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Abstract: The dynamics of two graded response neurons interconnected through delayed
connections is studied. We suppose that the interneuron connection s inhibitory in one
direetion and excitalory in the opposite direction. This network forms a negative feedback
loop. We show the presence of 2 unique periodic solution which attracts all the trajectories
of all non-oscillating, nen-zero initial conditions. This work complements previous works

establishing local existence of periodic solutions in such systems.
1 The model

The dynamics of two graded response neurons {(GRNs) [1] connected to each other by weights
w and @' and delays A; > 0 and A, > 0, are determined by the following delay differential

equations (DDEs):

() = —va(t) + wo, (bl — A))
(1)

a(t) = =(t) + wow(a(t— A2)

where 7, ¥ are strictly positive constants and:

oo(a) = tanh(oa) = g:z;g:z: fora>0, . (2)
1 for a>0,
Teo(a) = { —1 for a <0. - (3)

After changing the variables: z(t) = a(At) and y(t)} = b(At — A)) [2], where A = A, + A,

and renaming the parameters: ¢ = _%A, ¢ = q'LA’ W = w/y and W' = w'/y, system (1) is

transformed into:



(1) = —a(t) + Wo(y(t)
(4)

€ = ~y(t) + Wow(a(t - 1))
The phase space of system {4) is the product § = C([—I,O],iR) x IR. TFor al;y initial
condition ¢ € 5, DDE (4) has a unique solution z(t, @) = (=(i,d),y(t,¢)) defined for all
£ 2 0. We denote by 2($) = (z:(@), u(¢)) the associated semi-flow [3], that is z() € S

H

and yi(9) = y(t,8), 2:(SHO) = x(t +0,8) for all —1 < § < 0.

System (4) is invariant under the transformation « — —z and ¥ = —y. Thus we need only
to study the two cases of W > 0, W’ < 0 (negative feedback) and W > 0, W’ > 0 (positive

feedback).

We shall describe the dynamics of system (4) in the case of & = &' = oq, for which the

solutions of system {4) are given by:

z(t) = (z(7) — nW)elr—te 4y
| (5)
y(t) = (y(r) = ' W")el =< 4 /1y

for > 0, 7 and 7' such that |n| = || = 1, 7'2(¢) > 0 for all &' ¢ [r—1,t—1], and ny(8) > 0

for all 8 € [r,1].

We study the orbits of initial conditions ¢ = {1, ¢2) € 5 such that ¢, # 0 and &, does not

change sign, that is:

$1(8) <0 or $,(8) >0 forall 8 ¢[—1,0]

3

. For such an initial condition ¢ we have z{$) = z(r), for all £ > [, where r = (ry,m) € S is

defined by: r1(#) = ¢:,{0), for all § € [-1,0] and r, = ¢;. Consequently we limit the study

to the orbits of “constant” initial conditions, that we identify with their image in IR2.

We shall study the dynamics of a network with negative feedback, that is, the weights have
opposite sign. As already mentioned, due to the reflection symmetry of system (4), we need

to consider only the case W > 0 and W' < 0.

3 Negative feedback results

In this situation, we show that there is a unique periodic solution which attracts the solutions
of all constant initial conditions except the origin (0,0). In order to prove this result we
associate to DDE (4), a one-dimensional map, deroted by f, similar to a Poincaré return
n;lap. We show that this map has a unique stable equilibrium point which attracts the orbits
of all initial conditions except the origin. Similar methods have been applied for the study

of scalar DDEs with piecewise constant nonlinearities (see references in [4, 5]).

As for the Poincaré return map associated to an ordinary differential equation [6], the iterates

of the map f characterize the asymptotic behavior of the solutions of DDE (4).

In the (#,y) plane, the trajectories of solutions of constant initial conditions (except the
origin}, turn clockwise around the origin, crossing successively the two axes. For a given
initial condition r = (zo,3a) € IR? — {{0,0)}, we denote by ¥ = (0,y) the first crossing of

the positive half y-axis by z(¢,r}. Thus, the asymptotic dynamics of z{¢,r} are derived from



the behavior of 2(¢,Y).

‘o AFor Y = {(0,y) on the positive half y-axis, we define the sequence ¥, = (0,9, = 0, (wu )

i (where f7 = fo-< o f, n times) as the successive intersections of the trajectory of z(t,¥)
- with the positive half y-axis. Thus the map f defines the point of first return to the positive
half y-axis. A solution (¢, Y) is periodic if and only if {¥n}nzo s periodic. In this case,

" the periodic solution is stable if and only if the corresponding sequence is also stable. The

construction of f is schematically represented in Fig. 1.

~#iThe return-map f can he explicitly evaluated (Eq. (6) in Appendix A). The geometrical
' .1.;'fcha,ra.cteristics of f can be derived from the properties of the solutions of DDE (4). fis
e -'E';:strictly increasing, concave, and 0 < f(0%) < fly) < =W'for all y > 0. Thus f has a

":':':i:unique fixed point, y* = f{y*), and its slope f' satisfies 0 < f'(y*) < 1. Hence for all y>0,

: S (y) = y* as n — co. Thus we have:

:":.Asymptotic behavior. For all initial conditions r € R? {(0,0)}, the solution z(t, r)

* “tends to the periodic solution 2(u,Y*) as t = oo, where Y* = {0,37).

“iAn example of the closed trajectory representing a periodic solution in the z,y plane is
thown in Fig. 2, with the corresponding temporal evolutions of #(t) and y(t) (respectively

o 3;olid and dashed lines in Fig. 3) and the associated return map f (Fig. 4).
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A The return-map f

—W'(1-(2- %) ) (6)

i
(2exp(1/€’) — o 1 ’)5‘)

(zcx,(l/e')—l——m-’,’—,]e?




