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Abstract

The propagator of a spinning particle in external Abelian field is presented by means of a
path integral in odd dimensions. For the first time the problem is solved and its solution
differs essentially from the one in even dimensions (the latter has been known before}. The
path integral representation derived provides one a new pseudoclassical action to describe

spinning particles in odd dimensions.
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Path integral representations for relativistic particles propagators were discussed in nu-

_merous papers. Spinning particles propagator (Dirac propagator) in four dimensions was

presented via path integral both over even (bosonic) and odd {Grassmann} trajectories [1].
The latter trajectories are connected with spinning degrees of freedom of the particles. The
representation can be easily generalized to arbitrary even-dimensional case. The absence of
an analog of ¥° matrix in odd dimensions was an obstacle to write the path integral similar
to that one in even dimensions. In the present paper we have succeeded to construct a path
integral representation for spinning particle propagator in arbitrary odd-dimensional cases.
Remember, that, in fact, the path integral in four dimensions was constructed [2], using a
super-generalization of the Schwinger proper-time representation for the inverse operator, in
which the proper time is presented by a pair of even and odd variables. In this case the ef-
fective action, which one can extract from the path integral, coincides with Berezin-Marinov
one [3]. In odd dimensions one has to use a more complicated super-generalization of the
Schwinger representation where the proper-time has already one even and two Grassmann
components. Extracting a gauge-invariant part of the effective action from the path integral
in odd dimensions we get a new pseudoclassical action to describe spinning particles in these
dirmensions. Recently the problem of such an action construction was discussed intensively,
especially, in connection with the 2 + 1 field theory [4-6,10]. We present both classical
analysis and quantization of the new model and discuss its peculiarities.

A path integral representation for Dirac propagator in arbitrary even DD = 24 dimensions
can be constructed completely similar to the four-dimensional case {1]. Such a representation

(in the notations of the paper [2]) has the form
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The propagator (causal Green function) §¢(x,y) obeys the Dirac equation transformed by
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where P, = 18, — gA.(z), p=0,...,D —1, A,(z) are potentials of external Abelian field,

¥* are y-matrices in I dimensions with dimensionality dimy* = 20/% = 2¢, [y#,4*], =
", nu = diag(l,-1,...,-1), and 4P+ is analog of 4° in four dimensions, ¥P*+' =
I3

ryPyt . Pl ¥R ), = 0, (7D+1)2 =-1, r=1ifdis even, r =1 if d is odd. The
set of D 4+ 1 v-matrices v and ¥P™ form a representation of the Clifford algebra in odd
2d + 1 dimensions. We denote here such matrices via I, T* = 4#, [P = 4P+ % 7], =

2%, nk. = diag(l,-1,...,—1), k,n = 0,...,D. In the representation (1) z(r), p(r),

e(r), m(7) , are even a.ng-;(l(T), v(r) are odd trajectories, obeying the boundary conditions
z(0) = #m, (1) = Zow, €(0) =eo, x{0) = xo, ¥(0)+1(1) = 8, where # are odd variables
and 2 stands for the left derivative. The measure M(e) has the form

M(e) =poexp {%j(;lepzdf} . (3)
A discussion of the role of the measure (3) can be found in [2].

In odd dimensions a possibility to construct the matrix yP+! does not exisi. Hence,
here a possibility does not exists to work with the transformed by vP*! Dirac equation (2).
Namely that allowed {1,2] to write the path integral representation (1). Nevertheless, the
problem in odd dimensions can be solved in a different way.

As it is known, in odd dimensions D} = 2d + 1 there exist two exact non-equivalent
irreducible representations of the Clifford algebra with the dimensionality 2(°/2 = 2%, Let
us mark these represent‘ations by the index s = £. Thus, we have two non-equivalent sets
of y-matrices which we are going to denote as T'f,), n = 0,1,...,2d (remark that now we
use Latin indices n, k as Lorentz ones). Such matrices can be constructed, e.g. from the

corresponding matrices in D = 2d dimensions as follows:
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In odd dimensions there exists also a duality relation which is important for our purposes
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where r =1 if d is even, r = ¢ if d is odd. The propagator 5°(z,y) obeys the Dirac equation

in the dimensions under consideration
('ﬁnl“z‘s] - m) Sc(ms y) = _JD(“T - y)a (6)

where P, = 18, — gAn{z). Following Schwinger {7], one can present 5°(z,y) as a matrix
element of an operator 5¢, 5%(z,y) =< z|5%|y >, where |z > are eigenvectors for some self-
conjugated operators of coordinates X™; the corresponding canonical-conjugated operators

of momenta are P, so that:

Xz>=z"lz >, <zly>=82a~y), [lz><z|d=I,
[P, X*] =-igk, Pilp>=plp>, <plff >=62(p-p),
fle><pldp=1, <a|Ply>=-id6%(z-3y), <azlp>= gyome™,

M, ] = ~igFue(X), T, =—P,—gAa(X). (7)

Equation (6) implies §° = —F-1, f = I.IF,) — m. In the case under consideration it is

convenient to present the inverse operator in the following form

o By A .
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A= @—)-!-6 ! “H,J‘{s)h . F(a)k“ +sm, B= m? —II* + EFk“F(a)F(s} .

The form of the operator A is obtained from the operator F(.,.) by means of the duality
relation {5). Now both operators A and B are even in y-matrices, so we can treat them as
Bose-type operators. For their ratio we are going to use a new kind of integral representation
which is a combination of the Schwinger proper-time representation for B-! and additional
representation of the operator A by means of a Gaussian integral over two Grassmann

variables x; and y, with the involution property (x1)* = x2. Namely, one can write
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Thus, we get for the propagator
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Starting from this point one can proceed similarly to the four-dimensional case (2] to con-

struct the Hamiltonian path integral for the right side of (10),
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where z(7), p(r), M), 7(r) are even and ¥(7), x1(7), x2(7), (7}, 2(7) are odd tra-
jectories, obeying the boundary conditions z(0) = @i, o{1) = zous, A(0) = Ag, x(0) =
Xo, ¥(0) +%{1) = 4. Following notations are used: X = XiX2y VX = ViX1 + vaxa, dy =
dx1dx2, Dx = Dy1 Dx2, Dv = Diy Dv,. Integrating over momenta we get a path integral

in the Lagrangian form,
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where the measure M(e) is defined by the eq. (3) and 2(0) = ep.
One can also get a different form of the path integral for the Dirac propagator in odd

| dimensions. To this end, instead of (8), one has to write
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and then proceed as before. Thus, we get one more form of the Lagrangian path integral

S Zout, Tin) = % exp (tl‘(,);; )/ deo/dxo feu M(e)De[)cn Dy ::"“ szD‘rr/Du
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The path integral representations for particles propagators have also an important heuris-
tic value. They give a possibility to guess the form of actions to describe the particles clas-
sically or pseudoclassically. Really, the exponent in the integrand of the right side of (1) can
be treated as a pseudoclassical action of the spinning particle in even dimensions. Separating
the gauge-fixing terms and boundary terms, we get a trivial generalization of the Berezin-

Marinov action [3] to D dimensions. In odd dimensions, the path integral (12) prompt us

the following pseudoclassical action to describe spinning particles in such dimensions:

1 22 Cam Egn ih o] ' Ld
§= [ |55~ 5 = gEnd’ +icg ™ — kmx — it dr = [ Ldr,
) 2% 2d
=i 4 ,r((zjl)’ enh--.kzd?‘bkl . -ﬂbkzdx . (15)

We suppose that & is an even constant, which is discussed below and x = x1xz, with x,
and yz being Grassmann variables, obeying the involution properties x¥ = x,. Interpret-
ing the variable x in such a way we can discover that the action (15) is gauge-invariant
(reparametrization- and supergauge-invariant). The corresponding gauge transformations

have the form: reparametrizations
. d W o R . 1
Sa = a" ¢, de=—{ef), Y = Y7, dxa = bt pal, e =Rl +pxal,  (16)
and two sets of nonlocal (in time) supertransformations,

. d
Sx" = Ze"kl"'kzdl,bk 'ﬁbkuU SY® = e enkikz.. k2dzk:|1l["k2 . -",l"k—_.dU
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where £ is even and #,, are odd 7-dependent parameters.
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Recently, there were already proposed three different types of pseudodassical act.ions to
describe the massive spinning particles in odd-dimensional space-time, two in {4,5] respec-
tively and the third one in [6]. The first one is classically equivalent to Berezin-Marinov
action, extended to odd dimensions. It is P- and T- invariant on the classical level and the vi-
olation of the symmetry takes place only on quantum level, so that an anomaly is presented.
Another action {5] is already P- and T- noninvariant and reproduces the adequate quantum
theory in course of quantization. The action is close enough to the action (15). However, it
contains additional dynamical Grassmann variables, and y is not interpreted as a composite
bifermionic-type variable that is why it is not supersymmetric. In the papers [6] a different
action was proposed, which is a natural dimensional reduction from the even-dimensional
massless (Weyl particles [8,9] in even dimensions} case. The action is supersymmetric, P-
and T- noninvariant and can be extended to describe higher spins in odd dimensions [10!.
However, as in two previous cases no path integral quantization of the model was given.
We already have proved that our new action (15) allows to write the corresponding path
integral and now we are going to check that the direct (operator) quantization leads to the
corresponding quantum theory. To this end, as usual, we need to analyse the Hamiltonian

structure of the theory with the action (15). Introducing the canonical momenta

a.L . oL a-L
Pr 35373:—?-‘914“(‘1:), Pn—a_w—“zﬁbnwpe—'apxx,z_

— =10, 18
6))(1,2 ( )

one can see that there exist primary constraints ) = 0, (I)g% = Pyias @gl) =F, @S}) =
P, + i, . We construct the total Hamiltonian according to the standard procedure [11,12]
(we use the notations of the book [12]), and get H() = H + A3®, with

2% 2d
H=“ﬂw~mﬂﬂmﬂmwﬂ+x@§$*“mmww¢%+”ﬂ’

where P = —p, — gA,(x). From the consistency conditions (Dirac procedure) we find a set
of independent secondary constraints () = 0,

9% 2d
8P = P2 — m? 4 2geFyty”, o) = ’"'((-237":““’*"‘%;@, o iy M. (19)

One can go over from the initial set of constraints (@(1),@(2)) to the equivalent one
(@(1),‘5(2)), where ® = &)y — o + %'I),(;l)}. The new set of constraints can be ex-
plicitly divided in a set of first-class constraints, which is (@gf%ﬁ, (’13(2)) and in a set of
second-class constraints, which is @,EL). Let us consider the Dirac gquantization, where the
second-class constraints define the Dirac brackets and therefore the commutation relations.
The first-class constraints, being applied to the state vectors, define physical states. Thus,

we get for essential operators and nonzero commutation relations:
. . , TR . n 1 ;.
{xuapu:! = z{mﬂaPU}D(‘pil?) = 155 ) [ka:'ﬂb }+ = ""'[1!)ki¢ }D(‘I’EU) = _Enk ' (20)

According to the scheme of quantization selected, operators of the second-class constraints
are identically zero, whereas the operators of the first-class constraints have to annul physical
state vectors. Taking that into account, one may construct a realization of the commuta-
tion relations (20) in a Hilbert space R whose elements f € R are 2%-component columns
dependent only on z, such that 3" = z"I, p, = —id,I, ¥" = %FE‘;) , where T is 29 x 2d
unit matrix, and I7,), are y-matrices in D = 2d + 1 dimensions. Besides of that, we have

the following equations for the physical state vectors
$(z) = 0, ${f(z) =0, (21)

where ®(2) are operators, which correspond to the constraints (19). Taken into account the

duality relation {5}, one can write the second equation (21) in the form

(Pulfy + swm) £(z) = 0, (22)

where P, = i8, — gAn(z). Thus, we get the Dirac equation in course of the operator

quantization if we put x == —s, By this choice of & the first equation (21} is simply a

consequence of the Dirac equation. If is the squared Dirac equation.

One of the new features of the action (15) consists in a new interpretation of the even i,

variable ¥ as a composite bifermionic type variable. One ought to say that only from the

point of view of the operator quantization, one may treat y as an unique bosonic variable in
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the action (15). Indeed, one can believe that y is simply an ordinary Lagrange multiplier as
it occurred always before. Doing the Dirac procedure, bearing in mind this interpretation,
one gets finally the same first class constraint (19) and the same Dirac brackets, Thus; the
result of the Dirac quantization will be the same. However, as was demonstrated above,
the new interpretation is necessary for the path integral construction, or for path integral
quantization. Besides of that it provides the desirable supersymmetry of the pseudoclassical
action. One ought also to say that the presence of the nonlocal supersymmetry (17) in the
model (15} is a characteristic feature of the pseudoclassical theory since it was proved in
[12] that for singular theories with bosonic variables any gauge transformations are local
in time. Another question is how to interpret the constant x in the action (15). This
question is directly related with the well-known problem of classical inconsistency of some
kind of constraints in pseudoclassical mechanics. Indeed, if one treats « as an ordinary
complex parameter, then from the classical point of view the constraint equation @9) =01is
inconsistent. Such a difficulty appears not for the first time in the pseudoclassical mechanics,
(see for example [13]). Here the following point of view is possible. One can believe that in
classical theory « is an even, bifermionic type element of the Berezin algebra, k2 = 0. Then
the above-mentioned constraint equation appears to be consistent in the classical theory.
At the same time, as was pointed out in [14], one has to admit a possibility to change the
nature of the parameters in course of transition from the pseudoclassical mechanics to the
quantum theory {why we admit such a possibility for the dynamical variables?). Namely,
in quantum theory the parameter k& appears to be a real number, whose possible values
are defined by the quantum dynamics. For example, the path integral quantization of the
. action (15) demands k — s, whereas the operator quantizations demands & — —s, where
s = +1 defined an irreducible representation of the Clifford algebra, see (4). To get the
same gquantization for x both in path integral and operator quantization (at given and fixed

choice of the irreducible representations for ¥ matrices) one has to consider another action,

which can be extracted from the alternative path integral representation (14).
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