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Abstract

In this work, we use a set of constant perturbations to rapidly direct a chaotic
system to a desired state or target. This procedure was applied to the one-dimensional
Logistic map, and to the two-dimensional Hénon map. Using the Logistic map, we
show numerically that the resulting trajectory (from the starting point to the target)
goes along the stable manifold of the target. Also, using this map, we show the
procedure robustness when noise is introduced. The targeting procedure is usually
applied for experimental systems only if this system is one dimensional or for those
approximately modeled by a one dimensional equation. However, we apply the method
for a three dimension dyuamical system, the Double Scroll circuit, without using any
one dimensional model.

1 Introduction

Since chaotic systems have semsitivity on initial conditions, small perturbations lead to
enormous changes in the system trajectories. In reference [1] the authors applied small
perturbations on a parameter to control an unstable periodic orbit. Since then, many other
methods to control chaos have been proposed (2], {3], [4], [3], [6]-

One of these several ways chaos can be controlled is by applying a resonant perturbation
that can originate a stable phase locked trajectory [7], [8], [9]. In some cases, the resonant
amplitudes to eliminate chaos are large and, therefore, the perturbation modifies the original
dynamics. Although this modification would not be always tolerable, in some cases it may
be still convenient. Thus, new orbits introduced by the perturbations may be used to drive
the system.

A system with a periodic behaviour can unot reach some essential regions not located
along the periodic orbit. Also, it may be necessary a large amount of time requisited for
a chaotic system to reach some point. In addition, to apply some methos of chaes control
the trajectory of the systemn to be controlled needs to be on some desired point, namely, in
the vicinity of the unstable periodic orbit one wants to control. So, targeting methods have
been proposed to rapidly direct a chaotic system to some specific location.

The idea of targeting a chaotic system is owned to Shimbrot and others [10], who used
the Hénon map to demonstrate their method. This method considers one determined initial
perturbation, which will divect a starting point to a desired target. If the dynamical equations
are unkown, the method can only be used if the system can be one dimenstonally modeled
[11], f12].

For the Lorenz system, a three dimensional flow with one positive Lyapunov coefficient,
Shinbrot applied his method to direct flows to stationary states [13]. However, this method
is not useful if the system is high dimensional, that is, the system has more than one positive
Lyapunov exponent [14] and [15].

So, in {16}, it is presented a method that can be applied to high dimensional systems
with known equations, considering one determined peturbation, for each positive Lyapunov
coefficient.

These previously mentioned methods do not focus the question about how to target most
efficiently a chaotic system. In the reference [17] the authors use optimal control theory to
target the Hénon map, in the fastest possible way by applying n definite perturbations.

Other works about targeting chaotic systems can be seen in [18],[19].

The method we show in this paper does not need to use prescribed amplitude perturba-
tions, but rather a sequence of constant perturbations.

In section 2 we present a general idea of this method applied to maps.

Using the Logistic map, in section 2.1, we explain geometrically how the perturbation
targets this chaotic system.

In section 3 we use our method to create a new orbit that was not present in thie original
(non perturbed) chaotic attractor and, then, this orbit is controled using the OGY method
[1].

In section 4 we show how to target a three dimensional flow (the Double Scroll circuit
(20]) without the necessity of modelating the system or using the previous knowledge of the
dynamical equations.

In section 5 we use our method to optimize the OGY method of control {1].

2 Targeting Maps

Suppose that you are dealing with a one-parameter map, represented by the equation
Xnq1 = F(b, X;;) whose parameter b can be changed by 8. So, the parameter b can assume
three values, b+6 , b, and b - § . We want to show that with these three possible parameter
values we are able to direct a starting point X; to a target located at the vicinity of X;, by
applying N times these perturbations on the b parameter.

To understand the idea of directing a starting point X, to the vicinity of X;, we perform
the following steps. Initially, we apply the map F to the point Xg, using the three possible
values of the parameter b. So, we get from the first iterate three new points: X,= F(b + 4,
Xg), Xz = F(b, Xﬂ), X3 == F(b - 6, Xo)

We keep performing this procedure, by applying the map F, to each of the three points
obtained from the first iterate (X;, Xo, X3), for the three possible parameter values. Thus,
at the second iteration we get nine points (Xy, ..., Xq). Furthermore, for the N* iterate



we can gel 3Y points. 1T one of these poinls reaches the vicinily of the Larget, that is, the
interval given by [X; - €, X; + €], then we stop iteraling the map.

The set of perturbations that direct the point Xy to the target is indicated in figure 1,
which indicates a path to reach the target at X, after N=2 iterations,

C - ”r? B
Xﬂ
Nl p X, | Group 3
[ -5 X,
+B X, +8 X,
% X 0
5 2 X, Group 2
8 ~
X, X
Starling polint ]
Xy | < Target
X
2 Group 1
X,

Figure 1. The path to reach the target, and the value of the constant perturbations (48 ,0,
—d} at each iteration. The starting point is indicated by Xy, and the target that can be
 achieved by a set of two constant perturbations (-4, +6).

When N is high the amount of memory needed to keep all the points that form the 3V
paths is large. So, we developed a numerical procedure to avoid this problem. In fact, the
only information we need to know is the 3" points obtained at the N* iteration.

In figure 1 we see the paths from the starting point X;. We put together the three points
(X1, X, X3) obtained from the point X of the first iteration and call this set group 1.
So, group 2 is formed by the three points (X4, X5, Xg) obtained from the point X, of the
first iteration and group 3 is formed by the other three points. The peint that has the
highest index inside a group was obtained from the iteration of the former point applying a
positive parameter perturbation (--§), and the point that has the lowest index was obtained
applying a negative parameter perturbation (—d). Thus, the index of this points represents
the position of the point in a vector we use to store the 3V peints.

This figure shows paths only up to the iteration N=2. However, for NV higher than two,
the set of applied perturbations S (to reach the target) is easily obtained by knowing only
the index H of the point that reach the target X = X and the number N.

Next, we show how to defermine the set S. Thus, imagine that the target was reached
by the point Xy at the N** iteration and this point belongs to group M.
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Figure 2: The time (n = 2446) that the Logistic map expends to be directed from the point
Xg = 0.33 to the target (X;=0.816).

The group M (formed at the N** iteration) is obtained by the iteration of the point
X, obtained at the N — 1% iteration. This point, depending on the perturbation (+6, 0,
—4d), generates the points (Xanr.q,Xaar_1,X3a—2) that form group M. So, depending on the
position of the point Xy in group M we know the value of the perturbation. For exemple,
if Xpy=Xzpr_a, we know that the point X, of the iteration N — 1 was iterated using the
perturbation —é.

To know how the point X;r at the N — 1®* iteration was obtained, we have to find out
the group L in which this point belongs and its position inside this group.

S50, in figure 1 the set of perturbation is S={ —4, +6 }.

2.1 'Fargeting the Logistic Map
The equation of the Logistic map is

Xn-H = bfYn(l '"' Xn) {1)

where b is the control parameter.

Following the procedure introduced in the previcus section, we choose to change the
parameter b = 3.78 by an amount § = 0.005, with € = 0.0001.

The necessity of the targeting procedure can be seen in figure 2, where a map (1) trajec-
tory takes 2406 iterates until the trajectory goes from X, = 0.33 to X; = 0.816. However,
using our method, after only eight iterations through the set of perturbation S={0,+4, +¢,
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0,44, 0, 0, -6} the trajectory reaches the same target located on the point X;=0.816, as
shown in figure 3. We should emphasize that the perturbed trajectories reach points that
are never visited by the attractor of the map (1) with constant b, as the point X; = 0.750,
which can be reached from the point Xg = 0.5 in 10 iterations, for b=3.78.

Figure 3 shows the trajectory obtained (solid black line) by applying the determined
sequency of perturbations . This trajectory is very close to the stable manifold (dotted gray
line) of the target X;. This means that the driven trajectory from the starting point to the
target is along the stable manifold of the target. Therefore, the stable manifold of the target
and the targeting trajectory can hardly be distinguished. :

1.0
x
£ i
oa b \ 3 Pl i target
" +8 H o b i
\+b !
0 ; E
06 '10 ¥ 0
X,. "_I l: ‘.\. !-
/ . I8
04 | ¢ v b
: Li4h ¥
0.2 \ ¥
starting point %
a.c : ‘ :
0.0 2.0 4.0 6.0 8.0
lteration - h

Figure 3: Using the targeting method we can direct the point Xo=0.33 to the target X ;=0.816
in only 8 iterations, applying a set of 8 perturbation to the Logistic control parameter b=3.78.
The amplitude perturbation is §=0.005. The trajectory (solid black line) is very close to the
stable manifold (dotted gray line) of the target.

2.2 “Experimental” Application

To simulate the application of our method to an experimental situation we add a noise
term in the right side of equation (1), and we use the this new system as a generator of
experimental data. As previously introduced, we change the parameter b by making it
assume three values, by=b-+0, by=b, and by=b-6. Thus, we collect three sets of data from
equation (1) randomly perturbed.

Each of these three trajectories is fitted by a polynomium in the form Q(X, 1, §, k)=iX?
4+ jX + k. So, we refer to the map (1) randomly perturbed (with a noise amplitude 0.005)
by the letter F and then using data from the map F(X,b;) we obtain the fitted polynomium
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(31, from the map F(X,b,) we obtain G2, and from the map F(X,bs) we obtain G3. The
fitting polynomiums are )

G1 = —3.79060980.X > + 3.79090945X ~ 0.00029370
G2 = —3.78018933X 2 + 3,78024169X — 8.11875400 10~° (2)
G3 = —3.77170930.X % + 3.77199330X — .00049564.

and, in this case, b=3.78, §=0.01 and X;y=0.3300000.

So, for calculating the set of perturbations, we calculate the set which directs the trajec-
tory to the target, considering the fitting maps G1, G2 and G3. Thus, the starting point X,
is direct to the target X;=0.816, by applying the set of perturbations (-4,0,+4,0,+6,-6,0,-4).
The trajectory reaches the point X3=0.8171709 which is very close to the desired point.

3 Targeting the Hénon Map

The equations of the Henon map are
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Figure 4: The targeting method applied to the Hénon map. Without using the targeting
6062 iterations are necessary to direct the starting point to the target. Using the targeting
method only 10 iterations are enough.

Xn.H_ =a- 03Yn - Xn
Yo =X, (3)



In this case, we consider that the control parameter a=1.40 ecan be changed by an amount of

6=20.01. So, the parameter a can assume the values a=1.39, q=1.40, and a=1.41. Then, one
example of the use of our method is considering the starting point P;={0.4772, 1.1880} and
the target at the point Py={0.1371 , -1.3280}; G062 iterations are necessary for the trajectory
to go from the point P; to the vicinity of P;. However, with our method, the trajectory
reaches the target in only 10 iterations, by applying the map (3) with the following set of
control perturbations: (-0,+6,-+8,-6,+8,1-5,46, 0),-6,4-6). This example can be seen in figure
4.

The same initial and final points were used in (10). In that work 12 iteration were
necessary to direct the initial point to the target.

it is also possible to use the targeting method to create unstable periodic orbits. To do
5o we choose the starting point as the target. Next, two examples are presented.

For the first application we choose the starting point shown in figure 4. As this point
is outside the region of the original attractor, any periodic orbit that passes through this
point is a new orbit. Thus, we want to direct the orbit from the starting point X;={ 0.4772
, 1.1880} to the same point, with a precision € = 0,005 and amplitude § = 0.02. The set of
perturbations to target this point is S={+6, 0, +4, +4, +4, 0, +4, +3, 0}. So, we create a
new unstable periodic orbit with period p=9.
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Figure 5: The new period eleven unstable periodic orbit created by applying our targeting
method to the system (3).

As the second application, we create an unstable periodic orbit that passes close to a
point present in the non-perturbed Hénon’s attractor, Thus, we apply our target method to
direct the trajectory from the point X;=={0.391806 , -1.216145} to the point X ¢ = X; with
a precision ¢ = 0.0005 and an amplitude § = 0.01. To target this point we need to apply

7

eleven perlurbations on the parameter a. The set S={-0, 40, +4, -8, -4, -8, +§, +4, 0, -6,
0}. This period-11 orbit can be seen in figure 5.

However, since this orbit is unstable, we would have to apply a new set of perturbations
for each cycle. A more convenient way for stabilizing this orbit is to apply the QGY method
(1], adapted to the control of this large-periodic orbit {see [21]).

The control of this orbit is shown in figure 6 where we plot the evolution of the variable
Xy Infigure 7 we see the value of the parameter q, for each iteration. During the targeting,
@ can only assume the values a+4, a or a-6. When we start applying the OGY method, a
small correction is done, at each iteration, to the value of the parameter q.

ion 150

Figure 6: Controlling the orbit of figure 5 by applying the OGY method. In this figure is
shown the variable X,, of the system (3).

4 Targeting fluxes - the Double Scroll Circuit

The Double Scroll circuit (see figure 8) is an antonomous non-linear electronic circuit

composed by two capacitors, C, and Cs, one indutor, L, two linear resistor, R, r, and a |

nonlinear resistor Ry . The circuit dynamic is deseribed by

ChdiVer = (Vea — Ver) /R ~ inr{(Va)
Cad: Voo = (V01 — VCz)/R + i, (4)
Ldyiy, = —Vga ~ g(t)

i
i
;
f
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Figure 7: Using the OGY method, small adjustments are done on the amplitude value & to
control the orbit of figure 5.

where Vi1, Vs, and iy, are the dynamical variables and represent the voltage across C),
the voltage across Cy, and the current through L, respectively, and ¢ is tension across r,
which is the external perturbation we consider to apply our targeting method.

The term iyg is the characteristic curve of the non-linear resistor Ry and is the
piecewise-linear function represented by the equation

. 1
ivr =moVer+ 5 (me —mo)(| Vor + By | — | Vor = By |) (5)

The equations (4) were integrated using the following parameters,

=07  mg=-05 m=-08 B,=10 (6)

Figure 9 shows the Double Scroll chaotic attractor of (4) for ¢ = 0.
In the chosen example, we want o direct the trajectory of the system (4) to the target
located at the point

Vi =-1500 Vi =028 i =179 (7)

NN

R H

Figure 8: The Double Scroll circuit composed by two capacitors, C; e C,, one inductor, L,
two linear resistors, R e r, and one non-linear resistor Ryy .

with a precision of ¢;=0.001.

To apply our method to a 3-D flow, some adjustments to the original method are neces-
sary. For a map, the perturbation is introduced at each iteration, yet for a flow we should
consider a time interval T, for which the perturbing parameter, g, is not zero.

We consider that both, the starting point and the target, are on a surface o (a Poincaré
section [14]), positioned at the plane determined by Vgy=-1.5 (the line in figure 9)).

The number of times the trajectory crosses the section ¢, is J. As done in maps, we
should consider a number of times N we want to apply the perturbing parameter g, which
as before can assume three possible values: 48, 0, -6.

Intending to simulate a real experiment, we do not set up the system initial condition as
it can be done for a system of known equations. So, before starting to apply our method, we
must force the system (4} to oscilate in a periodic way. The advantage of this procedure is
the facility of determining the starting point, since any periodic orbit crossing the Poincaré
section can be chosen as our starting point.

So, initially, we choose a perturbation g{f) that forces the system {4} to oscillate peri-
odically. This is done by making the perturbing parameter ¢ assume the form of 2 sinoidal
wave of amplitude V, and frequency f:

q(t) = csin(2r ft). ®
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Figure 9: The non perturbed Double Scroll attractor of the system (4) projected on the
variables V1 and V. The line represents the chosen Poincaré section we consider to apply
our targeting method.

It is possibie to supress chaotic motion of the system (4) by perturbing it with q given
by {8) (chaos is suppressed by phase-locking) [7], [8], and [9]. Then, we choose the frequency
f = 0.3 and amplitude ¢==0.022 to make the system (4). to behave periodically.

This point chosen as the starting point X; is

Vi =-15000 Vi, =03361 4 = 2.0289. ()

So, we perturb the system (4) using {8) until we verify the trajectory is in the vicinity
of the starting point. This happens when the trajectory crosses a three-dimensional sphere
with center in the point X; and radius e; = 0.0005. When that happens, we start applying
our method for a set of parameters (T, N, §} previously chosen, and the perturbation is not
anymore given by equation (8), but is rather a series of constants ¢ as introduced before.

Now, we estimate the number N of perturbations we apply into the system. First, we
analyse the area the attractor occupies on the Poincaré section. We find this area (the
maximum length plus the maximum width of the attractor on the section) to be A =0.0091.
Thus, the minimum number N is found by

A
E‘T\r— < €§7 {10)

leading us to N=8.
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Now, we determine the time interval 7. For that , we verify that the approximated time
interval the trajectory spend to return to the point X; (on the Poincaré section) is 7 = 16.
Then, the time interval T is obtained from

,
T=—
N (1)

what give us T=2.

In this work we choose §=c=0.022, that is, the sinoidal wave (in the phase locking) and
the targeting perturbation have the same amplitude. As a matter of fact, the amplitude §
does not determine the success of the targeting.

Summarizing the application of the targeting method to a flux we first stabilize the
system until the trajectory crosses the point X;, by applying a sincidal wave (the phase-
locking targeting phase}. Then we apply NV perturbations, each one during a time T". After
that, we still keep integrating until the trajectory crosses the Poincaré section and reaches
the target. If so, we consider J as the number of times the system crosses the section after
the perturbations are applied.

For a targeting time T=2, N=8, and §=0.022, we found that the target can be reached
by applying the following sets of perturbations: {—6,-8, 0,0,-4, 0, 0, §} with J=5 and the
set {+6,-d, +6,+8,0,-6,—8, —6} with J=6. For higher number of perturbations, we find also
many more ways to reach the target.

However, we can use other parameters instead of the ones we have estimated. Thus if
we consider the same N=8, §=0.0022 but T=1.2, we find the following perturbations that
direct the system to the target:

{_51 0: _6: _6: hd) _6, +63 _6} (12)

with J=2. In fignre 10 we show the resulting trajectory for this set.

5 Application of the Targeting Procedure

The system (4) was controlled by applying a perturbation q given by (8). But, there
are other ways of doing that, as is the case of the OGY [1] method. With this method it is
possible to centrol a chosen unstable periodic orbit, as the one that can be seen in figure 11.
However, this method requires the system trajectory to get closer to the periodic orbit to be
controlled. So, we can use our method to rapidly direct the system (4) to a point near the
chosen unstable periodic orbit. After we reach the vicinity of this orbit, we apply the OGY
method to stabilize this orbit. The control of the unstable periodic orbit (figure 11) by the
OGY method can be seen in figure 12.

The orbit can be controlled by applying small perturbations in a previously chosen pa-
rameter. To apply the OGY method, we choose the parameter g to be varied. Thus, after
the system (4) reached the vicinity of the unstable periodic orbit on the Poincaré section
Vo1=-1.5, we vary g by dg, caleulated by the equation

12
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Figure 10: Application of the targeting method to a 3D flow (the Double Scroll circuit).
To apply the method to an experimental system we should set up the starting point. That
is done hy phase locking the cirenit with an external sinoidal perturbation (trajectory rep-
resented by the large black line). After that, we apply the targeting method to rapidly
direct the system to the target applying 8 perturbations (trajectory represented by the thin
- gray line}. On the surface « is represented the region we can reach from the starting point
- applying different sets of 8 perturbations.

g = (0.1649, 0.1818)(¢, — X5) (13)

where £ represents the irajectory position {a vector representing the variables Vi, and ir)
when it crosses the Poincaré section, and Xy represents the Voo and iy coordinates of the
target. So, each time the trajectory crosses the section we change the value of the parameter
q by using equation (13). A detailed manner of obtaining the formula (13) can be found in
reference [1].

The point given by equation (7) was chosen as the target because it is in the vicinity of
the crossing between the unstable periodic orbit {(shown in figure 11) and the section ex. So,
we can use our method to direct the system (4) rapidly to the vicinity of the this orbit, and
then apply the OGY method. The result is shown in figure 13 .

n this figure we first apply the sinoidal perturbation to induce the phase-locking. Then,
when the trajectories reaches the starting point we apply our method to direct it to the
target (7) (large black line). When the target is reached, we apply the OGY method to
control the unstable periodic orbit (gray line)

In figure 13 we show this control using the time evolution of the variable Ven(t), indicating
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Figure 11: The non perturbed Double Scroll circuit and one of the infinjte unstable periodic
orbits embbeded in the attractor.

all the phases, the phase-locking, the targeting procedure, and the control of the unstable
periodic orbit.

6 Conclusions

We showed that the Logistic and Hénon map, and the Matsumoto's system can have
their irajectories rapidly directed from a starting point X; to a chosen target by applying a
sequency of IV constant value parameter perturbations. In fact, the generic parameter pis
allowed to assume only constant values with the advantage thal the amplitude perturbation
& can have any, but not very small, value. In this article only three possible values p + &, p,
and p - & are considered. However, the higher is the number of the constant perturbations
the faster the target is reached.

To determine the sequency of N perturbations that we must apply to the parameter, to
directs the starting point to the target, a large amount of memory is needed. To avoid this
problem, we developed a numerical that requires only the 3" points that are generated at
the Nt iteration.

The chosen sequency (responsible to make the target to be reached) among the other 37
possible ones, may not be unique; however, any of these non unique sequencies makes the
system trajectory to evolve along the stable manifold of the target.

The method may be experimentally applied as showed using the noisely perturbed Lo-
gistic map.

With the targeting method we can create new periodic orbits that are not present in the

14



", Controlled (unstable perlodic) orbit

04 - t R aa
= Walting for
A 4/the system
| to reach the]
vicinity of
0.2 tha unstabls
periodic
orbit.
g
> 0.0
-0,2 +
04 L——n - :
4.0 -3.0 -2.0 -1.0 0.¢ 1.¢ 2.0 3.0 4.0

:_ Figure 12: The stabilization of the unstable periodic orbit by applying the OGY method.
{Before applying the OGY method we should wait until the circuit reaches the vicinity of the
qunstable periodic orbit.

{attractor of the non perturbed system. Even though these new periodic orbits are unstable,
|their stabilization is possible by applying the method QGY for controlling chaotic behaviour.
| The targeting method is applied to the Matsumoto’s system that is a three dimension sys-
ftem of equations. Some adaptations to the original aproach, applied to maps, are introduced
jas the number N of perturbations that must be previously estimate.

| Intending to simulate a real experiment, we do not set up the system initial conditions as
it can be done for a system of known equations. However, before starting to apply our target
imethod, the system must be placed at some starting point, Thus, to do this, a resonant
Isinoidal perturbation is applied to the system, in a manner that its trajectory becomes
jperiodic by phase-locking, and then, we consider the starting point as the cross between the
jperiodic trajectory and some chosen Poincaré section.

To increase the performance of the OGY method of control of chaos we can apply our
ttargeting method. Since the OCGY method requires the system trajectory to get closer to the
periodic orbit to be controlled (fact that sometimes takes a long time), we use our method to

rapidily direct the system to a point located at the vicinity of the chosen unstable periodic
lorbit.

Acknowledgments: The authors thank the discussions with Dr. R. Pakter, K. Ullmann
(IF-USP}, and the computacional assistance of Dr. W. P. de S4. This work was partially
supported by FAPESP and CNPq.
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Figure 13: The targeting method is used to rapidly direct the circuit to the vicinity of the
unstable periodic orbit. So, we set up the initial condition by phase locking the circuit
(trajectory in a thin black line). After, we apply the targeting method to direct the circuit

to the target (trajectory in a large black line). Then, we apply the OGY method, stabilizing
the unstable periodic orbit (trajectory in a gray line).
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Figure 14: Targeting the system {4} and then controlling the unstable periodic orbit {(shown
in figure 11) by applying the OGY method.
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