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Abstract

We compare the performance of the methods of Gear and Runge-Kutta (4th order)
for integrating delay differential equations. For the equation considered by us, the Gear
method is in general more efficient {convergence is achieved for a step that is greater
or equal to the step required by the method of Runge-Kutta). Our results show that
the convergence of the solution has to be verified always as a small change of one of
the parameters can result in non-convergence for the same step value.

1 Introduction

Delay differential equations (DDE) are used to describe systers involving a time delay, that
is, the future evolution depends on the past history of the system. Processes involving
time delays are fairly ubiquitous: they are found in physics, biclogy, medicine, economics,
chemistry, engineering, etc. In general, the dynamics of a DTE is more complex than that
of its related ordinary differential equation (ODE) , obtained by setting the delay equal to
zero. This complexity results from the fact that, due to the delay, the DDE’s generate infinite
dimensional dynamical systems. DDE’ have been studied rather extensively (Bellman and
Cooke (1963), Hale (1977), Hale and Verduyn-Lunel (1993), Kuang (1993)) but, in general,
only numerical solutions can provide detailed information about the behaviour of the system.
Therefore, it is important to compare the performance and the reliability of different methods
of numerical integration applied to DDEs. It should be stressed that numerical integration
involves discretization, thus making the dimension finite. Even in the case of ODEs, it
is necessary to be careful because the discretized equation has more solutions than the
continuous equation and, only that solution, that does not change when the step is changed,
is solution of both the discretized and the continuous equations. In the present work we make
a comparison of the predictor-corrector method of Gear, and the method of Runge-Kutta
(Cryer (1972), Kahaner ef al (1989)). In the section 2 we present the numerical integration
methods adapted to delay equations. In the section 3 we compare the results of the various
methods and in the section 4 we present the conclusion.

2 The numerical integration methods
We considered the following multi-looped, negative feedback, scalar equation, with delays =

P 1 ¥

= gs.-(P(t — 7)) - P(t). . (1)
where
Si(X)=u_(9:'ﬁ)i_, D<é <l (2)

(B + (X

The parameters 6; and n; govern the threshold and the steepness, respectively, of the sig-
moidal function §;. For solving equation (1) for ¢ > 0, it it necessary to give, as initial
condition, the function P(t) in the interval — max(r;) < £ -% 0. The time is discretized
using an integration step k. This step is chosen in such a way that, in units of &, the delays
7; will be given by integer numbers denoted by d;. The discrelized time will be represented
by an integer, and we shall use the following notation:

szP(hk), (3)

and for the sigmoidal function (equation (2})



Se=S(P). - (4)

The initial condition for discretized time is:

Py, —max(d;)<k<0,. (5)

2.1 The method of Gear

This is a predictor-corrector method but, in the case of equation (1), for which the nonlin-
earity is restricted to the terms with delay, it is possible to use the corrector formula only,
thus making the integration very simple, The three step Glear integrator is given by

1 6
Pep = H(]—SPk — 9P + 2P ) + by (e (6)

where P; is defined in (3), and the prime indicates the derivative with respect to the argument
t. Substituting FY,, using equation (1), equation (6) becomes:

6k 1

180, - 9P, _,4+2P,_ —_—
{ * -1+ k2)+11+6hN1-

i N
Pk+1 = m - Sk-l-l—d-'n (7)

with S; given in (4).

2.2 Runge-Kutta 4th order

The 4th order Runge-Kutta method uses the value of the functions in the middle of a
step interval, therefore an interpolation is required. The 4th order Runge-Kutta integration
formula is given by:

Frta :Pk+%(Al + Ay + A3 + Aq),
44 :ﬁ S Skt — P
A= T St gt = sA1 — P, (8)
Az = % Zﬁl Sk_d‘__]_% - %Az - B,
Ag = ‘1;\? Ef‘;l Sk-}-l—d.’; — Az — F.

We used lnear interpolation:

. .
; %:'2‘(Pj+1 + 8. (9)

2.3 Comparison of the methods -

The equation (1) was studied in Glass and Malta (1990) in order to investigate the existence
of aperiodic dynamics as the parameters are varied. The case of aperiodic dynamics is the
best one for testing the various methods as, due to the sensitivity to initial conditions, it
should be the most difficult case for achieving convergence. Therefore, we have chosen the
parameters value for which aperiodic dynamics was found in Glass and Malta (1990):

N =3,
0, =04, 6, = 0.5, 65 = 0.6, (10)
T = 056, Ty = 201, = 0.87,

and n( = ny = n3 = n was varied from 25 to 110. As n increases, the system undergoes a
period-doubling cascade before an aperiodic solution is obtained. Continuing to increase n,
solutions having odd period are obfained.

The periodicity of a solution was checked using the simple test proposed by Rosenblum and
Kurths (1995): given a time series of length N, let us move zlong the time series with a
window of length [, and calculate the quantity

F(l) = (|lzi — 2} (11)

for 1 <[ < lmax (the averaging is over i and in order to have sufficient averaging number,
Imax ~# N/5). The function F has zeros with the same periodicity of the time series.

The calculations were done using Gear and RK, using as initial condition a constant function,

Pi=c, —dy<j<0. (12)

For ¢ = 0.40, using b = 0.01 and h = 0.005, the same solution is obtained for both Gear
and RK for 25.00 < »n « 57.90. The sclution is periodic and exhibits a period-doubling
cascade up to period 8. For n = 57.90, Gear gives a solution of period 16 (in this case we
have used & = 0.005 and A = 0.0025) but RK has not converged: the solutions, for these
two step values, differ by a timelag (see figure 1), and the result for & = 0.0025 is different
from the converged solution obtained using the Gear method (see figure 1). So, RK requires
a smaller step for converging at this value of n. For 57.90 < # < 60.00 both methods have
given inconsistent results: the same result was not obtained for the two smaller step values.
in the figure 2 we display the graphs of P(¢) for » = 58.50, k = 0.005, 0.0025, using the Gear
method. We can see that the two results differ by a timeshift of two peaks. The RK and
the Gear results for A = 0.0025 exhibit a timelag of six peaks (see the graphs on the bottom
of figure 2). This is consistent with aperiodicity that implies sensitivity to initial conditions :
thus making it difficult to achieve convergence. The funciion F (h = 0.005) also indicates

aperiodicity of solution {or a solution of very long period). '

For n = 60.00, both methods give a solution of period 5 (see figure 3) that is obtained using
h = 0.01 (the same result is obtained using k = 0.005). :



In the interval 60.0 < n < 60.45, we used only the method of Gear. For 60.0 < n < 60.41,
convergence was achieved for & = 0.005 for several values of n, and the results indicate the
existence of a period-doubling sequence of the period 5 solution. For 60.41 < n < 60.45, both
methods do not converge for b > 0.0025, and the test of Rosenblum and Kurths indicates
aperiodicity or very long periods (see figure 4). As F has several minima that get very close
to zero, the converged solution will probably have a very long period. For n = 60.45, no
convergence was obtained but the function F (equation (11)} indicates that there could be
a solution of period 25 (see figure §).

For n = 60.50, the Gear and the RK methods converge for k = 0.005, and % = 0.00285,
respectively. We sce that the RK results differ by a timeshift of a few peaks, but the result
for k = 0.0025 is identical to the Gear result for f = 0.005. The solution has period 15 (see
figure 6), according to the test of Rosenblum and Kurths. For this value of » we have also
solved equation (1) for constant initial condition (12) with ¢ = 0.41 and ¢ = 0.39. The case
¢ = 0.41 has not converged for & > 0.0025 but the test of Rosenblum and Kurths indicates
a peried 15 solution.

In the interval 60.50 < 2 < 73, both methods do not converge for the step values above
(k > 0.0025). The test of Rosenblum and Kurths indicates that the solutions are either
aperiodic or have very long period. In the figure 7 we display the function F for a few n
values in this interval.

Finally, for 73 < n < 110 (we did not go beyond this value) both methods give a period 3
solution (see figure 8) that is obtained using i = 0.01.

3 Discussion and Conclusion

There exist many analytical methods for studying the properties of systems described by
DDE’s (the case of stability, for instance). However, mainly in the case of nonlinear systems,
very often it is necessary to resort to numerical integration, thus the importance of inves
tigating the suitability of numerical integration methods. There are many investigations
aiming at developing robust and general numerical integration methods for DDE’s {Pau}
(1991}, Paul and Baker (1991), Baker et al (1992)). Ome problem that may arise is the
presence of derivative discontinuities (Wille and Baker (1994)). We have considered only the
methods of Gear and RK because they are simple and can be applied to any system that is
well behaved, without singularities. '

Our results indicate that the Gear method is, in general, more efficient than the RK method
for integrating the DDE (1}: the Gear code is faster and convergence is achieved for a time
step greater than or equal to the time step for which convergence is achieved in the RK
method. For the particular case of equation (1) (the nonlinearity is restricted to the term
with delay) only the correction formula of CGear is required, thus simplifying the numerical
calculation. The RK method of 4th order requires interpolation, while Gear does not.

The two main conclusions to be drawn from our numerical study is that the RK method
may require smaller time step for convergence and, most important, the convergence of the
solution must be checked ahways. It is not possible to make a few tests of time step and then
do all the calculations using a single time step. As we have seen, there are values of the

parameters for which h = 0.01 is adequate but for other parameter values even h.= 0.0025
does not give a converged solution, The optimum approach would be to have a variable step
size but this is rather nontrivial to implement in the case of DDE’.

We would like to remark that the delays used by us were an integer number of tir_ne st'eps
but it would be possible to have delays that are incommensurate with the mtegra.tlo.n tm.ua
step. In this case interpolation would be required to calculate the value of the functions in

the past.
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Figure 1: Case n = 57.90, with parameter values given in equation (10). On the top we
display the solution P(t) obtained using Gear (h = 0.0025), and its corresponding function
F (see (11}) (we have plotted only part of F in order to make its zeros visible). On the
bottom we display the graphs of P(t) (unconverged) obtained using the RK method with
k = 0.005 (on the left), and k = 0.0025 (on the right). We can see that there is a shift of

two peaks between the two “solutions”.

Figure 2: Case n = 58.50, with parameter values given in equation (10). On the top we
display the result P(t) obtained using Gear (h = 0.005), and its corresponding function F
(see (11)) (we have plotted only part of F in order to make its zeros visible). On the bottom
we display the graphs of P(t) obtained using the methods of Gear and RK with £ = 0.0025.
There is a time shift of six peaks between the two results (indicated by the arrow). The
Gear results exhibit a time shift of two peaks.
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Figure 3: Case n = 60.0, with the parameters given in (10). The function F shows that the
solutions have period 5. We can see that the solutions P(t) obtained by the two methods
are identical. The step size used was h = 0.005.
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Flgure 4: Case n = 60.43, with the parameters given in (10). The function F was calculated
using the solution by the Gear method. F' does not have two zeros in the interval, but as it
gets very close to zero many times, we expect that the converged solution will have a long
period.
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Figure 5: Case n = 60.45, with the parameters given in (10). The function F on the top
(bottom) corresponds to & = 0.005 (A = 0.0025). The Gear method was used. The case
k. = 0.0025 shows that the solution does not have period 15.
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F;g(;lre 6: Case n = 60.5,' with the parameters given in (10). The solution P(t) by the method
z ear was obtained using h = 0.005; the results by the method of RK used & — 0.005, and
= 0.0025, from left to right. The function ¥ was obtained using the Gear solution.
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Figure 7: F is displayed for n = 61,67,72, from top fo bottom (Gear method). The
solutions have not converged for k > 0.0025 and F has no zeros, indicating aperiodicity of

the corresponding solutions P(t).
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