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case, all terms proportional to 1/m (including the kinetic energy) in (30)
can be dropped, and the resulting equations give the binding energy V =
E — 2m for states where the quark and anti-quark are localized a distance r
apart (i.e. for wave functions S(r), E1(r),E2(r) and B(r) all proportional to
§(r ~ro). It is natural to compare this mass-independent binding energy to
phenomenological potentials and those extracted from the expectation values
of Wilson loops in numerical lattice simulations.

In this limit the £2- and B-components decouple and one has to solve
the algebraic equations

. é& S - ?T(ﬁ!" -
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The eigenfunctions are obviously localized and the eigenvalue or effective
potential, V' (r), given by

. Sa2 9,0 2ripirt
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Figure 1(a) shows this effective potential and its Coulomb part for pa-
rameters ¢* = (360MeV)!, C = —756MeV and a, = 0.39, which we found
approptiate for charmonium.

Although this potential is certainly no longer valid for » > 0.9fm, where
the root in (32) becomes purely imaginary it does show a nearly linear be-
haviour for intermediate distances 0.4fm < r < 0.8fm, with a correspondingly
constant force of ~ 840MeV /fm, which compares favorably with a string ten-
sion of about 800 — 1000MeV /fin extracted from recent lattice calculations
of the potential[25]. In Fig. 1(b) we compare our effective potential (32) to
that extracted [rom lattice data[25] and to the phenomenclogical potential
used by ref[16].

It is encouraging thai our rather crude approximations to the vacuum
structure seem to qualitatively reproduce the potential for very heavy quarks
at small distances. The analytical results of this section justify the numerical
caleulation of “octet”-components in heavy quarkonia which we now present.
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5 Numerical Results

Going beyond the static approximation by including the kiretic energy of the
quarks but still neglecting coupling terms of order 1/m in {30), the quarko-
nium spectrum becomes discrete and the following coupled set of differential
equations must be solved numerically

1 & 4o, T

[2m - E+C - e gT]S(r) = mmE;(r)
1, 8 2 Lagy . _omer
|2m - E - —(55~ ) E?] Ei(r) = 3 5S0). (33)

This is essentially Leutwyler’s[20] approximation to the problem, who ob-
tained the perturbation of the Coulomb spectrum in 2"9-order of ¢ and
found that it is exceedingly large for canonical values of the condensate.
Note that the Coulomb force is repulsive in the “octet” channel and 1/8-th
in strength compared to the “singlet” channel (this is just the ratio of TATg
in the two representations} and the Ky and B-states still decouple in this
approximation. In this approximation, vector- and pseudoscalar- quarkonia
are furthermore still degenerate. This is expected, since the spin splitting
is of order t/m. It is however another nontrivial consistency check of cur
method, because the basis states for vector mesons are of course quite differ-
ent. Nevertheless equivalent equations to (33) result, if 1/m potential terms
are neglected.

The relative minus sign of the two off-diagonal coupling terms in {33)
shows that this Hamiltonian is not hermitian and that its eigenvalues will
generally not be real. This effect is completely missed if the coupling is
treated as a perturbation. To any finite order in perturbation theory the
correction to the Coulomb spectrum is real. Perturbation theory does how-
ever show that a few (low lying) eigenvalues of {33) are real for a sufficiently
small ¢. For the canonical value ¢ = (300 — 380MeV)" we find numerically
2 — 4 stable bound quarkonia in the pseudoscalar channel, depending on the
heavy quark mass m.

But even for these low states, the deviation of the exact correction to the
Coulomb eigenvalue from the 2"-order estimate is large for the charmonium
and bottonium systems as shown in table 1. We conclude with Leutwyler[20]
that perturbation theory is not applicable for canonical values of ¢, but that
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the effective non-hermitian Hamiltonian equations (33) do yield reasonabie
corrections in an exact solution.

The value C' = —756MeV used by us was ajusted to reproduce the correct
splitting between 7, and 17:126]. The corrections to the Coulomb spectrum
are however not extremely sensitive to the value of C' once it is large enough,
Using C' = ~1400MeV instead would only reduce the nonperturbative con-
tributions for the ground and first excited bottonium-states in table 1 to 6
and 75MeV respectively.

The fact that a perturbative evaluation in ¢ is not appropriate in (33) can
also not be circumvented by including loop corrections (higher orders in «,
than we have treated so far) to the perturbative Coulomhb potential. Titard

and Yndurdin[27] recently proposed to modify the perturbative part of the
interaction in the following manner

r r D ro ]
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where the appropriate constants for the SU(3) color group with 4 light quark
flavors are By = 8.33 and @y = 1.47. The first term of (34) which contains
a piece of one-loop radiative corrections was taken by Titard and Yndurdin
as an effective Coulomb potential and solved exactly. The effective coupling
constant is defined as

& (p*) = 1 + (a, +mﬁo/2)3f—2)]as(u2). (35)

The second term in (34) was treated to first order in perturbation theory.
A new scale parameter 1 was introduced which depends on the quarkonium
system under consideration. Taking the effective Coulomb potential we ob-
tain the deviation of the eigenvalues from 2"-order perturbation theory in
¢ shown in table 2 for two sets of parameters in the bottonium system (still
neglecting 1/m corrections),

The deviation of the exact correction from the perturbative estimate is
reduced somewhat, especially in the second case, but still far from negligi-
ble. In assessing the quality of a perturbative evaluation in this case, one
should also keep in mind that the scale parameter u of Ref.[27] was chosen
in such a way that the 2" order correction in & is precisely canceled by the
correction terms to the effective Coulomb potential in (34). For the first set
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of parameters this cancellation occurs for the ground state energy. The sec-
ond set was chosen so that the splitting between the first excited state and
the ground state is not aflected to 2"! order. This is an arbitrary procedure
which requires an additional parameter and does not cure the‘ pr(.)blem that
perturbation theory simply does not apply (as table 2 clearly indicates).

We therefore will not include these modifications to the Coulomb force
in our discussion of the numerical solution to the full set of coupled equa-
tions (30). The eigenvalues we obtained at order (1/m)® are sumrflanzed
in table 3 and compared to those obtained by Eichten et al.[16] with the
phenomenological funnel potential. Note that we only foum.i 3 or 4 stable
solutions in the charmonium and bottonium systems respectively. W&? used
the same values for the quark masses and the coupling con:stant as El'chi.:en
et al.[16].The constant ' was chosen to reproduce the e)fperlmc?ntal splitting
(not confirmed[26]) between 7). and .. It was not adjustec}l in the botto-
niwm system. The gluon condensate value ¢ = (SGUIVIC‘.{ }* that we used
is within QCD-sumrule estimates[28] for this nonpe1:turba,t1ve quantity. All
eigenvalues were finally shifted by Eq = 98Me\./ to'g;ve the c01‘1"ect' 7. MASSs.
(This small shift in the overall energy normalization can bc.e eliminated by
a slight change of ~ 50MeV in the quark masses used by Eichten et al.[16]
and a corresponding small adjustment of the other parameters. To have a
more divect comparison of the wavefunctions and spectra, we refrained from
making these adjustments here.)

The inclusion of 1/m potential terms lifts the degeneracy of pseudoscalar-
and vector- quarkonia and we restrict our discussion here to the pseudoscalar
case. The B and F,-states now couple in, but generally have sma.ll.nom}s
because the coupling is of order 1/m. The effects of the [/m corrections in
the splittings are shown in table 4. . .

We also show in table 4 the results obtained using a 1'egula.rl.zed running
coupling constant with the correct two-loop behaviour for small distances{29]:

1 2yg +53/75 4_63ln(f(1')]
oy = a,(r) = Mbuf(v‘) 1 Tr) 625 f(r)
where | 1 )
fir)= [?![(AT)Z + b]
by = 25/3
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In the above expression v5 = 0.5772, and as in [29], we used A = 300M eV
and b =19.

In Figs. 2 and 3 we show the eigenfunctions for the various components
of our quarkonium states (7) as well as the corresponding eigenfunction of
Eichten et al.[I6]. The singlet component of our ground state wave func-
tions ate very similar to those of the funnel potential, At small radii this is
true also for the excited states, since the coupling to “octet” components is
proportional to r in (30). The “octet”-components increase with increasing
excitation energy of the quarkonium and lead to the appearance of extra
nodes in the higher lying “singlet” wave functions at large radii {since this
is & coupled channel problem, the extra nodes do not mean that we missed
some bound states). As noted earlier, the E-components of the meson state
contribute negatively to its norm. All the stable quarkonia states that we
found are however positive norm states. We could not obtain any stable state
where the octet components are dominant.

Let us speculate at this point on the fact that only very few stable quarko-
nium states were found. This is of course quite in line with the experimental
observation that only a few heavy quarkonia are stable against decay by
strong interactions. For reasons which we had not anticipated, this hasic
property seems already to be incorporated in the nonhermitian coupling to
E-components,

The strength of this coupling in our model is however determined by
the gluon condensate ¢?, which is not expected to vanish even in the purely
gluonic theory. From table 3 we see that the instability sets in at an excitation
energy of between [ —1.3GeV in this model. Since we cannot account for the
decay into light gg-mesons with a parameter which is essentially independent
of the number of (tight} flavours, we speculate that the nonhermitian coupling
propottional to ¢ effectively accounts for the possible decay channel

Quarkonium® — Quarkonium + Gluonium (36)

in this model. From the fact that we do not seem to find any stable quarko-
nium state more than 1.3GeV above the ground state, we would estimate this
to be the threshold for the production of the lightest gluonium. This estimate
of the lightest gluonium mass mg 2 1.3GeV, is in almost perfect agreement
with our previous interpretation of the energy shift —C = My ~ e /2.
Since the production of light gg-pairs has a much lower threshold, it is
this process which limits the stability of physical quarkonia. We therefore
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expect this model, which does not (not even effectively) incorporate this
decay channel, to still predict more stable states than are experimentally
observed.

The influence of a running constant is more visible in the wave functions
at the origin, which are important for production and annihilation decays.
We compare the wave functions (not multiplied by » or #%) with and without
running coupling constants in figures 4 and 5.

6 Conclusion

We developed a hamiltonian formalism, which enabled us to estimate the ef-
fect of a nonperturbative gluonic ground state on quarkonia in a systematic
short distance, weak coupling and 1/m expansion of the effective hamil-
tonian. The gauge invariant basis[8] was extended to include color octet
quark-antiquark pairs coupled to vacuum fluctuations. Hamiltonian matrix
elements in this basis are gauge invariant to the order considered in the short
distance expansion.

After separating hard and soft gluons in the gauge (13}, we obtained the
effective hamiltonian neglecting radiative corrections to the Coulomb interac-
tion from hard gluons. We thus neglected the logarithmic corrections to the
eflective coupling strength at very short distances. The correct behaviour of
the potential for r < 0.2fm can in principle be included by “hand” in a modi-
fication of the Coulomb part of the interaction[19]. Although the quarkonium
spectrum is not very sensitive to this correction at small distances, it could
become important for the evaluation of decay widths, which deperd on the
wave function at the origin.

In the limit of very heavy quark masses, where all terms of order 1/m
can be neglected, an energy independent effective potential was obtained,
which shows an approximately linear behaviour at intermediate distances
0.4fm < r < 0.8/m with an effective string tension of ~ 840MeV. In our
approach this behaviour of the potential arises due to the nonperturbative
structure of the gluenic vacuum parametrized by its gluon condensate and
was not assumed from the outset as in most of phenomenological quark mod-
els. This potential compares favourably with recent lattice results[25], the
discrepancies at very small r < 0.2fm being due to our neglect of radiative
corrections. Our short distance expansion (or the effective potential however
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is only valid for r < 0.9fm, beyond which the potential acquires an imaginary
part. An extension of the model to larger distances would require a more
detailed knowledge of the vacuum structure in the form of higher dimensional
condensates, or some other effective parametrization of this structure. The
approach in this case would become increasingly phenomenological and also
more complicated in this case. Its predictive power is therefore probably
limited to heavy quarkonia, where a detailed knowledge of the potential for
very large radii does not seem to be necessary.

We showed that the numerical solution of the coupled channel problem
for vector- and pseudoscalar- quarkonia (they are degenerate to order 1/m)
is feasible and an exact diagonalization of the hamiltonian in the extenderd
basis therefore possible. The resulting exact spectrum does not show the
far too rapid increase of the eigenvalues with the principal quantam number
of the perturbative approach to the vacuum effects[9][20]. In addition to
the usual “singlet” wave-functions describing the quark and auti-quark of
the quarkonium when they are coupled in a colour singlet, we also obtain
the “octet” components of quarkonium states describing the quarks in the
octet configuration when an additional (soft) gluon is around. Since hadronic
decays may be very sensitive to this “octet” configuration with the creation
of an additional octet gg-pair from a hard gluon, this approach opens the
possibility of estimating nonperturbative contributions to hadronic decays.

We compare our results for the spectrim and wavefunctions with those
of the Cornell potential[16] for psendoscalar quarkonia. With the standard
value for the gluon condensate and quark masses and coupling constani used
by the Cornell group we obtain the correct splitting between 1, and 7’ and
make predictions for the n;’s. Qur main concern was however a better the-
oretical understanding and justification of the phenomenological ingredients
comnmon to most nonrelativistic models for heavy quarkonia and we refrained
from adjusting the few parameters of this approach to optimally reproduce
the experimental data. A better description of the potential at short dis-
tances with the inclusion of radiative corrections to the Coulomb force and
the consideration of hadronic decay channels is clearly desirable before a
detailed comparison with phenomenology is attempted.
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Figure 1: (a) Effective potential (solid curve) from (32) and Coulomb poten-
tial (dotted curve) with o, = 0.39, ¢ = —756 MeV and #* = (360 MeV)*.
(b) Effective potential (solid curve} with the same parameters as in (a). The
potential extracted from lattice dataf25] with /& = 365 MeV (dot-dashed
curve) and /7 = 505 MeV (dashed curve). Cornell potential[16] (dotted
curve) with o, = 0.39 and @ = 2.34 GeV L,

Figure 2: 'The wavefunctions of the ground and 15 excited pseudoscalar
states of clarmonium are shown in figures (a) and (b) respectively. The
solid curve is the wavefunction for the funnel potential[16] for comparison.
The long dashed curve is the singlet component S{r) of the quarkonium
state'in our calculation. The dashed, dotted and dot-dashed curves are the
“octet” components 2y(r), Ey(r) and B(r) of equation (30) respectively.
The solution was obtained with the paramneters m, = 1840 MeV, a, = 0.39,
#* = (360 MeV}* and € = 756 MeV.

Figure 3: The wavefunctions of the ground, 15%- and 279 excited pseudoscalar
states of bottonium are shown in figures {a), (b) and (c) respectively. The
solid curve is the wavefunction for the funnel potential[16] for comparison.
The long dashed curve is the singlet component S5{r) of the quarkenium
state in our calculation. The dashed, dotted and dot-dahsed curves are the
“octet” components Fi(r), Fs(r) and B(r) of equation (30) respectively.
The solution was obtained with the parameters m, = 5170 MeV, o, = .39,
#* = (360 MeV)! and € = —756 MeV.

Figure 4: The wavefunctions {not multiplied by r or 7%) of the ground and 15
excited pseudoscalar states of charmoniim are shown in figures (a} and {b)
respectively. The solid curves are for the results without a running coupling
constant. The dashed curves are obtained with a ruaning coupling constant.
The solutions were obtained with the parameters m, = 1840 MeV, o, =
0.39 (without running), A = 300 MeV and b = 19 (with running), ¢ =
(360 MeV)! and € = —756 MeV.
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Figure 5: The wavefunctions of the ground, 15t and 219 excited pseudoscalar
states of botionium are shown in figures (a), (b) and (c) respectively. The
solid curves are for the results without a running coupling constant. Tlie
dashed curves are obtained with a running coupling constant. The solutions
were obtained with the parameters my = 5170 MeV, a, = 0.39 (without
running), A = 300 MeV and b = 19 (with running), ¢* = (360 MeV)* and
= =756 MeV.

Table 1: The Coulomb energy in MeV is presented in the first coluran for

" the ground state and first excitation of ¢ and bb (pseudoscalar or vector).

Second and third columns contain the nonperturbative contributions in MeV
calculated respectively within perturbation theory and with our method. We
used m, = 1340 MeV, my, = 5170 MeV, o, = 0.39, ¢ = 0.012 GeV? and

C'= 756 MeV.
Coulomb  Pert. theory Non-pert.
Ne, Jfd -124.4 311 66
Mo ¥ -31.1 21525 424
My, 1 -349.5 14 8
N, T -87.4 a70 111

Table 2: The Coulomb energy in MeV is presented in the first column for
the ground state and first excitation of bb (pseudoscalar or vector) at two
different scales . Second and third columns contain the nonperturbative
contributions in MeV calculated respectively within perturbation theory and
with our method. We used C = —756 MeV, ¢? = 0.042 GeV" and for i =
1.44 GeV: my = 4866 MeV, &, = 0.38. For g = 0.99 GeV: my = 5010 MeV,
a, = 0.54.
Coulomb Pert. theory Non-pert.

e, T (g = 1.44 GeV) -312 25 11

7 T (p = 1.44 GeV) -78 1762 129

M, T (n =099 GeV)  -649 6 3

M T (e =0.99 GeV)  -162 396 72
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Table 3: Masses in MeV of pseudoscalar quarkonia with the funnel potential
and with our effective nonperturbative hamiltonian. Parameters used: m, =
1840 MeV, my = 5170 MeV, a, = 0.39, ¢* = (360 MeV)*, C = 756 MeV.
funnel nonpert.
7. 2980 2980 -1000}
o n, 3571 3594
o e 3994 3993

Effective potential
*++++---- Coulomb potential

m 9213 9344 '
m 9805 9739 - i
ne 10150 10084 >
¥ 10427 10610 I [4b}
2—2000 ; i .
= C.0 0.5
X 1000 T T —————————————,
> | 1b)
500}

Table 4: Energy splittings among radial excitations of pseudoscalar charmo-

nium and bottonium. The parameters are the same as in table 3. For the

running coupling constant (see text) we use A = 300 MeV and b = 19, First 0
column: no 3/m terms. Second column: i/m corrections included. Third

column: 1/m terms and running couping constant.

no 1/m 1/m included 1/m and running
cE- 2515 614 666 593 -500- 7
bb- 25-15 395 397 413 me——— Latti
bb-35-1S 740 753 738 = / th?if;i %
sasemassns Corne“
1000 f This work

97 500l b v oy
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