theoretical treatment through general factorization formulae[l] ob-
tained in the context of the effective field theory, NRQCD{2]. In the factoriza-
tion formulae short-distance coefficients, calculated in perturbation theory,
are combined with long-distance matrix elements that can so far only be
computed in lattice simulations. In spite of its limitations, this approach
provided the solution of the long-standing problem of infrared divergences in
he and vy decays into Hght hadrons. The probability for the g¢ pair to be
in a color-octet S-wave at the origin is an essential input in this approach.
Since accurate lattice calculations of this probability are not yet available,
it is determined phenomenclogically[3]. NRQCD has also given a good ex-
planation for the production rate of prompt J/¥ and ¥’ at large transverse
momentum at the Fevatron[4], which is larger than previous theoretical ex-
pectations. At such energies fraginentation of partons into quarkonium states
becomnes an important component of quarkonium production]s]. Fragmenta-
tion of a gluon into a ¢ pair in a pointlike color-octet S-wave state of y.s
mesons with a cascade decay to J/¥ is crucial to bring theoretical predictions
for J/¥ production closer to experimenial data[G]. It has been suggested(7]
that the puzzling ¥ surplus {a factor of 30) could be explained by the frag-
mentation of a gluon into a pointlike color-octet S-wave state. In any case,
color-octet matrix elements are needed. In the framework of NRQCD, since
one can not compule these matrix elements, they have to be first extracted
from some experiments and then used to study some other processes.

In this work | in the same way as in NRQCD, we deal with octet states
of the type |qgg), where g is a soft gluon, which is, in a first approximation,
indistinguishable from the non-trivial vacuum gluons. In the approach we
propose, the probability for the 4§ pair to be in a color octet state can in
principle be computed, since such octet configurations are included in the
description of the meson from the cutset. In this sense, our approach could
be considered an inexpensive alternative to Jatlice simulations.

We calculate the short distaice expansion of the hamiltonian matrix el-
ements in a gauge invariant basis of color singlet states[8}, including only
terms up Lo order v? and 1/m. We then obtain Lhe eigenstates by (numeri-
cal) diagonalization of this hamiltonian matrix and see how far we can go in
this approach. The previous discussion implies that a realistic description of




heavy quarkonia within this short distance expansion can only be obtained if
the (background) gauge invariant basis of ref.[8] is extended to include states
in which the heavy quark-antiquark pair is in a color octet representation
but coupled to a nonperturbative gluonic background field[9, 10] to form an
overall color singlet. Diagonalization of the hamiltonian matrix leads to a
“color-octet” component in the wavefunction of heavy quarkonia that takes
into account the possibility of color exchange between the valence quarks
- and the background field. This component becomes rather large for higher
excited states and its coupling to the “singlet” is the main reason for the
distortion of the coulombic spectrum in this model. In the pseudoscalar me-
son channel only the few octet states constructed in section 2 couple and a
numerical diagonalization of the resulting system of differential equations is
still quite feasible. :

In section 3 we derive the effective hamiltonian appropriate for the de-
scription of heavy quarkonia. We first obtain the effective Lagrangian to or-
der 1/m by a Foldy-Wouthuysen[11] transformation. Using the background
field formalism[12] and neglecting anharmonic quantum fluctuations one fi-
nally arrives at an effective Lagrangian{13, 14] that includes background fields
up to 2™ order and which, in the instantaneous approximation, gives rise to
an effective hamiltonian that is accurate to order 1/m and r?. Since retar-
dation effects are of order 1/m?, their consistent inclusion would require a
much more elaborated treatment, which would only obscure the basic non-
perturbative gluonic effects that we want to elucidate here.

Numerical diagonalization of this effective hamiltonian in the extended
basis then yields (pseudoscalar) meson masses and wave functions. Our ap-
proach can in principle not be described by an effective potential in the singlet
channel[9, 10] because the elimination of the relative octet states would make
it energy dependent. One can however obtain an energy independent effec-
tive potential for infinitely heavy quarks, where all terms of order 1/m (also
the kinetic energy) can be neglected. This potential should be closely related
to the static quarl potential that one extracts from the Wilson loop[t5]. This
potential, which we derive and discuss in section 4, also gives us an idea of
how far the short distance expansion can be trusted. We show that it is
apparently linearly rising at intermediate distances .4fm < r < .7fm.

In section 5 we compare our method to methods relying on 2"-order
perturbation theory in the background field and to the phenomenclogical
Cornell[16] potential. We first present results where all potential matrix
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elements of order 1/m are neglected. This greatly simplifies the calculations
because only a few basis states couple, but pseudoscalar and vector mesons
are degenerate at this level. Our formalism with this approximation has been
recently applied to the study of temperature effects on charmonium masses
(17]. We end the section presenting results of a more complete calculation of
the pseudoscalar quarkonia which includes the 1/m corrections.

Section 6 is a summary and discussion of our results.

2  Gauge Invariance and Basis States

It is nsually assumed that physical states are color singlets. For heavy
mesons, where the non-relativislic approximation is adequate, one can rep-
resent quark and antiquark fields by 2-component spinors. Gauge invariance
of the state requires that color is parallel transported from the quark to the
anti-quark along some path. With a straight path the quark and anti-quark
anti-commutation relations ensure that the basis states are orthogonal[8]. For
simplicity we will restrict ourselves in the following to pseudoscalar mesons.
The simplest gauge invariant pseudoscalar state is of the form

|25 = = S ulH () s, 203 1 ), 1)
V6w
where u!*(#;) creates a quark with color a and spin o at #,. v does the same
for an antiquark. We will refer to such gauge invariant states as singlet states
since the quark anti-quark pair at vanishing separation is in a color singlet
representation. .

We clioose for the color transport operator

)
Toy(Z2, 1) = Pexp(—ig - dz" A, (2))as )
11

the path ordered exponential (denoted by Pexp) of gluon operators A,(z)
along a straight line from &, to &,. It is then relatively straightforward to
show that canonical anti-commutation relations for the quark and anti-gquark

operators imply that the singlet meson states (7) are orthogonal[8].
We can also construct gauge invariant basis states where the valence
quark anti-quark pair is in a color octet representation at vanishing sepa-
ration by coupling them to chromo-electric or -magnetic fields. We shall
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call these states octet states for obvious reasons. Since the chromomagnetlc
ﬁeld B= B"/\“/Q transforms as a pseudovector and the chromoelectric field
E = E“/\“/Z as a vector under rotations and according to the adjoint rep-
resentation of the gauge group, we extend the basis for pseudoscalar mesons
by the states

|21>B:zg—%uf( 2)Gag - B0, )T (F2, 81 )0s(31) | ), (3)

[21)e =3 [é—gu*( 2B (@, 1) - (F2 = )T (Fn F )@ [ ), (1)

and

zf .
| 21) g, = Z gf

Ea) E(&2, 1) (Fap x (T2 —21))T (22, £1)vp(21) | ), (5)

the summation over color indices being implied. The gluon fields in eqs. (3)-
(5) are fields of soft gluons. High momentum gluons are expected not to be
important for the low-lying states. The separation in soft {or background)
and high {or quantum) momentum fields is made explicit in the next section.

The above states are seen to be mutually orthogonal and normalized
by the canonical anti-commutation relations of the quark and anti-quark
operators if we assume expectation values

g° in Qb & i b
| Z;r_?BB IQ):—(QimEE | )

1 . o 1 .
- gy ab = e e 0y = 84 ab 12
S IR S P, | ) = s (©

and < F >=< B >=< EB >=0, which is a consequence of the Lorentz-
and parity- invariance of the vacuam state | ). Its nontrivial nature is
reflected in a non-vanishing value for #?, which from QCD sumrule esti-
mates should be close to (330A1eV )![18]. If we neglect expectation values of
all higher dimensional gluonic operators the states (1),(3},{4) and (3) form
a complete orthogonal basis for the valence quarks of heavy pseudoscalar
mesons, while the singlet states (1) are only complete in this sense if one
neglects the non-trivial vacuum structure altogether.
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We thus effectively truncate the Fock space by taking basis states whose
gluonic sector contains at most 1 soft gluonic mode, i.e. we replace the low
momentum gluonic modes with octet quantum numbers by zero-modes. We
show in section 3 that such a severely truncated basis is adequate for the
problem at hand. Lorentz invariance of the ground state [ > forces one
to assurne that the chromoelectric background field is either antihermitian
or that the “k-states” have negative norm (see (6}). Both possibilities lead
to a nonhermitian hamiltonian matrix, whose eigenvalues in general are not
real. Already the construction of basis states for the mesons on a non-trivial
ground state indicates that one can at best hope to find a few stable mesons in
this approach. We assume that a psendoscalar quarkonium 7 is well described
by a linear combination of the above basis states

In= 3 Dar(2,1) 2, 1) - (7)

M=5,E1,E2,B 12

3 Effective Hamiltonian

We would like to use the basis constructed in section 2 to approximaiely
diagonalize the QCD hamiltonian for heavy quarkonia. If low lying heavy
quarkonia were of suflicient small size, the interaction would be dominated by
the perturbative gluon exchange, which would lead to a Coulomb-like effec-
tive potential. The experimental spectrum deviates however noticeably from
a purely coulombic one and can be reasonably well reproduced by the combi-
nation of a Coulomb with a linear confining force. We wish to emphasize here
that the truly long range part of the confining force (» > 1fm) is not really
tested by the observed quarkonium states(19]. Our conjecture is, that what
has to be included in a systematic approach are the first short distance cor-
rections to the (perturbative} Coulomb force due to the non-trivial structure
of the gluonic ground state. This was proposed previously but without any
tangible results, because the corrections were found to be exceedingly large
within the framework of 2"%-order perturbation theory except for quarkonia
beyond bottonium[9, 20]. This apparent failure of an idea which we believe
is quite well founded, has led us to reexamine the basic procedure used in
the evaluation of these effects.

In this section we outline the derivation of the effective hamiltonian for
heavy quarkcnia, whose matrix elements are correct up to order a, 1/m and

6 .



7%, To this order in the short distance and heavy quark expansion the non-

perturbative aspects of the ground state can be described by the gluon con-
densate ¢?.

. "The nonrelativistic approximation for heavy quarks is conveniently oh-
tained from the QCD lagrangian
. E i @ ma ey I T
() = =3 PR 4 (69 + 9TV - i, (®)

gy]? Foldy-Wouthuysen transformationf11]. In terms of transformed quark
elds

1;’_) - exp(i’y’-ﬁ/?m)d),
| b= bep(-ii U jmm), (9
the lagrangian is
1 -
Lyrgen(z) = —ZFﬁny“+¢(ify”Dg—m)z,b
- 70 I ;r'y'ﬁ 2
G5 5,00+ T )5 4 01/
I - a1 dof om0 ‘52
= T Y+ 819" Do — m)y + Py (10)
. . 2m .
_ cigd-E g% B 2
L 5 ¥+ O(1/m?),

where [} = J — igl_/" and & = (g g) does not couple upper and lower spinor
components. They are only coupled in order 1/m by the & matrices {which
appear in the usual Dirac Hamiltonian). The above lagrangian can be further
reduced to order 1/m? by another transformation

% > exp{—igd- E/4m2)¢,etc.. (113
The non-relativistic lagrangian to order 1 /m finally is
1 - L
Cnnaon(®) = =3 Fa P + (i Do —mpb + Sy + 092Dy (19)
2m 2m

which can be written in terms of uncoupled 2-component spinors by decorn-
posing ¥ = (u,v') ¢ = (u’,~v) and using the Dirac representation of the
y-matrices,

In order to perform a short distance expansion we separate the gluonic
fields in slowly varying background-[12)(A) and quantum- (Q) fields having
high Fourier components:

Vi=A+0Q,. (13)

The division (13) can however only be defined if the gauge is fixed. In de-
riving the spin-dependence of nonperturbative interactions for heavy quarko-
nia Curci et al.[13] found a particular gauge very convenient. We essentially
follow their procedure here and impose the Coulomb background gauge con-
dition

D=0 (14)

for the quantum fields, where

DILQV = a,uQu + Q‘A;a X Qu = ,U.QV + gfabCAlleUC . (15)

The background fields are defined in a modified Schwinger gauge([13]

A? = _%F;}imi ; Ab = —Fpat, (16)
valid to order 22, where we assumed that the field-strengths corresponding
to the background fields are constant (or have sufficiently low momenta,
such that they can be regarded as essentially constant over the extent of the
meson). This definition of the background fields in terms of {practically)
constant field strengths also gives a precise meaning to the separation in
equation (13). It also implies that the background fields in this gauge are
{practically) time independent — a property which will become useful when
a Hamiltonian is required.

We next expand the nonvelativistic Lagrangian only to second order in the
quantum fields and subsequently integrate them out in favor of an effective
{coulombic) interaction. Although ghost terms are necessary in the gauge
defined by (14), they do not contribute to quadratic order in the quantum
fields. Qur truncation of the interaction terms for the quantum fields elimi-
nates all radiative corrections. To obtain them one would have te go beyond
this approximation and calculate perturbative corrections before eliminating
hard gluons. Fortunately, the asymptotic freedom of QCD guarantees that
they are only logarithmic at short: distances and could be accounted for by a



‘running coupling constant. These logarithmic corrections to the Coulomb po-
tential are not dramatically important for describing heavy quarkonia spec-
tra. We show their effect in section 5. The truncation of the interaction
terms for the radiative corrections eliminates also n-body potential terms
which could be of importance for the description of baryous,

The matrix elements of the slowly varying background fields (A4) will
-however be parametrized. Their amplitude is large and an expansion in the
coupling in this case not applicable.

After the elimination of the quantum gluonic fields by their equations of
motion the effective lagrangian in terms of the background and heavy quark
fields becomes[14]:

1 -
Leys = j d“m{ﬂF“”Fpu+w(w°ag+gfy°,40_m)¢

1 - -, .
+;7;¢( —ig7 - A—igA. G - AN + @5 By

2Im

+g° f Ayt (2) T (2 ) D™ (2, ) () Toi () (17)

=5 [ AT B ) ~ K )T

where
a4 3 n a Tt - ’r. acy
o) = oA ~ $T "8 — iepd($T° T
92- 7 b b g b b7
+%'§[)(T T + mr ){b.‘lk - i’;;f C{jkA{’Lf)T EJ?,b
26" gy [ D (e, )P (). (18)
The propagator D relates the (o field to its source
Q5(x) = [ dyD(e,9)i80w), - 09)
- with
75 = g9 T + 20 £ PrioQu, (20)
and satisfies
(D; D) D¥ (5, y) = £245%(z — ). (21)
g

Similarly the propagator D appears in the el1m1natlon of the spatial com-
ponents €); and satisfies

/d‘* ME (i, 2D (2, y) = 8°8%(x — )i, (22)
with the differential operator M"b given hy
M (z,z) = &'z — )~ (DuDy)™6i; — 29f""°
_%,JJ(TL:TB TYT*Yepdss + fabLEUHchEde] (23)
AP 1 Bl YD, ). (24)

Finally, the propagator X enters when the Lagrange multiplier of the gauge
fixing condition for the quantum fields {14) is eliminated in turn. Its equation
of motion is

[ d* 2D (2)Dif (2, 2) DI(2)K 2, y) = 8*%8(2 — y) . (25)

These rather formidable integro-differential equations for the Green func-
tions can formally be solved order by order in the background field A. Since
we will only retain terms of the hamiltonian matrix proportional to the low-
est dimensional condensate < g*FF >, we only keep terms up to second
order in the background fields in the gauge (16). As we will see, linear terms
in the background field have to be retained, although we will assume thai
< F >=10, e.g. that global colour- and Lorentz- invariance is not broken.

In order to obtain a tractable hamiltonian, further approximations are
necessary. We will neglect all retardation effects in the effective interaction.
This instantaneous approximation is cotrect to order 1/m, because retarda-
tion effects are generally expected to be of order 1/m?. Since the interaction
is instantaneous, the eflective hamiltonian becomes time independent even in
the presence of the background fields {which are (nearly) time independent
in the gauge (16)). This greatly simplifies the interpretation of our resulis.

The effective hamiltonian, correct to order I/m, r? and «, therefore is

fd3 { Ha)ymu(Z) + o(D)ymol(F) _c}—lFF"FW

—ul(B)TAgEPziu(T) - o(&)TgE 20 ()
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=2 S
_utis & = oy Vet
u ('l‘)Qmu(ﬂ/) v(re,)va 3]
- 1 _
ta / (AT (@)= (7T AN (§) (26)
. r

a C e e d o MiTE -
-F;(,'_,‘;.gh’;f. JACE /dByuf(;v]I"u(.r)m'l:(y)TAvT(y)
KA ™
mipia
G4
| [ww g WO

IZ'S-HT(;F)U(;E)J, + 53

. 3 2
e L TG (EE Kty A
;
v{ @)t ()7

T

'i —y g ~ J =\ =
msuf(a:)! esing Bila; 6} — %U(ﬂ?)TAﬁijkgBﬁilfjarl"}1‘(:1:)

[ BT )
*Eirf{.r)m—_l AgBMu(F) - av(:c)a,-TAng‘vf(w)
it
8
~icndn (M@ T Ao ()] - / Py(=38,r + %Jv(i)T%f(ﬁ)

+ = P GEP[( 00 (ENT 0l ®) ~ wl (#)TA( 8,0 ())

7

~ I B [ Ou (@)D AE) 4 0(F) T Be ()

r;

r K
r

+ic,-;;,.0_v,(1)(.{?)1"‘40;"1)?(5)} - /day(wf}&jr + )'uf{y]')l"('u.(gj)] } .
Here u(F) and «{T) denote the anihilation operators for a quark and antiquark
of mass m respectively whose spin and color indices have been suppressed,
7 =& —jand T4 74 are the hermitian generators of the SU(3) colot Lie-
algebra in the 3 and 3 representation.

This is essentially the Hamiltonian to order 1/m derived previously by
Curei ef, al.[13] in position space, except for a term which can be regarded
as a long range correction of the Coulomb potential

et

= f Brd iy (F) 7)o T 01 (5) (27)
¥

We have disregarded this term because it is of order r® and our gange fixing
condition (1G} is not valid at this order.

The terms of the Hamiltonian (26) lnear in the chromo ~electric and -
~magnetic fields as well as those proportional to #2 are obviously also not
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translationally invariant and thevelore apparently depend on the chosen gau-
ge fixing point in (16). This gauge dependence of {26) is however absent[14]
in its matrix clements in the basis (1),(3),(1} and (5). It cancels againsl.
terins which appear when derivatives act on the color transport matrix of
the states. This cancelation of course only works o a certain order in 1he
short distance expansion and only occurs if the Hamiltonian and the basis in
which it is diagonalized ave defined consislently. This is nol a big surprise in
any gange theory. but a gauge invariant scheme to include nonperturbative
aspects of the ground state in a hamiltonian formulation withoul losing gange
invariance was only (irst proposed in'[8], but pot used to its full extent there.
Fram the above we see thal a short distance expansion in the constroction
of the basis as well as the hamiltonian io order #? can be performed and the
effects from a nontrivial expectation value ¢ consistently inchided,

The straightforward but lengthy computation of the matrix elements of
the Hamiltonian (26) in the basis lor pscudoscalar mesons (7) to obtain
the coupled differential equations (30) for the wavefunctions[4] will not e
exhibited here. We do however also have to account {or matrix elements of
the purely gluonic part of the lamiltonian

He = / P He(r). Her(2) = (£7 4+ B2 + Ola) {28}

in the basis states {1),(3},(1) and (5). The order o terms in (28) are due
to the I-loop corrections [tom the guantum fields. When these corrections
are properly included, the above Hamillonian should he consistent with the
trace anomaly[22] and reproduce the relation belween the energy density
of the nonperturbative gluonic ground state and the condensate value. All
we will need in what follows is thal this correction is a local operator of
dimension 4 and order o (such as {[1a/t6x)(£* — BH).

From rotational symmetry we conclude that only diagonal matrix ele-

ments of e can be non-vanishing, Since we neglect expectation values of

operators with dimension grealer than |, malrix elements in Cocket™-states
(3).04),(5) vanish i this approximation,

From (6) we might naively infer that the matrix clements of He between
“singlel™ stales vanish as well. Phenonienologically we do however need an
energy splitting between the Ssinglet”™- and “octet”™ states. Leutwyler[2:]
abtribules L to an ellective mass of Lhe low lrequency gluonic modes. A
more carelul examination of contributions from He reveals the origin of sueh
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an effective mass in the present approack. To obtain the energy of the me-
son relative to that of the vacuum, one has to commute the purely gluonic
hamiltonian with the creation operator for the meson. As discussed previ-
ously, gauge invariance requives that this creation operator contains a gluonic
string, or color transport matrix. Within our approximation, we thercfore
have to consider the commutator of the creation operator for the singlet com-
ponent with the local Hamiltonian density of He(z). Deflining the ercation
operator for the singlet component of the meson hy

[ ws(1,2) 2,005 = 0% |0,
41,2

the contribution of the lowest dimensional oper rator to the counnutator is of
the form

(Hel{x), OF) = OF Ala) 0y (2)

where A(x) is a gauge invariant scalar operator of dimension 4 and order e
{because the g-part of the string ohviously commutes) and dy(2) is a dimen-
sionless c-number function thal vanishes for & ouiside the meson (because the
string in Of and « are otherwise separated by a spacelike distance). Since
we do not neglect the vacuum expectation of the gauge invariant operator
al™ in our approach, the matrix clement in the singlet chanuel within our
approximation hecomes

[ @211 Hal2), 03] | 0) = 00s(1,2), (29)

where €' is a constant which depends on the exact nature of the lunction
91/ (1,)

Although we cannot determine the value of this constant on theoretical
grounds, the above argument shows that it would be inconsistent with onr
approximations to neglect this contribution of Hg in the singlet channel.A
-non-vanishing constant 7 implies that the lowest order energies of the singlet
and octet states differ by gluonic contributions. Qur best [it to the quarko-
nium spectrum was obtained with ¢ = —756 MeV. m, = —(C can also be
interpreted as an effective mass lor the low [requency gluon mode in the
octet-channel (since a small change in the overall normalization of the en-
ergy can be absorbed in a slight change of 1he heavy quark mass). 'This is the
point of view taken by Lealwyler[23]. Our estimale m, = —(" ~ 7h6M ¢l is

13

not in conflict with the fact thal the lightest glueball has at least two such
excitations and a mass of ~ 1700MeV[24], although a somewhat smaller
glueball mass would seem more natural. States with two soft elfective gluons
would be much higher in energy than the first states of quarkonia and should
therelore have very small amplitudes.

Iucluding this energy shiflt between “singlet” and “octet” components,
the coupled set of differential equations for (lavor singlet pscudoscalar mesons

hecomeoes

[2m-—h‘—;§;(§%~%)+é‘: ]Lz() - jf:q”s() (30)

where F is the mass eigenvalue of the quarkonium and m is the mass of the
coustituent quarks.The funclions S(r). E1(r), [2(r) and B(r) are related to
the wave function compunenh i1 the expansion (T) via
ds(r) = L850 dn0) = 5B Prl) = SE0) dslr) = LB0)
As indicated above, t.hese (_(]lld.llOll"- only depend on the relative coordinate
r and all reference Lo a gauge fixing poinl-present in (26)-has disappeared
in the evaluation of the effective Hamiltonian in the gange invariant basis.
Apart [rom the constituenl quark mass. the only p'nam(lﬂs that enter
equations (30} are the {reasonably well known) condensate ¢? and the con-
stant (7, whose value we have tried (o cstimale above, as well as the strong

coupling constant og.

4 “Effective Potential”

Before soiving the coupled set of equations (30) by numerical methods, %L
is instructive to consider the timit of infinitely heavy qguarkouia. In this
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case, all terms proportional to 1/m (including the kinetic energy) in (30)
can be dropped, and the resulting equations give the binding energy V =
E — 2m for states where the quark and anti-quark are localized a distance r
apart (i.e. for wave-functions S(r), E1(r),E2(r) and B(r) all proportional to
8(r — ro). It is natural to compare this mass-independent binding energy to
phenomenological potentials and those extracted from the expectation values
of Wilson loops in numerical lattice simulations.

In this limit the £2- and B-components decouple and one has to solve
the algebraic equations

(-V+ 0= 5250) = _g%&w>
(- + 52 Bi(r) = §%<ﬂ- (31)

The eigenfunctions are obviously localized and the eigenvalue or effective
potential, V' (), given by

oy 1 Ta 902 9a,C 2m2pir? e
‘“)—‘ﬁar+¢af‘§7“‘“7r”+c” (32)

Figure 1(a) shows this effective potential and its Coulomb part for pa-
rameters ¢* = (360MeV)*, C' = ~T56 MeV and a, = 0.39, which we found
appropriate for charmonium.

Although this potential is certainly no longer valid for r > 0.9fm, where
the root in (32) becomes purely imaginary it does show a nearly linear be-
haviour for intermediate distances 0.4fm < r < 0.8fm, with a correspondingly
constant force of ~ 840MeV /fm, which compares favorably with a string ten-
sion of about 800 — 1000MeV /fm extracted from recent lattice calculations
of the potential[25]. In Fig. 1(b) we compare our effective potential (32) to
that extracted from lattice data[25] and to the phenomenological poteﬁtial
used by ref[16].

It is encouraging that our rather crude approximations to the vacuum
structure seem to qualitatively reproduce the potential for very heavy quarks
at small distances. The analytical results of this section justify the numerical
calculation of “octet”-components in heavy quarkonia which we now present.

5 Numerical Results

Going beyond the static approximation by including the kinetic energy of the
quarks but still neglecting coupling terms of order 1/m in (30}, the quarko-
nium spectrum becomes discrete and the following coupled set of differential
equations must be solved numerically

‘ 10 dosye,.y TP
[277L—E+C“EE;2-‘§T]»S(T) = ”‘“3\/;2E1(7)
1 8 2 1as wor
n—E——(z5—5)+=—|F = —=S5(r). :
[..m E m(BrZ 72)+6 7']F1(r) 3\/55(7) (33)

This is essentially Leutwyler’s[20] approximation to the problem, who ob-
tained the perturbation of the Coulomb spectrum in 2"%-order of ¢ and
found that it is exceedingly large for canonical values of the condensate.
Note that the Coulomb force is repulsive in the “octet” channel and 1/8-th
in strength compared to the “singlet” channel (this is just the ratio of Ty
in the two representations) and the F3- and B-states still decouple in this
approximation. In this approximation, vector- and pseudoscalar- quarkonia
are furthermore still degenerate. This is expected, since the spin splitting
is of order 1/m. It is however another nontrivial consistency check of our
method, because the basis states for vector mesons are of course quite differ-
ent. Nevertheless equivalent equations to (33) result, if 1/m potential terms
are neglected.

The relative minus sign of the two off-diagonal coupling terms in (33)
shows that this Hamiltonian is not hermitian and that its eigenvalues will
generally not be real. This effect is completely missed if the coupling is
treated as a perturbation. -To any finite order in perturbation theory the
correction to the Coulomb spectrum is real. Perturbation theory does how-
ever show that a few (low lying) eigenvalues of (33) are real for a sufficiently
small ¢. For the canonical value ¢? = (300 — 380MeV)! we find numerically
2 — 4 stable bound quarkonia in the pseudoscalar channel, depending on the
heavy quark mass m.

But even for these low states, the deviation of the exact correction to the
Coulomb eigenvalue from the 2"9-order estimate is large for the charmonium
and bottonium systems as shown in table 1. We conclude with Leutwyler[20]
that perturbation theory is not applicable for canonical values of ¢, but that
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the eﬁ'ejctive non-hermitian Hamiltonian equations (33) do yield reasonable
corrections.in an exact solution. |
1.T}.le value C' = —756MeV used by us was ajusted to reproduce the correct
splitting between 7. and 7.[26]. The corrections to the Coulomb spectrum
are however not extremely sensitive to the value of C once it is large enough.
:]:s;)ngt.c :f——1400MeV instead would only reduce the nonperturbative con-
ributions for the ground and first excited bottonium-st i It
xcited bot -states table 1 t
and 75MeV respectively. =0 fable 110 6
The fact t.hat a perturbative evaluation in ¢ is not appropriate in (33) can
also not be circumvented by including loop corrections (higher orders in Qs
than we ha\’/.e treated so far) to the perturbative Coulomb potential. Titard
fmd Yn@m‘z%m[QT] recently proposed to modify the perturbative part of the
interaction in the following manner

97:5 5 as(1?) [1 + (a1 + 8o/ 2)ay(142) /7] + Bood(1*) log ry
r 2 r

(34)

where the appropriate constants for the SU(3) color group with 4 light quark
ﬂav.ors are Oy = 8.33 ax}d S ar= 1.47. The first term of (34) which contains
a piece 1c;)f one-loop radiative corrections was taken by Titard and Yndurdin
as an eflective Coulomb potential and solved exactly. Tl i i

: entia . The effect
constant is defined as ’ eetive coupling

as(p?)
T

5‘5(#2) = [1 + (a1 + YEBo/2)

Jos(44%). (35)

The second term in (34) was treated to first order in perturbation theory.
A new scale parameter & was introduced which depends on the quarkonium
sy.stem under consideration. Taking the effective Coulomb potential we ob-
tain: the fieviation of the eigenvalues from 2"%-order perturbation t’heofy in
¢ shown in table 2 for two sets of parameters in the bottonium system (still
neglecting 1/m corrections). L
The deviation of the exact correction from the perturbative estimate is
reduced someYvhat, especially in the second case, but still far from neglilgi-
ble. In assessing the quality of a perturbative evaluation in this case, one
-should also keep in mind that the scale parameter pof Ref.[27] was (:iiosen
in such‘ a way ‘that the 2" order correction in ¢ is precisely canceled by ihé
correction terms to the effective Coulomb potential in (34). For the first set
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of parameters this cancellation occurs for the ground state energy. The sec-
ond set was chosen so that the splitting between the first excited state and
the ground state is not affected to 2°* order. This is an arbitrary procedure
which requires an additional parameter and does not cure the problem that
perturbation theory simply does not apply (as table 2 clearly indicates).

We therefore will not include these modifications to the Coulomb force
in our discussion of the numerical solution to the full set of coupled equa-
tions (30). The eigenvalues we obtained at order (1/m)° are summarized
in table 3 and compared to those obtained by Eichten et al.[16] with the
phenomenological funnel potential. Note that we only found 3 or 4 stable
solutions in the charmonium and bottonium systems respectively. We used
the same values for the quark masses and the coupling constant as Eichten
et al.[16].The constant C' was chosen to reproduce the experimental splitting
(not confirmed[26]) between 5. and n,. 1t was not adjusted in the botto-
nium system. The gluon condensate value ¢* = (360MeV)* that we used
is within QCD-sumrule estimates[28] for this nonperturbative quantity. All
eigenvalues were finally shifted by Ey = 98MeV to give the correct 1. mass.
(This small shift in the overall energy normalization can be eliminated by
a slight change of ~ 50MeV in the quark masses used by Eichten et al.|[16]
and a corresponding small adjustment of the other parameters. To have a
more direct comparison of the wavefunctions and spectra, we refrained from
making these adjustments here.)

The inclusion of 1/m potential terms lifts the degeneracy of pseudoscalar-
and vector- quarkonia and we restrict our discussion here to the pseudoscalar
case. The B and E,-states now couple in, but generally have small norms
because the coupling is of order 1/m. The effects of the 1/m corrections in
the splittings are shown in table 4.

We also show in table 4 the results obtained using a regularized running
coupling constant with the correct two-loop behaviour for small distances[29]:

1 [+ 2yg +53/75 462 ln(f(’/')]
bof () I(r) 625 f(r)

g = as(r) - 471'

where

1 ,
f(r) = 171[(—/\77)5 + 0]



In the above expression vz = 0.5772, and as in [29], we used A = 300MeV
and b = 19.

In Figs. 2 and 3 we show the eigenfunctions for the various components
of our quarkonium states (7) as well as the corresponding eigenfunction of
Eichten et al.[16]. The singlet component of our ground state wave func-
tions are very similar to those of the funnel potential. At small radii this is
true also for the excited states, since the coupling to “octet” components is
proportional to » in (30). The “octet”-components increase with i increasing
excitation energy of the quarkonium and lead to the appearance of extra
nodes in the higher lying “singlet” wave functions at large radii (since this
is'a coupled channel problem, the extra nodes do not mean that we missed
some bound states). As noted earlier, the E-components of the meson state
contribute negatively to its norm. All the stable quarkonia states that we
found are however positive norm states. We could not obtain any stable state
where the octet components are dominant.

Let us speculate at this point on the fact that only very few stable quarko-
nium states were found. This is of course quite in line with the experimental
observation that only a few heavy quarkonia are stable against decay by
strong interactions. For reasons which we had not anticipated, this basic
property seems already to be incorporated in the nonhermitian coupling to
E-components.

The strength of this coupling in our model is however determined by
the gluon condensate ¢2, which is not expected to vanish even in the purely
gluonic theory. From table 3 we see that the instability sets in at an excitation
energy of between 1 —1.3GeV in this model. Since we cannot account for the
decay into light ¢g-mesons with a parameter which is essentially independent
of the number of (light) flavours, we speculate that the nonhermitian coupling
proportional to ¢ effectively accounts for the possible decay channel

Quarkonium™ — Quarkonium + Gluonium, (36)

in thls model. From the fact that we do not seem to find any stable quarko-
nium state more than 1.3GeV above the ground state, we would estimate this
te be the threshold for the l)lOdUCthH of the lightest gluonium. This estimate
of the lightest gluoniuin mass mg ~ 1. 3GeV, is in almost perfect agreement
with our previous interpretation of the energy shift —C' = mg '~ me/2.
Since the production of light ¢g-pairs has a much lower threshold, it is
this process which limits the stability of physical quarkonia. We therefore
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expect this model, which does not (not even effectively) incorporate this
decay channel, to still predict more stable states than are experimentally
observed.

The influence of a running constant is more visible in the wave functions
at the origin, which are important for production and annihilation decays.
We compare the wave functions (not multiplied by r or #?) with and without
running coupling constants in figures 4 and 5.

6 Conclusion

We developed a hamiltonian formalism, which enabled us to estimate the ef-
fect of a nonperturbative gluonic ground state on quarkonia in a systematic
short distance, weak coupling and 1/m expansion of the effective hamil-
tonian. The gauge invariant basis[8] was extended to include color octet
quark-antiquark pairs coupled to vacuum fluctuations. Hamiltonian matrix
elements in this basis are gauge invariant to the order considered in the short
distance expansion.

After separating hard and soft gluons in the gauge (13), we obtained the
effective hamiltonian neglecting radiative corrections to the Coulomb interac-
tion from hard gluons, We thus neglected the logarithmic corrections to the
effective coupling strength at very short distances. The correct behaviour of
the potential for r < 0.2fm can in principle be included by “hand” in a modi-
fication of the Coulomb part of the interaction[19}. Although the quarkonium
spectrum is not very sensitive to this correction at small distances, it could
become important for the evaluation of decay widths, which depend on the
wave function at the origin.

In the limit of very heavy quark masses, where all terms of order 1/m
can be neglected, an energy independent effective potential was obtained,
which shows an’approximately linear behaviour -at ‘intermediate distances
0.4fm < r < 0.8fm with an effective string tension of ~ 840MeV. In our
approach this behaviour of the potential arises due to the nonperturbative
structure of the gluonic vacuum parametrized by its gluon condensate and
was not assutned from the outset as in most of phenomenological quark mod-
els. This potential compares favourably with recent lattice results[25], the
discrepancies at very small 7 < 0.2/ being due to our neglect of radiative
corrections. ‘Our short distance expansion for the effective potential however
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is only valid for r < 0.9 fm, beyond which the potential acquires an imaginary
part. An extension of the model to larger distances would require a more
detailed knowledge of the vacuum structure in the form of higher dimensional
condensates, or some other effective parametrization of this structure. The
approach in this case would become increasingly phenomenological and also
more complicated in this case. Its predictive power is therefore probably
limited to heavy quarkonia, where a detailed knowledge of the potential for
very large radii does not seem to be necessary.

We showed that the numerical solution of the coupled channel problem
for vector- and pseudoscalar- quarkonia (they are degenerate to order 1/m)
is feasible and an exact diagonalization of the hamiltonian in the extended
basis therefore possible. The resulting exact spectrum does not show the
far too rapid increase of the eigenvalues with the principal quantum number
of the perturbative approach to the vacuum effects[9][20]. In addition to
the usual “singlet” wave-functions describing the quark and anti-quark of
the quarkonium when they are coupled in a colour singlet, we also obtain
the “octet” components of quarkonium states describing the quarks in the
octet configuration when an additional (soft) gluon is around. Since hadronic
decays may be very sensitive to this “octet” configuration with the creation
of an additional octet gg-pair from a hard gluon, this approach opens the
possibility of estimating nonperturbative contributions to hadronic decays.

We compare our results for the spectrum and wavefunctions with those
of the Cornell potential[16] for pseudoscalar quarkonia. With the standard
value for the gluon condensate and quark masses and coupling constant used
by the Cornell group we obtain the correct splitting between 1, and »’ and
make predictions for the m’s. Our main concern was however a better the-
oretical understanding and justification of the phenomenological ingredients
common to most nonrelativistic models for heavy quarkonia and we relrained
from adjusting the few parameters of this approach to optimally reproduce
the experimental data. A better description of the potential at short ‘dis-
tances with the inclusion of radiative corrections to the Coulomb force and
the consideration of hadronic decay channels is clearly desirable before a
detailed comparison with phenomenology is attempted.
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Figure 1: (a) Effective potential (solid curve) from (32) and Coulomb poten-
tial (dotted curve) with o, = 0.39, C = ~756 MeV and 4? = (360 MeV)4.
(b) Effective potential (solid curve) with the same parameters as in {a). The
potential extracted from lattice data[25] with o = 365 MeV {dot-dashed
curve) and /o = 505 MeV (dashed curve). Cornell potential[16] (dotted
curve) with a; = 0.39 and a = 2.34 GeV™L.

Figure 2: The wavefunctions of the ground and 15 excited pseudoscalar
states of charmonium are shown in figures (a) and (b) respectively. The
solid curve is the wavefunction for the funnel potential[16] for comparison.
The long dashed curve is the singlet component S(r) of the quarkonium
state in our calculation. The dashed, dotted and dot-dashed curves are the
foctet” components Ey(r), Ey(r) and B(r) of equation (30) respectively.
The: solution was obtained with the parameters m, = 1840 MeV, «, = 0.39,
#* = (360 MeV)! and C = —756 MeV.

Figure 3: The wavefunctions of the ground, 15%- and 2nd excited pseudoscalar
states of bottonium are shown in figures (a), (b) and (c) respectively. The
solid curve is the wavefunction for the funnel potential[16] for comparison.
The long dashed curve is the singlet component S(r) of the quarkonium
state in our calculation. The dashed, dotted and dot-dahsed curves are the
“octet” components F\(r), Ey(r) and B(r) of equation (30) respectively.
The solution was obtained with the parameters my = 5170 MeV, a, = 0.39,
¢* = (360 MeV)! and ¢ = —756 MeV.

Figure 4: The wavefunctions (not multiplied by r or 7?) of the ground and 15
excited pseudoscalar states of charmonium are shown in figures {a) and (b)
respectively, The solid curves are for the results without a running coupling
constant. The dashed curves are obtained with a running coupling constant.
The solutions were ohtained with the parameters m, = 1840 MeV, «, =
0.39 (without running), A = 300 MeV and b = 19 (with running), ¢* =
(360 MeV)* and C = —756 MeV. ‘

1St 2nd

Figure 5: The wavefunctions of the ground, 1°%- and excited pseudoscalar
states of bottonium are shown in figures (a), (b) and (c) respectively. The
solid curves are for the results without a running coupling constant. 'The
dashed curves are obtained with a running coupling constant. The solutions
were obtained with the parameters m; = 5170 MeV, o, = 0.39 (without
running), A = 300 MeV and b = 19 (with running), ¢* = (360 MeV)* and
C = —756 MeV.

Table 1: The Coulomb energy in MeV is presented in the first column for

* the ground state and first excitation of c¢ and bb (pseudoscalar or vector).

Second and third columns contain the nonperturbative contributions in MeV
calculated respectively within perturbation theory and with our method. We
used m, = 1840 McV, my = 5170 MeV, «, = 0.39, 42 = 0.012 GeV* and
C = —756 MeV.

Coulomb  Pert. theory Non-pert.

e, J/ -124.4 311 66
ne, ' -31.1 21525 424
m, T -349.5 14 8
M, 17 -87.4 970 111

Table 2: The Coulomb energy in MeV is presented in the first column for
the ground state and first excitation of bb (pseudoscalar or vector) at two
different scales p. Second and third columns contain the nonperturbative
contributions in MeV calculated respectively within perturbation theory and
with our method. We used C = —756 MeV, ¢* = 0.042 GeV* and for u =
1.44 GeV: m, = 4866 MeV, &, = 0.38. For p = 0.99 GeV: m; = 5010 MeV,
&, = 0.54.
Coulomb - Pert. theory - Non-pert.

My T (g = 1.44 GeV) -312 25 11

e Y =1.44 GeV) <78 1762 129

M, T (g = 0.99 GeV) -649 6 3

my, X (e = 0.99 GeV) -162 396 72
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Table 3: Masses in MeV of pseudoscalar quarkonia with the funnel potential

and with our effective nonperturbative hamiltonian. Parameters used: m,

1840 MeV, my = 5170 MeV, o, = 0.39, ¢* = (360 MeV)!, €' = —756 MeV.

E ffective Potential

1000

1a)

amaossssese sess s s saspssosn
s

...--o-'

funnel nonpert.
ne 2980 2980 -1000}-
ne 33331 §ZZ§ Effective potential
’777; 0213 9344 s+s--e... Coulomb potential
n. 9805 9739 -
n’ 10150 10084
g 10427 10610

I '

Table 4: Energy splittings among radial excitations of psendoscalar charmo-
nium and bottonium. The parameters are the same as in table 3. For the
running coupling constant (see text) we use A = 300 MeV and b = 19. First
column: no 1/m terms. Second column: 1/m corrections included. Third

column: 1/m terms and running coupling constant.
no 1/m 1/m included 1/m and running

- ¢€- 25-15 614 666 593
bb - 25-15 395 397 413
bb - 3S-15 740 753 738
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