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Abstract

We consider the scalar delayed differential equation ez () = —z(t) + f(=(t - 1)),
where € > 0 and f verifies df/dz > 0 and some other conditions. This equation has
three equilibria —v;, 0, and 7;. In the study of the singular Bmit € -3 0 a crucial role is
played by the so called transition layer equation related to the above equation. In this
case the transition layer equation is given by §(t) = —y(z) + f(y{t + r)), where r > 0.
We prove that there is a special value of r for which the transition layer equation has
a solution such that y{t) = —v, as t - —o0, and y(t) = vz as t — co.

1 Key words: delayed difTerential equation, singular perturbation, transition layer.
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1 A Theorem

Let us consider the following family of scalar advanced differential equations

Yt = —u(t) + fly(t + 7)), (1)

where 7 is a positive parameter. We assume that f: IR -3 R is continuously differentiable
and verifies the following hypotheses:

(H1) f(0) = 0, f(=m) = —m, f(12} = 72, where 11 > 0, 72 > 0, and f(z) # 0 for
r e (—’)'130) U (0)72)1

(H2)

df df
- — 1.
o z) >0, and I {0) >

Qur goal in this paper is to prove the following theorem.

Theorem 1 There exists v, > 0 such that equation (1) withr = r. has a solution ¢ : M — IR
with the following properties:

%(t) >0, for telR, ¢(0)=0,

Jim $(t) = —y1, lim @) = e

There also exists ry. > 0 such that equation (1} with r = r.. has a solution x : IR — IR with
the following properties:

Ky<o, for 1€ x(O)=0,
Jm x(8) =y, lim x(t) = -

Moreover, if f is an odd function then ry = r.. and $(t} = —x(1).

In order to prove theorem 1 it is sufficient to show the existence of r. and ¢. The
existence of r,. and y is a consequence of this result applied to equation (1) after the change
of variables y — —y. If f is odd then ¢(f) = —x(?) is a consequence of the symmetry of
equation (1) with respect to the change of variables y — —y.

The proof of the above theorem will be made in several steps. In section 2 we consider a
family of auxiliary problems defined in compact sets [—L, L] of the real line. We show that
these problems have solutions ¢y, rp for all L. In section 3 we show that 7 is uniformly
bounded with respect to I from above and below and that there is a sequence L,, n = 1,2,.. .,
of values of L such that ¢r,,7rr, = ¢,7., in compact subsets of IR, as n =+ co. In section 4
we show that the function ¢ obtained in section 3 has the properties in theorem 1.



2 A family of appro'ximating problems

We start this section with some definitions. For I, > 0, let Cy be the Banach space defined
by

o {#:[-L, L] =R |z continuous}, l|2]|le = sup |2(t)| .
ll<L .
Let Az be the following subset of Gy, (endowed with the induced topology)
A {zeCpl2(0)=0, t <t = (1) < 2{t), —m < 2(2) < )}
Proposition 1 The set Ay has the Jollowing properties:
s ) it is bounded,
e i) it is closed,
* iii) i is conver.

These properties can be easily verified.
Let X be the set of functions given by

x “ {z:R =R |z continuous for ¢ € IR, nondecreasing for ¢ < 0,
strictly increasing for ¢ > 0, 2(0) < 0,

tli'r_no‘:’ 2(1) = —vy, and tll)rgc #(t) =y}

We endow X with the metric d(z, z) = sup,e ple(t) — 2(t)]. Denoting the restriction of a
function z : IR — R to the interval [~ L, L] by z|z we define the set X as

X R Rl €A, =)= =y, t <L, 2(t) =, ¢ > L}

We endow X with the the metric d(z, z) = sUppy <z [2(t) — z(t})]. Notice that every function
in X, is an extension to IR of a function in Ay, originally defined on the interval [, L].
We denote this extension mapping by I': Ap — X;. We define a mapping Ay, : Xz — X by

¢ 0
A e [ e ftee)ds = [0 e fafs +1))ds
It is not hard to verify that A;z indeed belongs to X. For each z € X there exists a
unique 7(z} € R, r(z)} > 0, such that z(r(z)) = 0. For a fixed L, the composed function
ro Ay : Xp — R, satisfies the following bounds, independently of z.

Proposition 2 For a given L and any z € X; we have

e_“l+}_ < erodilz) < l-l—ef’.
Y2 - T2

Proaf. In the féllowihg, in order to simplify the notation, we will write r o Ay (2) just as r.

The definition of 4; implies that

[ eita(s)ds =0 (2)

—00

K r < L then the upper bound for = is trivial. So, let us assume that r > I, Using that
—f(#(s)) < for s <0 and that f(z(s)) > 0 for s > 0, equation (2) implies

] ] T T L
_ s _ s — 5 > s — r_
m=m [ s> = [ efetoNds = [ falo))ds 2 [ e (e())ds = le — e
This inequality implies the upper bound for r. Equation (2) implies that
] r
ety — ‘/_L e fl=(s))ds :‘/[‘) e’ flz{s))ds . (3)
The lower bound for r comes from the following inequality obtained from equation (3)

i < [ e f(a(s)ds < mle” 1)
0

We define the set X, as

x, ¥ {#:1R —+ R]| z continuous for ¢t € IR , nondecreasing for ¢ < 0,
strictly increasing for t > 0,

Jim z(t) = —y, and Jim 2(t) = 7,}

We endow X, with the metric d{z,z) = sup, g |z(t) — 2(¢)]. We define the mapping 7; :
X — X, as Tr2(2) = z(t + r(z)) and the restriction mapping I : X. —+ Ar. Finally, we define

a mapping Ar : A; = Ap, as _
Ap=LoT04,0T . (4)

It is easy to check that Apz : [~L,L] — TR is: continuous, bounded, nondecreasing, and
satisfies Apz(0) = 0. So, Arz indeed belongs to Ay. A more explicit way to write A;, is

Apr(t) E e j_t:o e’ fulz(s))ds (5)
where
fu(z(8)) = —m  for s<~L,
fi{z(s))=m for s> L,
fr(z(s)) = fz(s})  for [s|<L

T is an abbreviation of 7o Ap(z).

Proposition 3 The mapping Ay, : Ap — Ay, is continuous.



Proof. In order to prove the theorem we have to show that the four mappings in the definition
(4) of Az, are continuous. It is easy to show that T and I' are continuous, The continuity of
Ay, is proved in the following way. As f is continuously differentiable there exists a constant

g such that
If@) = f)l Sule—y|  for “METE Y, —mSy<y
Thus, if © € X;,, = € Xy, satisfy d(x,z) < & then

(Apz(t) — Ap=(?)} =

| et = )~ et — )ds
,Lzé'jom e ds = ud

IA

This inequality implies the continuity of A;. The continuity of 7, is a more difficult point,
because r itself is a function of the point z € Xy to which we apply 7). Let us denote
by z, 7' two points in X and by r and r’ their respective zeroes (z(r) = 0,2'(r") = 0), or,
equivalently, the values of the function r at z and 2’ ( r{z) = r, r(2') = r'). We want to
show that for any given z € X and ¢ > 0 there exists a § > 0 such that d(z, 2') < &§ implies
that
(T2, T.z) = sup |T2'(t) — Tr2(t)| < ¢,
el
where we used the notation 7,.2(t) = z(¢ + r) and Ty2'(2) = 2'(£ + /). Let § < ¢/2. Since

[Tez'(t) = Toz(t)] = |T2'(t) — Taz(t) + Toz(t) — Toz(t)]
702" (1) = Tz ()] + |Trrz(2) — Toz(t)],

I

and [Tor2'(1) = Toz2(t)| = |/ (t+ 1) — 2{t +1')| < & < ¢/2 for any ¢ € IR, we just have to show
that it is possible to further decrease § > { such that the following inequality becomes true

sup [To2(t) ~ To2(t)] = sup |z(¢ + ') — 2(t + )| = sup |2(t + " —7) — 2(t}] < /2.
elR elR IR

The continuity, monotonicity, and boundness of z imply that z is uniformly continuous.
So, it is possible to find the desired & if we show that the function z — r({2) is continuous,

namely, that for any given z € X and € > 0 there exists a § > 0 such that d(2’, 2) < § implies

[P —ri < € Inorder to prove this we set ¢ el min{€, r/2}. Notice that z is strictly increasing

in the interval (r — 2e;,7 + 2¢;), because z is strictly increasing in (0,00). Now, we define
3 min{|z{r — ¢1)], |2(r + &)} > 0. The definitions of ¢; and & imply that: if |r — | 2 &
then d{z,2') = l2(r') — 2’(")| = |2(+")] = 4. So, if d{z,2) < & then |r — /| < ¢; < &, which
proves that # — r(z) is contintous and ends the proof of the proposition. O

Proposition 4 The mapping Ag is completely continuous, namely, Ay, is continuous and
maps bounded sets to compact sets (see [2] section 2.8).

Proof. Since Aj, C Cp is bounded and Az : Ap — Ay is continuous by propoesition 3, then,
in order to prove that Az is completely continuous, it is enough to show that the range of

4

Ag is compact. This is a consequence of the Arzela-Ascoli’s theorem if we show that there
exists a constant K, independent of z ¢ Ay, such that

[Apz(t) — Apz(t)| < K'lt — ¢ forall |t < L[] < L.

The definition of Az, and the fact that r(z) > 0 imply that the above inequality is true if
there exists a constant K, independent of z € X, such that

[Apz(t) — Ape(t)) < K[t —¢'| forall t> ~L > —L. (6)

For [¢| < L, Apz is differentiable and

%ALz(t) =—Apz(t) + f(=()),

which implies

SHApz(D] + 17 ()] < 2max{y, 2} - (7

d
e
For { > L, A;z is explicitly given by
t L L L t
Ar(t)z =e” {—6_ -+ _/L e f(z(s))ds + (e’ — ¢ )} = e {Ar2(L) + ol e’ )},
which implies that A,z is differentiable and

d
EALz(t) <eAps(D)|+ 1 2y, . (&)

Inequalities (7) and (8) and the continuity of A;z at ¢ = L imply that inequality (6) is true.
[}
The following proposition is an immediate consequence of the definition of Ay.

Proposition 5 The null function 0 € Ay, is not a fired point of Ay.

Finally, propositions 1, 4 and 5, and the Schauder fixed point theorem (see for instance
[2], section 2.2}, imply the following lemma.

Lemma 1 The mapping Ar : A — AL has a fized point ¢ different from 0.

3 Uniform bounds

Let us denote by ry, the shift that appears in the definition of Ay (5) and that is related to the
fixed point ¢ given by lemma 1. Qur goal in this section is to find bounds, independently
of L, for vz, and for the derivative of ¢y..

Irom the definition of Ay, (equation (5)), for |¢| < L, we have

t4ry,

bu(t) = et ] ¢ fdrafs))ds )

—00
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. where:

bra(s) = ﬁﬁL(S) for s| <L,
Pra(s) = -y Jor s< 1L,
“Prals) = for s> L.
Using that ¢1(0) = 0, we can rewrite (9) as

au(t) = [ & fona(9)ds

L

We shall find an upper bound for r;, in several steps.

Proposition 6 There exists My > 0 such that if [ > My thenrp < L.

Proof. Let us assume that r, > L. Then, from (10), we obtain that for ¢ € [0, L)

t4r
dr(t) = 6”_”72f Cetds = (1 - ™)

L

Now, using (11), the facts that [f(z}] > |2[ for —y1 < 2 < 35, and $1(0) = 0, we get

w2 [ s = [ e fon(s)is

T L
> [t 2 [ el e ds = nale —1) - 1]

This inequality holds if, and only if, L < M, where M, is the positive root of

T
Y2

Therefore, if I » M, then r < L.

+1_6 M]

Proposition T For [ > M, the following two inequalities are true:

or(re)
Foslr) 217

Y
) = = ¢lrn)

where g(rp) = et —1 —rp.

FProof. From (10), proposition 6 and 0 < ¢ < ry, we obtain

t+ry
$u(t) = et ] € f(bra(s))ds

L

> et fr?” & f(dra(re))ds = [(dp(re))[1 — €7

6

(10)

(11)

(12)
(13)

(14}

For t = r, this inequality gives (12). From inequality (14), proposition 6, and ¢r{0) =0, we .
obtain

IV

no2 = [ (s = [ e fousds
]Ur ¢ dr(s)ds 2]0 ¢ F(dr(rp))(L — e=)ds

flou(re))le™ — 1 —r] 2 ¢r(re)g(rs)

v

m]
The fact that f is continuously differentiable, f(0) = 0, and g{-((}) =v > 1, imply that
there exists b > 0 such that
f(=) SV +1
z 2

for 0<z<b . (15)
The function g appearing in propesition 7 has the following properties:
0=0 9450 for r>0, T (r) =
g( ) — Y% :f; 7) 0o ? r—roog

Therefore, there exists a unique r. such that g(r.) = /b and g(rz) > /b, for rp > r..
This and mequahty (13) imply that

gl .
rp) < —— < b if rp>r. . (16)
$r(rr) gty b
Now, let r.. be the only positive root of
2 =1
r+41
This implies that )
V+1<1~e_r il rp>re . (17)

Lemma 2 Let ¥ = max{r.,7..} and L > My. Then ry, <7 independently of L.

Proof. Let us argue by contradiction assuming that ry, > 7. This and inequality (16) imply
that ¢r(rr) < b. Using (12) and (17) (since r;, > 7) we obtain

drire) -

— e 1 - |2

flérn(re)) v+1
But this inequality, and the fact that ¢r(rz) < b, contradict inequality (15). Therefore
Ty ST a
Lemma 3 Let L > M, and __

PN g
) Y1+ Y2
Then 1 < rp, independently of L.
7



Proof. Since rp < L (proposition 6) the function ¢y, is differentiable for ¢t € [-L,0]. Dif-
ferentiating expression (9) and using that f{z} < z for z € [—¥;,0] we obtain that, for
te[-L,0],

$r(t) —$(t) + f(olt -+ o))

~FGule) + S6ulire)) = 5 [ flalos

IA

Integrating this inequality in the interval [—I, 0], we obtain

i j Nds— [ ds < 18
~d1(- s = [ 7 flNds <k mde . (189)
Equation (9), the fact that ¢r(s) < 0 for s < 0, that 7, < L, and lemma 2 imply that
L-r —-L ~Ldre 3 -r —F
du(~L) = (e 4 [T e () ds} € —ehy € e

This and inequality (18) imply the inequality in the lemma. -

Lemima 4 There exist infinite sequences Ly, vy, ¢n, n = 1,2,..., with L, = 00 asn — o0,
such that the limits
w27 >0, and ¢, —=>¢ as n— o0

converge. Moreover, ¢, converges uniformly, on compact intervals, to a function ¢ having
the following properties:

- it is continvously differentiable and nondecreasing;
- 3(0)=0;

-1 S H(t) < v fort € IR;

- it is a solution of the trangition layer equation (1).

Also, ¢y, converges to é uniformly on compact infervals.

Proof. Let L = Ly, L, L, ... be an infinite sequence of values of L and rr,, ¢y, £ =1,2,...
be their corresponding sequences of 1, and ¢r. Propositions 2 and 3 imply that the sequence
r7, 15 bounded from above and below by positive numbers. The sequence ¢r, is bounded,
—71 < ¢, (€) <7, [t] £ &, and it is equicontinuous (the equicontinuity is a consequence of
estimates (7) and (8) that are independent of L and are also valid for ¢7). The remainder of
the proof of this lemma involves standard limiting arguments for sub-sequences of ¢z, and
g, using Arzela-Ascoli’s theorem and the fact that ¢y, , ri, satisfy the integral identity (9).
0 .

4 The nontriviality of ¢

Our goal in this section is to show that the function ¢ obtained in lemma 4 is nontrivial.

. This is a consequence of the following lemma.

Lemma 5 There exists M > 0 such that at least one of the following inegualities hold:
) M0, i) H(-M)<0

We make the following claims:

Claim 1:if ¢(—M) < 0 then ¢(r) > 0
Suppose this is false. Then ¢(f) = 0 for ¢ € [0,r], because ¢ is nondecreasing. But this
contradicts the fact that ¢ is a solution of equation (1) (lemma 4). Indeed, in this case the
theorem of uniqueness of backward continuation of solutions of (1) would imply #(t) = 0 for
all £ < 0, which is false.

Claim 2: if #(b) > 0, for some b > 0, then ¢{t) < 0, for t < 0.
In order to show this, let 2. = sup{¢|¢(t) = 0} > 0. Using that ¢ is a solution of equation
(1} we get ¢(t.) = f(d(t, + r)) > 0. Thus, ¢(t) < 0 for { < {,, because ¢ is nondecreasing.
This and the fact that #{0) = ¢ imply our claim.

Before proving this lemma let us use it to finish the proof of theorem 1. A consequence
of lemnma 5 and the two claims above is that

H—D)$) <0 dorall teRR. (19)
This, the bounds —7 < ¢{t) < 42, ¢ € R, and the integral equation satisfied by &,
o
o(t) = [ e fels et nds (20)
—c0

imply the limits in the staternent of theorem 1, namely

Jm ¢(t) =~y lim $(1) = 7

Indeed, using that ¢ is nondecreasing we conclude that the limits limy 4., |$(2)] def [¢(Loo)]
exist and are bounded by max{y,72}. So, we can take limits on both sides of equation
(20) to conclude that ¢(oo) = f(#({£co)). This, inequalities —y < ¢(—o0) < 0 and
0 < ¢{00} < 72, and hypothesis (H1) on f (see section 1) imply the above limits.

The only thing remaining in order to complete the proof of theorem 1 is to prove lemma 5.
This proof is the content of the rest of the paper.

Let us assume that lemma 5 is false. Then for any K > 0

léallx = I sup |énf2)f — 0 as n =00

H<K<Ln

Let Ny be such that L, +r, > K for n > Ni. Tor n > Ny we define a sequence of functions

tn I o R, I S -K K], as

aa(t) = %



Notice that [Ja,|[x = 1 and at least one of the identities oK) = =1 or 2,(+K) = 1 is
true. The function ¢, is differentiable for ¢ < (=L, L —r). Differentiating expression (9) we
find that in this interval ¢, satisfies

Enlt) = —dul(t) + F(Pult + 1))

This implies that x, Ix = R, n > N, are differentiable, satisly £,(¢) > 0, and also

En(t) = =2a(t) + vea(t + ) + R{|idallic, Talt + 7)), (21)

where R is a continuous function such that R{0,z) = 0 and, for £ £ 0,

R{¢, x) Y et (=) with g—(ﬂ) =v>1
13 dz
Equation {21}, the definition of B, and ||z, |jx = 1 imply that |iZs||5c are uniformly bounded
for n > Ngk. This, ||z.|lx = 1, the uniform boundness of T, and Arzela-Ascoli’s theorem
imply that there exist sub-sequences T'n;» Tn; that converge to r and x, respectively, as 7 — oo,
This, equation (21), and the fact that R([|¢,||x, 2(t + ma)) = 0 as n — oo uniformly for

[t} < K (because |{¢nl| = 0 as n — oo ), imply that z is continuously differentiable and
satisfies the linear equation

#(t) = —2(t) +va(t + r), for te[-K,K—r] (22)

The properties of 2, easily imply that ||z|[x = 1, & > 0, and z(0) = 0. These properties,
the fact that = is a solution of equation (22), and an argument similar to the one that lead

us to statement (19), imply that z(—)z(¢) < 0, for ¢ # 0, and #(0) > 0. Let us define the
function

y() Y —a(-t),  te[-K.K]
This function satisfies the equation

Bit) = +y(t) — vyt — r), for te[~K+r K], (23)

and has the following properties:

y20, (24)
y(0) =0, (25)
y(—tly(t) <0 for t£0 .- (26)

The following lemma contradicts our assumption that & > 0 can be chosen arbitrarily large,
thus proving lemma, 5.

Lemma 6 There ezists M > 0 such that if K > M then any solution y:[-K,K] = IR of
equation (28) cannot simultaneously satisfy properties (24), (25), and (26).

10

Tn order to prove this lemma we need some definitions from the theory of linear delayed
differential equations (see [2], [1]). The characteristic equation related to equation (23) is

POYE A —14ve™ =0 . (27)

All the roots of the characteristic equation are on the left hand side of a vertical straight
line {¢) in the complex plane. The fundamental solution ¢ of equation (23) is defined as the
one that satisfies £{) = 0 for ¢ < 0, and £(0) = 1. For 0 < < r it is explicitly given by
£(t) = €. The Laplace transform of ¢ can be easily written in terms of P as

u) /Ume‘“‘f(t)dt: P(lu) : (28)

The function £ is defined for u complex and is analytic on the left hand side of the line
{c). Using the inverse integral for the Laplace transform (see [2], [1]) one can show that the
fundamental solution has the following integral representation in terms of P

1
£(1) = fm o (29)

7 Y max{ReM|P()}) =0} . (30)

There is at most one pair of complex conjugate roots Ay, A of (27) (and only one root when
Ay is real) such that Red; = 7. In the case that A; is not real, then A;,}; are simple reots
of the characteristic equation (27}. Let

Let

7' = max{ReA|P{A) =0, A#£X, X#XI<n . (31}

Using (29) it can be shown [2], [1] that if < 0 then there exist 0 < a < —7, and & > 0,
such that
|E(2)] < be™™, t>0 . (32)

Ifn 2 0and Ay = 9+ wi, w # 0, then there exist constants ¢ # 0, b > 0, ¢ € [0, 27), and
d € (%', n)}, such that

|E(8) — ae™ cos(wt + ¢)] < be', t=0 . (33)

This estimate is a consequence of formula (29) and the residue theorem (see [1] p. 116, ex.1).
For —K +r <t' <t < K the following “variation of constants formula” (see {2], {1]) is valid

y() = ()t -t — v : i —1'—s—ry(t"+s)ds . (34)

Using this formula and the above properties of £ we will prove lemma 6. In order to simplify
the exposition we break the proof into three propositions.

Proposition 8 Assume that 5 defined in (30) satisfies 1 < 0 and thal equation (23) has a
solution y salisfying (25) (26) and such that § >0 fort € [0,7]. Then there is My > 0 such
that y(KY < y(r) for all K > M. In perticular y cannot satisfy (24) if K > M.

11



Proof. The variation of constants formula (34) with ¢’ = r and inequality (32) imply

y(r) {|§(t -7 +V]_c: |€(t—r—s5— r)|ds}

y(r)be~olt-r} {l + u/o eu(s""”)ds}

-r

= y(rjbeelt-") {1 + g(e‘” - 1)} ,

y(t)

1A

TN

where y{r) > 0. Now, there is M, such that
be~ =) {1 + E(e‘" - 1)} < be~olMi=7) {1 + Z(e“’" - 1)} =1
for all K > M,. This implies that y(/') < y(r). This proves the proposition. O

Proposition 9 Assume that  defined in (30) satisfies 3 > 0 and that )\, = 17 4+ wi with
w > 0. Moreover, assume that equation (23) has a solution y satisfying {25) and such that
y(t) <0 fort € [-K,0). Then there is My > 0 such that for all K > M, there is t € (0, K]
such that y(t) < 0. In parlicular, y cannot satisfy (26) if K > M,.

Proof. In this case equation (33) implies that
[e™E(t) - acos(wt + ¢)| < b=t

This equation, the fact that % —d > 0, and £() > 0 for ¢ € [0,7], imply that there exists a
t =1, > r such that {(t.) = 0 and £(¢) > 0 for ¢ € [0,t.). We claim that

=0 => £1t)<0 for € (Ltut+r) . (35)
Indeed, ¢ satisfies equation (23) implying that £(2,) = -~v€(ts —r) < 0. Therefore, £(%) is

negative in some interval (£.,d). I £(§) = 0 and § < t, +r then £(6) = —v€(6 — r) < 0,
which is absurd. So, ¢ > t. + r and £(2) < 0 for t € (.4, + 7).
Now, let us take M, =1, +r and K > M,. The variation of constants formula (34) with

=0 and t = {, + r implies
0
Yo +r=—v { £t — s)y(s)ds

Using that y(s) < 0 for s < 0 and £(t) < 0 for ¢ € (t+, s + 1), we obtain that y(t. + ) < 0.
[m]

Proposition 10 Assume that n defined in (30) satisfies n > 0 and that A1 = . Moreover,
assume thai equation (28) has a solution y setisfying (24) and (25). Then there is My > 0
such that y{—r) > 0 for all K > Ms. In particular y cannot satisfy (26) if K > M.

Proof.
Let ¢ : [0,00) — IR be the function defined as

def '

()% ¢t ~v [ gt~ 5 ~r)ds (36)
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Supose that there exists T > ( such that

¢fy <o, . (37

Let us take M = T+2r and K > My. The variation of constants formula (34) with ¢ = —F—r
and ¢ = ~r implies

V) = (=)@ v [ €F s =T =4 5)ds . (39)

Using that y is nondecreasing and that y(0) = 0 we obtain that y(~F—r+s) < y(—t-+) <0

for s € [~r,0). This, equation (38), and (37) imply that

V=) 2 y(-T= 0 {60 ~v [ -~ rias) = y(T- 1)@ 2 0

Therefore, in order to finish the proof of this proposition we just have to show that there
exists ¥ such that (37) is true. This is done in the following.
Let us define the function ¢ : (5,00) =+ IR as

o def [ _ '
= e(t)dt .
DN (39)
This definition and definition (36) of ¢ imply that

{(u) /0 °° e (t)dt
/:o e~ E(t)df — Vf:’]: e — 5 — P)dads
é(u) - Vf_or /DOO et — s — r)dids

“ 0 f
= (;'(u)—uf guotr) [% u E(1)dt'ds

—r —s—r

£(u) {l - M} = @[u —v+rem™], {40

U (12

[

Il

where é(u), u € (n, 00), is the Laplace transform of £ restricted to the infinite interval (n,00).
Equations (28) and (40) imply that

(f(u) = @[u —v+re ™) = fu — b e {41)

wP(u)
Notice that
Pluy>0 for u>np , (42)

because 7 is the largest real root of P(u) = 0 and P(u) — oo as u ~» oo. Using that
P(n) =0, P is continuous, and v > 1, we obtain that there is an ¢ > 0 such that

u—vtre ™ =Plu)-r+1<0  for ue(ngng+te . {43)

Combining equations (41), (42), and (43) we obtain that {(n+¢€) < 0. This and the definition
(39} of { imply that ¢(t) must be negative on some interval, which implies the existence of

1 as stated in (37). : |

Propositions §, 9, and 10, exhausts all the possibilities for 5. Therefore lernma 6 is proved

and so is theorem 1. O
13
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