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Abstract

We study the spin factor problem both in 341 and 241 dimensions which are
essentially different for spin factor construction. Doing all Grassmann integra-
tions in the corresponding path integral representations for Dirac propagator
we gel representations with spin factor in arbitrary external field. Thus, the
propagator appears to be presented by means of bosonic path integral only. In
3+ 1 dimensions we present a simple derivation of spin factor avoiding some
unnecessary steps in the original brief letter (Gitman, Shvartsman, Phys.
Lett. B318 (1993) 122) which themselves need some additional justification.
. e I this way the meaning of the surprising possibility of complete integration
over Grassmann variables gets clear. In 2 + 1 dimensions the derivation of
« the spin factor is completely original. Then we use the representations with

spin factor for calculations of the propagator in some configurations of ex-

*On leave from the Tastitute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

teriral fields. Namely, in constant uniform electromagnetic field and in its

combination with a plane wave field.
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I. INTRODUCTION

Propagators of relativistic particles in external fields (electromagnetic, non-Abelian or
gx?aéaitat,imml) contain important information about the quantum behavior of these parti-
cles. Morcover, if such propagators are known in arbitrary external field one can find exact
one-particle Green fimctions in the corresponding quantum field theory taking functional
integrals over all external fields. Dirac propagator in an external electromagnetic field dis-
tinguishes {rom that of a scalar particle by a complicated spinor structure. The problem
of its path integral representation has attracted researchers’ attention already for a long
time. Thus. Feynman who has written first his path integral for the probability amplitude
in nonrelativistic quantum mechanics [1] and then wrote a path integral for the causal Green
function of Klein-Gordon equation (scalar particle propagator) [2], had also made an attempt
to derive a representation for Dirac propagator via a bosonic path integral [3]. After the
introduction of the integral over (irassmann variables by Berezin it turned to be possible to
present this propagator via both bosonic and Grassmann variables, the latter describe spin-
ning degrees of freedom. Representations of this kind have been discussed in the literature
for a long time in different contexts [4]. Nevertheless, attempts to write Dirac propagator
via only a bosonic path integral continued. Thus, Polyakov [6] assumed that the propagator
of a free Dirac electron in D = 3 Enclidean space-time can be presented by means of a
bosonic path integral similar to the scalar particle case, modified by so called spin factor
(SF). This idea was developed in [7] e.g. to write ST for Dirac fermions, interacting with
a non-Abelian gauge field in D-dimensional Fuclidean space-time. In those representations
SE itfvlfwas presented via some additional hosonic path integrals and its y-matrix structure
was not defined explicitly, Surprisingly, it was shown in [9] that all Grassmann integrations
in_the representation of Dirac propagator in an arbitrary external field in 3 + 1 dimensions
can be done, so that an expression for SF was derived as a given functional of the bosonic
trajectory. Having such representation with SF, one can use it to calculate the propagator

in some particular cases of external fields. This way of calculation provides automatically

an explicit spinor structure of the propagators which can be used for concrete calculations
in the Furry picture (see for example, [10,11]).

In the vecent work [13] the propagator of a spinning particle in an external field was
presented via a path integral in arbitrary dimensions. It turns out that the problem has
different solutions in even and odd dimensions. In even dirmensions the representation is just
a generalization of one in four dimensions mentioned above. In odd dimensions the solution
was presented for the first time and differs essentially from the even-dimensional case. Using
the representation in odd dimensions one can derive an expression for S doing Grassmann
integrations similar Lo the four-dimensional case [9].

In the present paper we continue the consideration of the problems related to the SF
conceplion.  Namely, we discuss derivation of SIY both in even and odd dimensions on
the examples of 3+ 1 and 2 + 1 cases and then we use the path integral representations
with SF o calculate the propagators in some configurations of external fields. In 3 4+ 1
dimensions we present a simple derivation of SF avoiding some unnecessary steps in the
original bricl letter [9] which themselves needed some additional justification. In this way
the meaning of the surprising possibility of complete integration over Grassmann variables
gets clear. Then we use the representation with SE for calculations of the propagator in
a constant uniform clectromagnetic field and its combination with a plane wave. Due to
the fact that this way of calculations provides antomatically an explicit y-matrix structure
of the propagator, the representations obtained differ from those found by means of other
methods, for example differs from the well known Schwinger formula in the constant uniform
electromagnetic field. To compare both representations we prove in the Appendix some
complicated decompositions of functions on the y matrices. In 241 dimensions the derivation
of SF is completely original. We calculate then the propagator in these dimensions in
constant electromagnetic field by means of the representation with SF. The result is new

and cannot. be derived from the 34 [-dimensional case by means of a dimensional reduction.
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II. SPIN FACTOR IN 3+ | DIMENSIONS
A. Doing integrals over Grassmann variables

The propagator of a relativistic spinning particle in an external electromagnetic field

Au(e) is the cansal Green function 8%z, y) of the Dirac equation in this field,
[ (76~ gA) = m] 87 y) = —6'(r — ) (1)

where x = (&%), [y" . "], = 29" 0 = diag(l, =1, ~1,=1); p,r =0,1,2,3.
In the paper [8] the following Lagrangian path integral representation for the propagator

was ohtained in 3 + 1 dimensions,

=
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where :Y“ _ '\/57“. ﬁ‘; — :YU'?]?Z’?B — 7U,)/I,)(271 - 757 [‘.Ym , 771]1‘— — 2nmn’ m,n =

0,1,2,3.5, " = diag(l,—1.=1,=1,—1); 0" are auxiliary Grassmann {odd) variables,
anticommuting by definition with the y-matrices; «"(7), e(r), m.(r) are bosonic trajectories

of integration; ¥"(r). \(r), 7. (7) are odd trajectories of integration; boundary conditions
1(0) = 2, (1) = Tour, €(0) = co, ¥7(0) +"(1) = 0", x(0) = xo

take place; the measure M(¢) and Dy have the form

-1
. i ] . { L }

= xXp i = pidry, D = D T exyp i d , (3

/ Dpexp {2 /U op (lr}, D = Dy Ui’(ﬂ)w(l)ﬂ) Difrexp /0 Pntdr (3)

and ;%‘,; stands {or the left derivatives. Let us demonstrate that the propagator (2) can be
expressed only through a bosonic path integral over the coordinates . For this purpose one

needs to perform several funclional integrations, in particular, to fulfil all the Grassmann

integrations. Iirst, one can integrate over m, and my, and then using the arising é-functions

to remove the functional integration over ¢ and \,

S o i){ ] Tout 1 ‘i'LL U"“ .
SC= —exp iy — / deg M(q,)/ Dz / Dy / —mab® | dr
a0 | Jy S JY(0) (1) =6 Jo o

N 52 . )
X exp {f / {ﬁjl— - E,)ﬂm — g A, igea P bty = i } dr + a"',,,(l)u’v"(())}
) y &

=0

Then, changing the integration variables,

=€), (4

and introducing odd sources p,(7) for the new variables (1), we get

o | | - G e
S¢ = -5 \p{ ‘:)(0(”}‘/” deg Men) / D exp {ﬁg [.I_‘T):_I_‘ + %’_7”2 b it x A“]

S

S Se .
’(Jl()f' A 0“} [-’i . <_‘-.’_, + ,,,,) — (ii— + ()”)} l?{‘r./l.()]l , (5)
o Spy 3ps p=0,0=0

where

" l .
Ble.p, 0] = / DE exp {—f,,, * £
Je(oyre(y=o 4

aco ., . l(u

- f’ *-}T/u'*gl *»}:m/ *f }'/)n *5"} (6)

~1

Dt = DE [/;MW):U DE exp {75 *,s'”}] . ()

Here condensed notations are used in which F,, is understood as a matrix with continuous

indices,

]‘—,“/(MT,) = 1,,,,( ( ))‘S(T - T) (8)

and integration over 7 is denoted by star, e.g.

Lox € = / E(T)EMr)dT .

Sometimes discrete indices will be also omitted. In this case all tensors of second rank have
to be understood as matrices with lines marked by the first contravariant indices of the

tensors, and with colmns marked by the second covariant indices of the tensors.
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The Grassmann Ganssian path integral in (6) can be evaluated straightforwardly [14] to

be
N

Rir.p.0) = {Det [t~ (04(0)] ) exp {77 4 Wonn + I} 9)

™

where the matrices W{g) and U(g) have the form

U, (g
WIN”(.(/) - : (‘1)
0 =d(r
Z'{;w(.(/) B ’]uu(sl(’r - ge Uﬁw T, ’ (10)
and
,/” freat /)“ (j v f‘,,, * 01 ]r) = Ps.

The determinant in (9) should be understood as

Det {U—' (())H(q)} = exp Tr [logU(g) — logU(0)]

:(\[){—((,lt /U](/(/"R(.q’)*f} , (11)

where R{g) is the inverse to U(g), considered as an operator acting in the space of the

antiperiodic functions,

!
(;_T/Rxm(.(/lrs ™) = geoll, Ma(r)Raulglr. 7)) = nud(r = 7'),
Rulgllor) = =R (gl0,r),  Yre (0, 1) (12)

Substituting (9) and (11) into (5) aud performing then the functional differentiations with

respect to p,. we got

S | . ) e Tout 1 Jak kot
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where following notations are nsed,

1, .
H*,W = ;"ym”’ ”w/i- [\;u/ - 7];11/ + g{‘()’Ru,\(.{/) * 14"\ v (14)

&

[fur/ - [";L,\ * [\"\

v

and ¢ is Levi-Civita symbol normalized hy @M% =
Diflerentiation with respect to 07 in (13) replaces the products of the variables 8 by

the corresponding antisymmetrized products of the matrices 13", Finally, passing to the

propagator S and wsing the identities

7[,\7;,,7,] . "![“7‘] ‘),’,\[yvu]" o = 7:’)’[“’)'“], (15)
where antisynunetrization over the corresponding sets of indices is denoted by brackets, one
gets

) b ot )
S ot i) = 5 / deg / D M (c)®le,eo) exp {il]e, o]}, (16)
L J0 S

where Tlr, co] is the action of a relativistic spinless particle,
2

1
[, ) = — /() {—I— + - n? 4 g.’i‘f‘(.r)} dr, (n

Z(() 2

and ®[r, eg] is SI,

q)[LI', (\()l = [III -+ (2(()) l ok [\,,\ ( 0 - e ()n )

. 2,
_9 (mu, L I\',,\y'\) 1B.,a™ 4 m?(L(—,Q li:/,li“” S exp {M — / dg'Tr Q{g") *f} (18)
4 16 2 Jo

B. Propagator in constant uniform electromagnetic field

In the case of a constant uniform field (£, = const), which we are going to discuss in
this section, the functionals R, K and B do not depend on the trajectory z and can be

calculated straightforwardly,

1 ol
Rig) = 3 < {7 - 7') — tanh T——g—) expleogF (T =77},
34 2 r
N = (7] — tanh «——-—) exp (geo k'), B = tanh g (19)
9 ge€y 2
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Using then in (18) and integrating over 7 whenever possible, we obtain SI in the constant

uniform field,

oo PN 12 3 oo
Olr, o] = <d(‘t cosh g(;) ) {m [l — % (ta‘nh ge; )W ot

. l o'\ o N o 1 1
+ 1 <Lanh %)W (t nh q—2—~> 7"} + . </o ,rexp(geoFT)dT>

A F ) F
X <7] — tanh 9—(—;—) [(7; — tanh gr‘; > v — %7 <tanh ger >;w 0"“’} } . (20)

We can see that in the field under consideration SF is linear in the trajectory z#(r). That

facilitates the bosonic integration in the expression (16).
In spite of the fact that SF is a gauge invariant object, the total propagator is not. It is
clear from the expression (16) where one needs to choose a particular gauge for the potentials

A,. Namely, we are going to use the following potentials

[
— 5 B (21)

A, =
for the constant wniform field F,, = const. Thus, one can see that the path integral (16)
is quasi-Gaussian in the case under consideration. Let us make there the shift » — Y+ T,

with g a solution of the classical equations of motion

&1 . S
o= 0 & #,—geoFai’=0 (22)
b

subjected to the boundary conditions q(0) = 25, wq(l) = 2ou. Then the new trajecto-
ries of integration y obey zero boundary conditions, y(0) = y(1) = 0. Due to the quadratic

structure of the action /{x,e] and the linearity of SF in = one can make the following

substitutions in the path integral:

Iy + vy, eo] = Iea, eo] + Iy, eq] + %mz,

. ‘I){?/ + &, CO] - q)[il‘c[, C()] = \P(:routa Tin, 60)' (23)

Doing also a convenient replacement of variables p — 7’%—, ¥y = y\/€g, we get
it

w1 dey ren e
o= :2 JO —;—(2)— \p('routa Tin, (30)( Lt ol
] il
X / Dy / Dpexp {7 / <p2 — % - gewﬂ]) dr} . (24)
Jo : 2 Jo
9

One can see that the path integral in (24) is, in fact, the kernel of the Klein-CGordon propa-

gator in the proper-time representation. This path integral can be presented as

0 : i
8 . 2 — 2 j— al (Vr. —
/0 Dy / Dpexp {2 /U (p Y — geoyl y) (/T} =

Det (1,02 — geoF,0;) “H2 g i 1
T ! e - - 2 2 .
[ Det (1), 0?) /u Dy / Dpexp {2 A <7) Y ) (lr} '

Cancelling the factor Det (=1,,) in the ratio of the determinants one obtains

Det (0,02 — geg,,0,) _ Det (=620 + geg v LOr)

Det (1,,,02) Det (—61:02) (25)
One can also make the replacement
; . gl
102+ geo 10, — —19° 4 ;-4—21«‘2, (26)

where T stands for the unit 4x4 matrix, in the RHS of (25) because the spectra of both

operators coincide. Indeed,

22
—IP + gey IO, = exp (Q% ["T) (wl(')f + 2~4—(~0 ["Z> exp <~ _/_“[ > (27)

and zero boundary conditions are invariant under the transformation Yy = exp(mlz&)y.

Then, using (26) and the valuc of the frec path integral [8],

/ Dy /1);)(‘)(}) /dT P~ 4% 8127
T

related, in fact, to the definition of the measure, we obtain

2, 1 -1/2
w1 e e o1 [ Det (~102 4 £6 2y
S / — v Touts Tin, € e, o] . 4
8r2 Jo  of (outy in, co) € Det (~102) ' (28)

The ratio of the determinants can be written now as
Det (—10? 4 £ 12) ) G,
T A — . T Jd 0 — . 527
Dot (—172) =exp'h [hl ( 197 + 1 I ) In ( I()T>}

2 2,2 -1

= expTr [i‘-’ 72 /g dA ) <_If)3 n A—fﬁlﬂ) }
2 Jo 4
(u 2 2 )‘ -

= explr I / dA X Z mintf 4 20 f . (29)

nz=l
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The trace in the infinite-ditensional space in the second line of eq.(29) is taken and only

one in the 4-dimensional space vemains. Using the formula

w

5 ~1 1
} <7r2nz + hﬂz) =5, cothk — el

NgE

i

7"

»

which is also valid if  is an arbitrary 4 x 4 malrix, and integrating in (29), we find

Y 932 oo . F
Det (=107 + &0 1) sinh 2925
1 = det | ——%— (30)
Det (—152) ek '
Thus,
1
" I e sinh @gf\ "2 i
8= 77 ./u deg ((1(‘1‘ 1&”%[72__) W(Touts Tin, (30)6”[1“"601 , (31)

where the function W(a . T, o) is SF on the classical trajectory z4. The latter can be

easily found solving the eq.(22):

wa = (esplageo ) — )7 fexplgeo T (ow — 1) + explgeof Vi — Tou] - (32)

Substituling (32) into eqs.(23) and (31), we obtain

-1
1 0 sinh g2l 73
S s / de let, e (T puts Tin, €
3972 0 (( ¢ .([I" ( uts > 0)
1 : ., 1 ) geoF
K exp {“—I*I’uul ]”'l’m - _('07”2 - ﬁ(‘l‘(ﬁllf - -’rz‘n,)]'1 coth (&] 0 > (-T’m,j - (171‘71)} . (33)
2 2 14 2
where
g : eol’
\v(J'uuh Tins (‘(J) = [7” + %('r(m( - -Yiﬂ)]'W ((‘Oth i%- - 1) 7]
i eof’
- (t,a‘nh LE)M) ot
: 5
i Iz
. geol’ geol’ 5
- + -t (t‘a‘nh‘ - ) (t‘a‘nh' ) ¥l 34
8 2 o} 2 jus ( )

Now we are going to compare the representation (33) with the Schwinger formula [15], which
he has been derived in the same case of constant field by means of the proper-time method.

The Schwinger representation has the form

! 0 e inh 22F\ 77
SC(-TOU{-, ll'in) = 327{'2 |:‘7“ (Ii 'I('“ - !]"‘111('1‘011{)) + "7} A (1(:() (det Slnglll‘z )

out

7 gl geoF geo .,
A ol . . s ; . : ;
X exp {E |:f1~1‘(71111 Lip = ol — (-I out 'rin) S coth 9 (‘r’rmf - ‘T'in) - 5 f‘u/U;W . (35)

Doing the differentiation with respect to af,, we transform the formula (35) to a form which

is convenient for the comparison with our representation (31),

Ge 1 /x / et sinh QSS—L - o )
. - T ¢ aet o SlTouts Tiny €
3972 o €0 gl S tsLiny Co
g , iy g . geo
X OXPAI=Tou Il — =Cam” — 15 (o — Tin ) F ‘o(‘h( ) Tout = Tin } , 36
p ity = Seon® = i = ) P eoth (£95) (s = 22,) (36)

where the function ¥y is given by

(' '(‘ ( "l 1/ -y
2 (rour = o Pleoth 285 1] expl =i 0™y (37)

L I

g
‘Ij.‘?(fmllw'rinq (U) = [777 + =

Thus one needs only to compare the functions W and Wg. They coincide, since the following

formuta takes place (see Appendix B), where w,, is an arbitrary antisymmetric tensor,

‘ W i w ’
exp (—Zw,,,,rf‘”) =, /det (‘()sh%u [1 ~ 3 (L‘(mh §>W ot

! ) .
+ q(””‘“’ (t‘a‘nh %) . (t;;\,nh g) ’Y"} . (38)
s o Ny

In fact, the latter formula presents a linear decomposition of a finite Lorentz transformation

in the independent y-matrix structures.

C. Propagator in a constant uniform field and a plane wave field
The 4-potential
1(071),(7 — ! A " 39
AT = s Pt + a,(ne), (39)

where a,(¢) is a vector-valued [unction of a real variable ¢ and n is a normalized isotropic

vector n = (1, n),

n? =0, n? =1, (40)



produces the field

: Feom(na) = Fuy + fu(ne), (41)

which is a superposition of the constant field F},, and the plane-wave field

"

" / t
fuw(ne) = nya)(ne) — n,a,(ne)
Without loss of generality we may choose @, to be transversal,
nfa,(o) = 0. (42)

The dependence of S ®[r, o] on the trajectory a#(7) is twofold. In addition to the
direct dependence (see eq.(18)), there is an indirect one through the external field. In the
case under consideration the field depends on x,(7) only through the scalar combination

nae(r). Replacing the latter by an auxiliary scalar trajectory ¢(7) one obtains

(i)[,r, by o) = [m + (2('(,)_';1'"‘ * IN\',,,\ (27}’\” — geo I?‘\") Ve

~ o~ 2 32 ~ ~
— % (771(1, 4ot x [\';L,\v"\) B,..o™ + 7119—1;—03‘:[98*"0’75]
4 G
X exXp {“E‘)E /g dg'TrR(g') * fm”b(d))} ) (43)
2 Jo
where f“,“,",””’((,[)h — 1) = [Fn + [ (S(7)]6(r, ) and
B = FSm™(@) KY 0 Ko = 0 + geoRyu(g) * (), (44)
5] N N
[”}}; - .G(“u1“””"'(’(<15(T))} R{glr. ") = nd(r,7"), (45)
R(gll.7) = =R(g|0,7). ¥7€(0,1). (46)
()hvious]y,
R('(l);r/,(r):n.r(r) = R((]), k ‘(b(r):nf(r) - [\’ B ¢(r)=nz(r) - B’ (47)
and, therefore,
®lx,ne, o) = Oz, eg). (48)
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Inserting the integral of a d-function,
/1)(/) D) ¢Mg-na) — I,

into the RS of cq.{16) and using (48) one transforms the path integral (16) into a quasi-
Gaussian one of simple form

S (Foutetin) = 5 /U " deg / D DX ei+? / ™ D M(co)®[, b, 0]

Fin

xexp{il[r,é, o] = iA % (nx)}. (49)

The action Tunetional

I g, co] = ‘T)T—.i' * - %’-m"‘ - g:r' * F i@ — ga{d)* & (50)
Zey

(where F(7.7') = I'§(1 — 7')) contains only linear and bilinear terms in @ (and the bilinear
part does not depend on the wave potential a,). SF° lx, ¢, el is linear in x and (following
the same way of reasoning as in the case of a constant field) one finds

| sinh 228

~1
o 3, ) N -

S s / dey (([(‘1» — 2 —) / Do DX r"/\*w’_"'r")q’[il‘qq(/),f?()}(‘”[’r"’d“m}, (51)
o g :

T 3an?, g

where r, is the solution to the equation

. ‘. ' ; 4
Py geoFiy = codn — egga (@), (52)
obeying the boundary conditions

74(0) = 24y, (1) = wou. (53)

Introducing an appropriate Green function G = G(r,7') {or the second-order operator,

) 7, ,
[71;;? - .(/('UF%;] G(r, 7Yy =nd(r =1}, (54)
G0.7)=G(l,71)=G(r,0) =G(r,1) =0, VYre(01), (55)

one presents Lhis solution in the form

Ty =2y el x ()\n - ga'(@)q'ﬁ) . (56)
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The value of the action functional I{z, ¢, co] on the solution x, is given by

i[.r,,,(‘p.r“] = Ira,co] = ga(d) » iy

(y

- (g (b)) — M) G (W’((,by/} =) + M (2, — za), (57)
where

I
e, e = ~2~;1*1~(57712—gr*f*1 (58)

is the action in a uniform constant field £

The functional integral over A in (49) is a quasi-Gaussian one of simple form (let us
remind that z, is linear in A, see o (56)) and the integration can be done explicitly, The
result is a formula for the propagator in which the only functional integration is over the
scalar trajectory (7). However, the latter integration is hardly to be performed explicitly
in the general case (for arbitrary a,(¢)). Nevertheless, there exists a specific combination [5]
for which the integration can he done and explicit formulae for the propagator to be derived.
The latter are comparable with the corresponding Schwinger-type formulae [10], which are
also explicit in this case.

Namely, let us choose the wave vector n Lo coincide with a real eigenvector of the matrix

F (sec Appendix A),
flan’ = —£&n,, n? =0, n? =1, (59)

In this case nr, = wry, and, moreover, the action functional {50) is “on-shell” invariant

with respect to longitudinal shifts
v () = (7)) + ofr)n, a(0) = (1) = 0, (60)

by virtue of (59) and the transversality (42) of the wave potential a,. Then f[mq,qﬁ, eo) does

“not depend on A,

[- v]v(b (0]: [lmd) FO] (61)

where
Vi = Top — g0l * ((t'((f))(i)) (62)
is a solution to the equation
Fp = geo iy, = ~—g<’0(1/(d))q;), (63)

obeying the boundary conditions (52). However SF & [r,, &, €0} does not show this invariance
and, therefore, is A-dependent. Presenting @, as a sum @, = 24, + eg@n + A, and substituting

it into the expansion of SI7 in the antisymmetrized products of y-matrices,

d’[.r. D, co) = [ral.i‘“ * Rxw ( v + — B,y,;'y 7”’)”)

+m (l + i‘gnmi [ B} + = g 39 ” [))NHBM 8 ’YH " U])J “\[(l/’«((l}w (64)
Al co] = exp { _%‘ / Cdg TR (g') + f""”“”'(d))} : (65)
LS
we ohtain,

@[.rq, &, ¢o] = (f)[.l';,‘. doea] + A x /[(f), co), (66)
liheed) = 0G0+ 87, (57 L2 B ®979) Al o], (67)

‘)
G(r, 1"y = 7—(——9(7., ). (68)

()7‘/

It turns out that {[¢, o] does not depend on ¢, First, expanding R in powers of f and using

(59) and (12) one derives that A, o] coincides with the expression

Aleg) = exp {% /()] dg"TrR(g) % f} : (69)
Second!,

Ly ”
=n, " = 3 (711(7?) T (70

v

.
n

v

i this section we denote by R(g), K, B the quantitics given by (19), i.e., corresponding to the

case of a constant uniform field I,
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Indeed, using the definitions (47) one finds that A satisfies the equation
a

a7 — geol I+ ()| K(r) =0, (71)
and the boundary conditions

K(0) + K(1) = 2. (72)
Multiplying (71) by n and using the properties (59), (42) we find

a - - .
(()_‘r - gQ,S) ni =10, nk(0)+ nK(1) = 2n. (7%

At the same time n K obeys (73). Therefore, n/{ and nK coincide. Then using (42) and
the properties of n, 7 (sec Appendix A) one gets (70). Third, using the same properties of

the electromagnetic field one can derive
énﬂ = Bc,ﬂ + nobs — bang, (74)

where b, depends on ¢ and B is given by (19). Substituting (74) into (67) and using (59)

one finds

[ eg] =

% (,,_g(r)ﬂ.) * (nﬁ'ﬁ.) [nu'y” + %’{—)ny (5’,3,,3 + nabg — bc,ng) .Y[u,),a,yﬁ]] Aleq).

and the contribution of the ¢-dependent terms vanishes by virtue of the complete antisym-

metry of 4y, Therefore {[¢, eq] can be replaced by
fleg) = n."gg)*f(" (fy +——-—B vy ﬁ}) Alen). (75)
Substituting (75) into (66) and then into (51), using (61) and

/\(T} iAxgh — s d LARD

Sl

and integrating by parts we find
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1

1 o sinh 28\ 72
S = Ta e 2 idx{d—nz )
’ Fin2 [0 deg (d gF ) /D¢ DAre

<[~ (gl slteo o (iTlan e} ()

Inserting the derivative,

%I—[mh‘aqba EU] = —a’(é)i‘f,, '

and using (74), (67) we transform (76} to the following form

1

I o sinh 8=y
,(;-r — e fhs(f—na o)
"= o fu deq (det e ) [pepxe

_X (i)[{a d’s ('AU] exp {“(ﬂf:m ‘?Sa ()'0]} b (77)
where
B = ol + geon ()i
One can straightforwardly check that & satisfies the equation

¥ — goo (P + n,al($)) 3 = —geodl(6)¢ (78)

and the bouudary conditions (52). The trajectory @y in the aclion I can be replaced by
% due 1o the invariance of the action ] b, €g] under the longitudinal shifts (60). The
integration over A and ¢ is straightforward now. One needs only to take into account that
Flgmnny = Teoms 18 Lhe solution (subjected to the boundary conditions {52)) to the equation

of motion

comb geU(F+f nTCOMb)) v comb =0 (79)

Indeed, eq.(78) turns out to be equivalent to eq.(79) when ¢ = nzy and the relation nZeomp =

na, is taken into account. Therelore,

(i)[.?'._ (/), ('“] |r[-:n.r . = q)[.t‘m,,,b, (‘U], f[.’i‘, QZS, CQ}I = I[mcamb! CU]' (80)

¢=nzo
Finally, we get
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s (e L_['") A — (81)
where
D[ cmi- co} = [F(T'i;)mb * K (’Y” + %Baﬁ’y[y'?’a’)’ﬁ])
+m ( I+ Q_?HHMIHM + %:—;‘Q’Baﬁf?w'r v 7“7”)] A(eo). (82)
The vector &y satisfies (79) and can be presented as
Feami{T) = T exp {ﬁgecj [ ' F“"’“t’(nxcz(r))dﬂ'} #(1), (83)

where 'y denotes the antichronological product. On the other hand the tensor trajectory

K(7) satisfies (71) where one has to replace ¢ by nzy. Therefore

W{7)=Thoxp {—gcu /;1 F“mb(nmd)df} K(1), (84)

and?
Feomh * K = feomp(1)E (L), (85)
Substituting (85) into (82) and taking into account the relation BlogBuy = B{Q,SE‘#,,] we find

€,
("‘)["rr‘t"?"lfl1 C(’} = [ 0 l’rmmb( )I\jw( } (’)‘V + E‘EBQ "I'[“FYaTg])

+mn (l + %Bum/ 4 320 BoaBu Ay ‘y“"y"])] Aep). (86)

A representation for the propagator in this specific field combination {characterized by
the relalion (59)) was given [12,10] in terms of proper-time integral only. Another more com-
plicated representation has been oblained before in [5]. In our notation the representation

[12,10] can he writien as

2The operator Ty oxp {-—g«-n f: F"""“’(nxd)dT} preserves the scalar product due to the antisym-

metry of the stress tensor.
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| -“r.(-r.az::, Tin) = [‘}”" (7 - -”sz - gA;"m”(navoua)) + m]
-1
Xflﬂ-f /(;m deg (dct E;E;'—‘C%’") ’ eiI[I‘°mb’C°]A[71Icr, eaf, (87)
where
Apreacid = Texp {20 ["tr (£'4 fnaa(r)),, 0} (88)
= cxp {—i'%ql*},,,a’”’} — %CE .[0[ dr (egggp("mf(n:ccrfr})e‘g'?e"QF“‘h))w ok, {89)

and 1" denoles chronological product. Taking the derivative in (87) one can use the relation

a

Em s!‘i I[ Teombs FU] _p.u(l]a (90)
where
)
pul(r) = = m“ﬁ e N s
I=Tcomb
is the on-shell momentam, in particular,
(I) (0 ]camb([) +gf’{)Ammb(ﬂTm,f). (9}_)
On the ollier hand,
i1 a
Yo Alnzy, 0] = 0. (92)

Lout
Indeed, oue gets from eq.(32, with the aid of eq.{59),
] egeoS'r —1 )
v o {(naea(r)) = el (93)
Then, using the representation (89) for Alnza, eg], eqs.{40) and (42}, and the properties of
the y=-malrices, one easily derives (92). Differentiating in {87), one obtains, with the aid of

(89), {90} and (92},

gcuf'

" 1 o0 sinh
S oty Tin) = Eﬁ [D deg (det T

1
)
) lpcsmnb (mouh Tin, eD)eﬂ[xcommED]’ (94)

where
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U P eg) = (egli‘c‘nmb(])’yu + m) Alnzg, €]
Using the tdentities (B12) and (B13) one can verily that
q’.{;.'gmb("l"outa Tin,y eU) = ‘p{wcomby ED]-

Thus the representations (81) and (87) are equivalent.

III. SPIN FACTOR IN 2+ 1 DIMENSIONS
A. Derivation of spin factor

In 24 | dimensions the cquation for the Dirae propagator has the form
[ (i = gAu()) — m] 8%(x, y) = —6%(z — g}, (95)

where ¥ matrices in 2 + 1 dimensions can be taken, for example, in the form 4% = %, 4! =
o2, y* = o', [y" 4], = 9, g = diag(l, =1, ~1), v = 0,1,2. In this particular

case they ohey the relations

4 ” L i i L,
B A= =2, = e (96)

In the paper [13] a path integral representation for the Dirac propagator was obtained in
arbitrary odd dimensions. In particular, in the case under consideration this representation

reads

P %cxp (hr-%) l/UOC' (;CdeXO feo M(G)Defxﬂ DX/::"’ D:[:[D?TfDI/ (97}

1 _,532 e
x i e [ e I g AR 4 Fo b
-/w(mwv(n:ﬂ / Mp{r 0 [ 5; g™ 98 AT el

oy’

2 . Lo . . :
+x (%(,,,,,\;t"'-d*” R m) — i e+ I/X] dr + ¥.(L)¢*(0)}

3

=0
where (), p(T), ¢(r), 7(7) are even and ¥(7), x1(7), x2(7), wi(7),02(7) are odd tra-
Jectorics, obeving the boundary conditions #(0) = @y, 2(1) = Zow, €(0) = e, x(0) =

Yo, P(0) +9(1) = 0, and the notations used ave
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X =\1\z, X = viXs + e, dy = dxydxz, Dx = Dxy Dxa, Dv = Din Dy
The measure M(c} is defined by the eq. (3) in the corresponding dimensions?, and

Dy =Dy [.[i-(o)+dn(1)=u I exp {[ol w’ﬂj}“dr}}

Integrating over the Grassmann variables in the same way as in the case of 3+ 1 dimensions

-1

we get
Sty tin) = —;—f , degM{cg) /-x.m Dz ®[x, co) exp {iffz, cd]} , {98)
0 Tin

where

Pl
Dlr, oy = [(m. + j—[ A7 €™ (TYR*Ng|, T)) (E + ﬂBa‘g')""yﬂ)]
tp Ju 4

S o1
Jr—z / A7 ! (T)RY n("')[\"\ ﬂ(T)'y"'yﬂ] exp {—E.- fg dg"TrR{q) » }_} (99)
1 2 Jo

2(‘0 .
is SF and [[r,c], R(g) = R{g|r.7'), N = K(r), B, F are defined by (17), (14), and (8)
respectively.

Due to the relations (96) one can also present SF in the form

B[, e = {m + e *r(g) + [(—iﬂm + 954 r(g)) U
€n 4 4
- g
+ r—%w[ri?*T)n] 'y“}exp{--9 / dg'TrR(g'}*f}, (100)
2e9 2 Jo
where
rulg) = rdglt) = Gua R Mgl T, u = e““'ﬁBﬂp, T, fa= 6”1,,\6"”[(" QKA 8

3We will refer to some formulae from the previous sections without specifying that the number of

dimensions is 2+ [ now.
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B. Dirac propagator in constant uniform field in 2+ 1 dimensions

In the case of constant uniform field Fy, = const one can calculate the propagator
explicitly integrating over the bosonic trajectories. Following the same way as in Sect.II and

taking into account that in 2+ 1 dimensions

Ea( ) ['D { ’: ) il
—Mle TeXpy——idkETp =
2 " Jo e 2&07: ¢ 2(2mey)3/2
one gets for the propagator (98)
1
€7 o sinh £28) 72
g9 = e 2 Hwereo] .
, e /[; deg (det e ) e D[z, 2], (101)

where x4, R{g), I, B are given by (32), (19).

The antisymmetric matrices F,, can be classified by the value of the invariant ¥ (see
Appendix A). In the case »? > 0 one can find a Lorentz frame in which the magnetic field
| vanishes. On the other hand, »? < 0 implies that the electric field vanishes in an appropriate
Lorentz {ranie. The case ¢? = 0, F # 0 corresponds to nonvanishing electric and magnetic
fields of ‘equal magnitude’ (and this property is Lorentz invariant). We will consider the
case p? # 0. The case ¢? = 0 can be easily Lreated, e.g. taking the limit » — 0.

Presenting @[rg. eg] in the case under consideration one can avoid the explicit integra-
tions over 7. Indecd, due Lo the specific form of R{g) the term containing it in {99) vanishes.

On the other hand,

imply
Fa(T) = e =15 (1), K(r) = er 011,

Taking into account that e7¥(=1} is an operator respecting the scalar product, one can
easily perforin the second integration over T in (99}. Finally, calculating the determinants

involved by means o (A12), one gets
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oo dfu Hleetees)
= el bl ],
]()(27r f \/_Esmh ‘E° sinh 222 © [zt o]

B, o] = [m.(1+-4—3"m"~,) s (DB LI 77| cosh S (102)

On the other hand one can obtain a representation for the propagator using Schwinger
proper-time method (we do not present the calculations here). Such a representation has

the for

.8
SN ot in) = [7" (2 — +gA#(:r..m)) +m]
out

[m deg e:l[ccz,cu]e%nFos‘Y"‘Yﬁ. (103)
27r Ve th

To compare hoth represeniations we take the derivative in (103) and use

& 1.
el [[Tnh FO} 7"0] (-Tcl)“(l) _gAp(-Tout)'
nu.’
Then one obtains
- ' = dey gy i [ansco]
Sr Tin) = o a0 e “outs Ting €0 )€ i 3 104
(Touts Tin) A(2m)3/2 Jo \/_smh gz V5 (Fouts Tins €0) (104)
where
\pS(Tmlh"Fina CO) = (FU Vi cf(]‘) + TH) € 4 et ’Yﬁ (105)

Comparing {(102) and (104) using the identities {(see Appendix B)

exp {_—P & ”‘} (l + %13‘”3'}‘“7'6) cosh %, (108)
i . , o geoyp
Tr (“q){ [‘,ﬂ'y ¥ } = g K (1) K a1y +? cosh 5 (107)
4 2(’0

one can verily that both the representations coincide.

APPENDIX A: SOME PROPERTIES OF ANTISYMMETRIC TENSORS
1. Antisymmetric tensors in 3 + 1 dimensions

The antisymmetric matrix £, formed by the components of the stress tensor has in the

general case of nonvanishing invariants,
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i 1
_ 1
F= Z]‘,...J’ ) G = ~1 F e,
four isotropic eigenvectors, namely,
: - _

Fumn’ = —En,, Fan” = &En,,

A e . g
Fam' =iHm,, F,a"= —iHm,,

where
E:[(F?‘-{-GQ)IM—F][/Z! }'{:[(F2+G2)1/2+F}1/2_
"The eigenvectors are supposed to be normalized,
iy, = —mfm, = 2,
while all other scalar products vanish,
P =i? = m = = wm = nm = am = i = 0,

Then the matrix F can be presented in the form

1
Pp.v =

| on

_ _ o _
(Pt — nyin,) + 5 (m,m, — m,m,),
and, therefore, F? has the spectral decomposition
F'= &P + H2Py

where

| 1
(Pe),, = 3 (ot + n,0,), (Pr),, = 3 (mam, + m i)

are orthogonal projection operators onto some two-dimensional subspaces,
PE=Pe, Pj=Py, PePy=PyPc=0,

Ped Py =1, trfe = trPy = 2.
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(A1)

(A2)

(A3)

(Ad)

(A5)

(A6)

(A8)

{A9)
(A10)

2. Antisymmetric tensors in 2 | 1 dimensions

Let £, be an antisymmetric matrix in 2 + 1 dimensions. The antisymmetry implies
trF = 0,det}' = 0, so that the sum and the product of the eigenvalues vanish. The

eigenvalues are 0, , —p, where the real number ? coincides with the invariant

1
(102 = 'z‘tI‘Fz.

In the case of nonvanishing ¢ there exist three eigenvectors of ¥, and F? is proportional to

a projection operator I onfo some two-dimensional subspace,
FP=p'p P2=p, trP = 2, PF=FP=F. (All)
Then, for an cven lunction &,
HF)=h(0)(1 — P) + h{p)P, (A12) ¢

while for an odd one

W) = Zh(e). (A13)

—h
©

The case of vanishing  (and /' # 0) corresponds to a nilpotent matrix, F* = 0.

APPENDIX B: SOME IDENTITIES INVOLVING v+-MATRICES
1. Gamma-matrix structure of Lorentz transformation in the spinor representation

Let us denote by M{w) the expression in the RHS of eq.{38). We are going to check that

the matrix-valued function M{dw) of a real parameter X satisfies the differential equation
d ‘ B M(A B1)
;D:ilf()\w) =~ Wm0 M(Aw) (
and the initial condition

M(0) (B2)

If
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The latter is trivial, so let us concentrate on the proof of the equation (B1).

With the derivatives

I )‘ 1/2

l()\ (k‘t cosh ;) (det cosh ?) tr (4 tanh %LL—J) ,
-l-nal’\“’—f tanh? 2 |
7y tanh =3 n—am? ,

one oblaing

d Mo\ (1 Aw
n M(Aw) = (dct cosh ?) {ztr (w tanh ~2—)
_L tr | wtanh -A»v tanh )\— + 2w [ 7 — tanh® & ot

8 2 2 )1,

[ Aw 1 Aw

oy ta i - - -
+8(. ( anh 3 )aﬁ [4t1 (wtanh 5 )ta h

2 Aw 5
+ w [ — tank > e (B3)
o )

Then using the identity
A (ST ) ag T = €P¥ 0T, 1S, (B4)

which is valid for any two matrices! § and T' one can put the derivative (B3) into the form

d AL NS Aw
aM()\w) = (det cosh ?) {Ztr (w tath T)

—é [t‘r (w tanh /\Tw) tanh %u + 2w (:q — tanh? %‘))Lu at

+ ée“ﬁ“”w,‘; (tanh %) 75} i (B5)

ey

A representation for the product of two o-matrices,

a_rrﬁa_fut= ?]ﬂjr ]ﬁy — ny??ﬂp

— ( s ﬁy + nﬁy e nuuo_[;',u _ ??ﬁuo_au) - Eaﬁuu,}j, (BG)

We remind that, in accordance with our notation, tr§ = 5% , = n“ﬁSgQ, etc.
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is easily derived from the identities

wl.{o-“ﬂ, a;mr} — ??a;rnﬂu _ ?]ﬁu??ﬁﬂ _ ca,{i,ul/,yo (BT)
t{ 1 0"""] — ??n_u el + nﬁyo_au nmloﬁu _ ,’7,8;10.0” . (BS)

2
Using {136). the well-known identity®

LY ) 1 .-mrn

ron (B9)
and the antisymmetry property w,, = — Wy, one finds

. 1/2
L s M (M) = Myl M
iead M(Aw) = (det cosh 5 ) [4 tr (w tanh 5

i Aw Aw T
o)) o
64 2 wp Bw

; A
— 1w,,,,vrr’”" + lr“ﬁ"‘"wﬂ;g tanh 2o ¥l . (B10)
1 $ 2/,

Then, using the identity
% B2z A P8 2 B B
("1"2"3"4(“52f.“ = _E(—l)[ ]51"1(:!1)5}"’2(0'2)6133&:13}5}’4(174) ?
P
we get

, 1/2
i - Aw i A
iﬁwm,a’ M(Aw) = (del. cosh —Qm) [Etr (w tanh 7)

: A A Aw v
gé [i.r (f.a tanh ?w) tanh —; + Zw (?; — tanh® ?)L" o

[ Aw 5
+ <ML (l.an!l m) T (Bi1)
S 2 jie

The RHSs of (B5) and (BI1) coincide. Therefore M (M) obeys eq.(Bl). This completes |

the prool of formula {38).

5Let us remind that in our notation % = yOy17242,
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2. Decompositions of some functions on r-matrices

Let us consider the T-exponent (88) where F is a uniform constant field, f is a plane-wave

field and (57) takes place. We are going to prove the identities

g¢o lo .8 gel - Bxaf, 5| &
Afneg,eq) = [ 1+ i Bapty 1 g BesB " | Aleo), (B12)

Y Al e = K* (1) (7” + %Bmf”mﬁl) Aleo), (B13)

whete 13 and K are defined by (14) for the combination as it was described while B, corre-

sponding to the case of constant uniform field is given by (19), and

Y — _@g;";—uﬂoggeo?{
A(r(,}—(xp{ QL({qTrR(g}*f}—cosh 5 COsTo—.

Presenting thie T-exponent. in the form {89) and using eq.(38) one obtains

A 1 gto fe ] 9'263 B prB 5 % for .5
egicl= (14 TBnﬁ’y ¥+ _IE_BQ-HB 7" | Aleo) + Qosr™™y (B14)
where
g€y - . = 1
Q = T2 A (o) (B-B)+ e (B15)
I L1 &
(' = gey [ dr eg_zuF('ﬂT)f(nrcd(T))e_g_?np(‘_”). (B16)
JO

In order to find a convenient representation for B we present &', which is a solution, obeying

{52), to eq {71, for ¢ = ney) in Lhe form
Kiry=2v(r)(n+ VD)™, (BL7)
where
V{r) =T exp {geu fT F'Comb(nmd(,’.f))dr’} , (B18)
o
is the solution, subjected to (52), to the equation
a
e geod” — geg f(nxy(r))| V(1) = 0. (B19)
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Then, using the defining equation (14) for B (in which /' must be understood as F°™®} and
eqs.(B17), {B18), one derives

B=—[p-2(p+v(1)"|. : (B20)
o
Correspondingly, from eq.(19} we obtain

€

Be=—Tlp-20+ ()],  Va(r)=emorr. (B21)
gcu
Solving eq.(B19} we find

(/2 C*\ i
!ﬁu:%ﬂn@+c+§J% m, (B22)

by virtte of Lhe nilpotency [10] of (. ‘Then we substitute (322) into (B20) and after

straightforward transformations obtain

_ I —1 F -1
Bof=_ (cosh ﬂf) c (cosh geo ) . (B23)
geo 2 2

One can verify, using the transversality {12) of a,,, that®
C = PeC Py + Py CPs. (B24)

On the other hiand, due to the evenness of the function,

N AR | - —1 H —1
(('()H]] _qc;f ) = (COS]] g(‘;g) P+ ((:os 9620 ) Py. (B25)

We substitute (B24) and (1325) in (B23) to get, by virtue of the properties (A9) of the

projection operators, Pr and Py,

-1
B-B= L (cosh geof cos geu?{) C. (B26)
fco 2 2

Finally, inserling {1326) into {(B15) and using

: o€ eoH\ ! '
Aleo) = (cosh 49% o5 T2 ) , (B27)
2 2
5The projection aperators P and Py are defined in Appendix A.
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“one finds that Q =0 and the identity (B12) takes place. _ Taking into account eqs.(14}, (A13) and the relation izy = —vF+, one gets (1086).
Going to the identity (BI3) we use (B12), (15), the identity Multiplying (107) by K'(1) and using (96) one transforms (107) into the equivalent iden-

1 tiky
1= g e
F '\(l h,\e%“qun-yﬂ =~* cosh QE’TUIP det [((1)’ (332)
and the antisymmetry 3,5 = Biom Lo bring the LHS into the form

% which we are going to prove. Taking into account the identity
Y'A[nay, o] = [(?7” st ?B"' ﬁ) +#

g€n

Bkt ()
Ll a8

i by
+? (n" JBog—L2R, Bt ,,a:s) *r{"v“'r”’] Ales). (B28) n

i From (B17) and (B20) one obtains which can he easily derived from (106) and using (14) one transforms the LHS of (B32),
i Bli}a 2 : s

-1
L A #Faﬁq“qﬁ — ( g?_g ) m B23
A‘{l):n+g$3, (B29) K" \(1'e cosh==g | o, (B33)
. e
Kot (1) Bog) = nuy Bagy + %B;LIABM]- (B30) Calculating the determinant
-2
Due to the antisymmetry of B, det K(1) = (cosh ge;(p) ’
. 2
B.nBom = By Bog = T Bp B ¢ oty one finds that the RTS of (B33) coincides with that of {B32).
Acknowledgments

and, substituting in (B30), we get
D. M. Gitman thanks Brazilian Foundalion CNPq for support. $. L. Zlatev thanks the
Koto (1) Bog) = 140 Bagy — %BMBMDC:»L@E- (B31) Department of Mathematical Physics of the University of Sdo Paulo for hospitality.

Finally, we use (329), (B31) in (328) to get (B13).

3. Identities involving vy-matrices in 24 1 dimensions
To prove the identity (106) let us introduce
M= E,u.u)\ F,,\, 272 — ‘__4(;52

and transform the LIS of (106) using (96),

exp {%EI‘LV'Y“’Y”} = cosh g%jf (1 - % tanh 9620('0) .
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