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Abstract

We show that a two-neuron network model with delay satisfies conditions presented in {9] for
the nonexistence of superexponential solutions. One implication is that the notions of weak
and strong oscillations are equivalent for this system, and that solutions are either damped

to an equilibriumt point or asymptotically periodic.
1  Introduction

The dynamics of neural network models composed of graded-respouse units has been inves-
tigated recently in order to detect instabilities induced by the presence of non-zero inter-unit

transmission times {see references in [1]).

In this respect, understanding the behavior of small networks composed of a few neurons
has played an important role, as the behavior of these systerns can be more easily analyzed

than that of large networks composed of an arbittary number of neurons.

In our previous work, we have studied the dynamics of a self-exciting single neuron with delay
(1} Tt was shown that, in that system, trajectories of almost all initial conditions converged
to equilibrium points, and that nonconverging solutions were asymptaotically periodic. The
results on the convergence relied on the monotonicity of the system [2], and the ones on
the asymptotic behavior of non-converging solutions were based on a Poincaré-Bendixson
theorem combined with the non-existence of superexponential solutions established for scalar

delay-differential equations (DDEs) with monotone feedback [3].

In a companion paper we have examined how monotonicity results can be applied to the



study of two-neuron networks [4]. In this paper, we study the extension of results concerning
‘the behavior of solutions that do not converge to a stable equilibrivm point. This analysis
requires the extension of a number of technical results valid for scalar DDEs to the case of

systems, which is the main goal of this report,

2 The model

The dynamics of two neurons connected to each other by weights W and W’ and delay

A >0, are determined by the following system of delay differential equations (DDEs)[4):

i (t) = —n(t) + Wo (y(t — A)
(1)
ER() = —y(t) + Wiow(a(t — A))

where € > 0, ¢ > 0 and:

a —~aa
—e

eQ’
Ur\r(a) = tanh(aa) = W

(2)

For an initial condition & = (¢, 42) in § = C([-A, 0], IR?}, there exists a unique solution of
Eq. (1), denoted by z(t, &) = ((t,®),y(t, ®)), such that z(6,@) = ¢1(0) and y(0, B) = ¢,(8)
for —A < # <0 and (1, @) satisfies Eq. (1) for £ > 0. Tor such a solution of the DDE,
we note z(®) = (2(€), (@) the element of & definad by 2:(2)(8) = «(t + 0, %), and
y(D)(0) = .y(t +6,®), for 8 € [~ A,0). 2 is the differentiable semi-Aow generated by Eq. (1)

{ in the space 5.
The constant function 2(t) = 0 for + > —A is a solution of system (1). It represents an
1 equilibrium point. We are interested in the trajectories that eventually tend to this equilib-

:: rium. In ODEs, solutions tending to an equilibrium point can be eventually approximated

: by an appropriate exponential function obtained from linearizing the system. In DDEs, such
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solutions may decay faster than exponential functions, and in this case they are referred as

~ superexponential or small solutions. Their existence is an important issue as it can modify

the way the DDE can be analyzed. For example, for some scalar DDEs that do not admit
such solutions, it is possible to construct a discrete Lyapunov function which counts the

number of zeros of solutions [5, 6, 7], and to derive a Morse decomposition of the attractor
[8]-

In this paper we show that system (1) does not admit superexponential solutions. To this
end we prove that it satisfies the sufficient conditions given in [9] for the non-existence of
such solutions. These conditions are referred to as hypotheses (H1) through {H5) in [9], and

we shall use the same notation in this paper.
3 Monotonicity

We now introduce the following conditions, definitions and terminology.
From here on, we suppose that the parameters satisfy the following conditions:

Condition (C). Posilive feedback: o »> 0, W > 0, o’ > 0 and W’ > 0.

For & = (¢1,¢) and ¥ = (31, 4:) in S, we say that @ is larger (resp. strictly larger) than
W, noted ® > W (resp. @ > W), if $1(0) = 11(0) (resp. ¢1(0) > ¥1()) and $o(8) > th(8)
(resp. ¢o(f) > 32(8)) for all 8 in [—A, 0]

We rewrite system (1) as

), 3)



where I is the map from § = C([—A, 01,1R?) to IR? defined as

_ | (=6:10) + Won(da(—A)))/e :
) = ( (=2(0) + Worar(dy(—A))) e’ ) for & = (1, ¢2) € 5. (4)

F satisfies the following hypothesis.

Hypothesis (H1). I is continuous on ifs domain, sends bounded sets of S inlo bounded
sets of IR%, and is such that system (1) has one and only one solution starting from any
given data ® € 5.

For every pair ® = (¢, ¢s), ¥ = (th1,92) in § such that ® < T and ®(0) = ¥(0), we have

F(B) < F(T),

The system also satisfies the following hypothesis.

Hypothesis (H2). System (1) is strongly monotone, in the sense thal il verifies (1) and

Jor ® < W and ® £ U, there is ¢, > 0 such that 2{®) <« z(V) for all t > ¢,.

Proof. Under the positive feedback condition {C), system (1) is an irreducible cooperatbive
system. irreducibility means that there is a directed path connecting each neuron to the
other, and cooperativity arises from the fact that the neurons are muttually exciting [10].
Moreover, the right-hand-side of system (1) transforms bounded sets of § into bounded sets.
Thus theorem 2.5 in [2] (see also [11]) implies that system (1} generates a strongly monotone

semi-flow, that is:

If® > @ and & # @ then 2(®) > z(P) for t > 2A. (5)

4 Linearization

By linearizing system (1) in the neighborhood of 0, and looking for exponential solutions of

the form exp(At) we obtain the following characteristic equation [12]:

A(A) = (A4 1/6)(A + 1/€) — Li(eM)a(e™) (6)

where 1 (¢) = 22 g(— A) and ly(#) = 2 (- A) are positive linear functionals on C([-A, 0], R).

€

We assume that Afe > 0, and A/¢' > 6], where 0, and 8, are the solutions of §,,exp(8,,) =
1/(aW) and 8,exp(f;,) = 1/(a’'W’). Then it follows that I;(fe=%/%) = waI/Vf?e’”‘ < -1

and lp(fe~/¢") = —o/ W el < 1.
Hence from Lemma 3 ([9], p.273) we obtain that system (1) satisfies the following hypothesis.

Hypothesis (H3). Assume that Afe > 0y, and Afd > 0., then the charvacteristic equa-

tion (6) has one and only one real root. This root has multiplicity one.
5 Damped oscillations

Before going any further we need to define the notions of weak and strong oscillations. We

take the same definitions as in [9], adapted for the case of a two variable system.

Definition 1. Let a : [ly,+00) = IR be a continuous function. we say that a is sirictly

oscillelory if for every T > 1y there exists T > T and T" > T such thal a{T") x a(T") < 0.

Definition 2. Weak oscillations. A solution z(t) = (2(1),y(t)) of system (1) is weakly

oscillating if, for all T, there exists TV > T such that (1) x y(T") < 0.



Definition 3. Strong oscillations. A solution z(t) = (z(t), ()} of system (1) is strongly
oscillating if at least one of its components, z or y, is strictly oscillating in the sense of

definition 1.

A solution z = (z,y) of ( 1) is weakly oscillating and not strongly oscillating if and only if
there is T' > 0 such that z(t).y(t) < 0 for all ¢ > T'. We show that system (1) satisfies the

following hypothesis.

Hypothesis (H4). Let 2 be g solution of system (1) such that z oscillates weakly and does

not oscillale strongly, then z(t) — 0, as t = +oo.

Proof. Let dy = 1/¢, d; = 1/¢, M(¢) = Eﬂora(r;S(—A)), My{g) = ?—,J%r(qﬁ(—fl)), where
; ¢ € C([-A,01,R). We have sign{¢). Mi(¢} > 0 (i € {1,2}), when ¢ has a constant sign.

| Furthermore we have (diz + my(x))(doz -+ ma(z)) > 0 for © # 0, where my(z) = Y ra(z)

and my(z) = Lo (z). Thus, Lemma 4 ({9], p.275) shows that system (1) satisfies the

- hypothesis (H4). O
16 Nonexistence of superexpomnential solutions

1 System (1) can be re-written as:

dz
E:Lz, + f(z), (N

Iwhere L: 5 — IR? is the linear map defined by L{(®) = M®(~A) + N®(0), where M and

4 V are the 2 x 2 matrices defined as:

aW =1
Mz(g’W’ 50)’ and N:(OE —(IJ) 1 (8)

et

and f: 5 — IR? is the map defined by

_{ Zloudr(=A)) - aga(—A)
fi®) = ( %[aa-(sasl(—A))—a'qsl(—Aﬂ) - (9)

The linear part L satisfies the following hypothesis:

Hypothesis (H5%). L(®) = M®(—A) + 2., dp(0)B(8), where M is nonsingular, and

12,4 dn(6)8(6) = No(0).
The nonlinear part f satisfies the following hypothesis.

Hypothesis (H5"). For the nonlinear part f of system (1), there exists a function g defined
from RY into IR" such that g(u)/u — 0 as v — 0 and [1F(®)] < g()|B(—A)]), where for
X = (z,y) € IR?, we note || X|| = |z| + Jy|.

Proof.

LAD] = Hloalde(—A)) — aa(—A)| + Bloar(di(— A)) — o'y (— A)) 1)
= Dliba(da(— A} + L thor (1 (—A))
where ¥5 : IR = R is defined by: w¥s(u) = op(u) — B, iy is a strictly decreasing odd

function for 3 > 0, so that {ysp(w)] = —4pa(|u|). Thus we have:
AN = ~Fda(lga(~A)) = Eur(ids (- A)]) . (11

—tp is an increasing function (8 > 0), and we have [¢p(—A) < |{—A4)| + lp2(—A) =

||®{—A), for i € {1,2}, so that:

—(% - B (|2~ A
@ < —CEballl@(=A)) + Erabar(l|D(- A)]) 2

(@)l < glila(-A)



| where g: R — R is defined by g(u) = —(Eapa(1e) -+ Mpar(u)). As we have a(u)/u — 0 as

lus 0, the same property holds for g, that is, g{u)/u — 0 as u = 0. 00
Thus proposition 5 ([9], p.278} implies that system (1) satisfies the following hypothesis

+ Hypothesis (H5). System (1) does not have any solution z such that each component of z

1 s # 0 for cach t large enough and z(t) — 0 faster than any exponential as t — +o0.
7 Strong Oscillations

{ Property. Assume the characteristic equation of (1) at 0 has no roof with e zero real
¢ part. If 2(1) = (w(t),y(2)) is a weakly oscillating solution of (1), then both x(1) and y(t) are

A oscillating, in the sense that they have zeros af arbitrarily large times.

| Proof. From the second inequality in (12), and the fact that g is an increasing function we
i deduce that: ||f(®)|| < g(||®||s), where ||®{|., represents the supremum norm of ®.

A Taylor expansion in the neighborhood of 0, shows that: g(x) = O(x?). So that for & close
to zero (in S), we have: ||f(®}]| < O(||2]I%,).

?_ Finally, theorem 3 ({9), p.281) yields that weakly oscillating solutions of (1) are strongly
oscillating, that is, at least one of the components z(1) or y(¢) is oscillating. For the special

1 case of (1) this implies that both are oscillating, O
18 Global behavior

4 Let e =€ and A =1 in (1), then the characteristic equalion of the linear part I is :

A = (A4 1fep = 22V o g (13)

€2

Under the positive feedback condition aa/WW' > 0, so that the characteristic equation is

equivalent to:

Afp) =(p+9) = (yKe#)? =0,

)
A'pjp ={pty—yKe ) (p+v+yKe) =0, (14)

where p = %, vy =4 and K = vaaWiW’. Thus, A*(g) is the product of the characteristic
equations with positive and negative feedbacks.

Damped oscillations. For X < 1, all the roots of the characteristic equation have strictly
negative real parts, therefore, 0 is a locally asymptotically stable equilibrium. Tn fact, this

point is globally asymptotically stable. Hence, all oscillating solutions are damped to 0.
Non-existence of homoclinic orbits through 0 for K > 1
For K > 1, let p = a +ib be a root of (14), with b > 0. We have:

a+v+pyKetcos(b) =0, (15)
b—nyKe sin(b} =0,

where 5" = 1 (il = +1 (resp. 5 = —1), ;¢ is a root of the negative (resp. positive) feedback

characteristic equation).

We rewrite (15) as:

aty &
—niide” = cos(d) ,
{ 1]#(&“ = sin(b) . (16)

By adding the square of the two equations we obtain:

e?a

—(F? H=1. 17
o () (7)
So that:
b= \/721\'20'2“ — (a4 7). (18)
10



| ; |
Note that there is a,(y, i) > 0 such that vKe® > la + 7|, for all a < q,.

¢ For a < a;, we define Ha) =K% _ (a4 7)?, then the derivative of f is given by:
flla) = =2(y* K% 4 4 4 7). (19)

This quantity reaches its maximal value at ap = Log(v2yK), and

Fllan) = =2(1/2 4 4 + Log(v/3y ) (20)

4As long as K > gh—f;%?, we have f’

{ag) < 0, and therefore [ is decreasing. Note that as
4K > 1, the above inequality is satisfied for 7 larger than the root of V27 — e~(r1/2) — .

%F inally we have the following result:

Roots of the characteristic equation (13). Assume that the characteristic equation

~1{13) has no root with zero real part. For K > max(1, £

o ), we have:

Bup{Z() such that A(A) = 0 and R(A) > 0} < Inf{Z(A) such that A(}) = 0 and R(}) < 0}

.'-where R(A) and Z(A) represent the real and the imaginary parts of A respectively.

B Conclusion

“{'he above result, combined with the fact that the equation (1) does not admit superexponen-

--31&1 solutions tending to 0, and the fact that the number of zeros of solutions is non-increasing
I

ong time [3, 13, 14] shows that for X > max(1, e_-f}:_“:[ﬂ)’ there can be no homoclinic or-

~its through 0 [5, 6, 7). Combined with the Poincaré-Bendixson theorem shown in [3], the

11

non-existence of homoclinic orbits shows that oscillating solutions are either damped to 0 or

asymptotically periodic.
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