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Abstract

| In this paper irreversible processes are explained not in terms of the maximum probabil-

ity principle of Statistical Mechanics bul, instead, exclusively in terms of the relativistic
uncertainty principle. According to this principle, indistinguishability of identical parti-
cles is shown to be the result of a non-reversible, non-potential, fundamental interaction.
The constituent particles of a thermodynamic system removed from its condition of
equilibrium are shown to be in states of incomplete indistinguishability and therefore,
| susceptible to interact irreversibly until the state of equilibrium is attained.

2

Résumé

Dans cet article on propose une explication des phénoménes irreversibles qui n’est pas
1 consideré comme une consequence du principe de maxime probabilité de la Mécanique
|Statistique mais du principe d'incertitude relativiste. - D'accord ce principe,
1 I'indiscernabilité des particles identiques est le résultat d’une interaction fondamentale
{irréversible et non potentiel. On démontre que les particles qui composent un sistéme
{ thérmodinamique hors d'équilibre sont trouvés dans des états d'indiscernabilité incom-
plete, donc susceptibles aux effets de ces intéractions irréversibles qui ont place jusqu’a
1 sa éxtintion, dans I'état d’équilibre.
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1. The Relativistic Uncertainty Principle

It is known that in the relativistic domain of quantum phenomena the uncertainty prin-
ciple of Heisenberg must be reconsidered because of the added restrictions of special
relativity [1]. We intend to show in this paper that the uncertainty principle thus modi-
fied allows a consistent explanation for irreversible phenomena,

1.1.  Indistinguishability

While, in the strict framework of formal quantum mechanics, indistinguishability of
identjcal particles is sometimes acknowledged at the outset, from an heuristic standpoint
it can be seen not as something primary but as a consequence of the uncertainty principle
(see, for instance, [2]).

The usual picture from where this last conclusion is drawn, consists of an ideal experi-
ment where two free identical particles are observed. If, as the outcome of a measure-
ment process, the positions of these two particles are determined with a finite precision,
then, as a consequence of this measurement, and according to the uncertainty principle,
their velocities will suffer an unknown modification. This modification is such that if, in
any postetior instant, one of these particles happens to be detected somewhere in the
space, one cannot identify which one of the particles has arrived at this point. It is said
that the particles are completely indistinguishable.

Figure 1 shows two particles, A and B, whose positions in space have been determined
by a measurement process. Suppose that in a second measurement, two particles, P and
Q, are detected, According to the uncertainty principle, all the information the second
measurement provides is that either the ouicome {A—P,B-Q} or [A—>Q B8P} took
place, although nothing can be said about which one has really occurred. It is then im-
possible to determine to which one of the two detected particles P or (, the particle A {or
B) corresponds.

Ae P

Be L4
Figure 1

Let us denote respectively by wa and ye the wave functons of the particles A and B, each
one considered independent of the other. The non relativistic quantum mechanical de-
scription: of the two-particle system composed of A and B is usually made in terms of a
common wave function y obtained by the symmetric or anti-symmetric mathematical
composition of ya and ys [2]:

¥ = [ E)%(E) N G0 E)] 0

where £ and £p represent the coordinates required to completely describe the wave
functions of the particles.

1.2, Relativistic indistinguishability

Int this section we will try to show that the composition of the two wave functions ya and
Wp in (1) is not just a mathematical construction but the expression of a fundamental
physical interaction existing between A and B.
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When we try to extend our previous analysis to the relativistic domain {where the values
of the particles’ velocities are bounded by the velocity of light), we can readily conclude
tha‘t, whatever the amplitude of the perturbation produced upon the movements of the particles by
their original observation, indistinguishability should not be taken (as opposed to the non-
relativistic case) as an instantaneous consequence of uncertainty.

IP fact, according to special relalivity, the movement of each particle is constrained to its
light cone. Figure 2 iflustrates the light cones of two particles, A and B, originally inde-
pendent, and the instant £, when the light comes of the twa particles begin to intersect.

t
I

i

Figure 2

1 We can readily see, by observing figure 2, that before the instant t. the wave function Ya
of particle A is completely independent of particle B; the same for the wave function W
in relation to particle A. During the initial time interval (0,£,) there is no physical possibil-
| ity for the existence of a symmetric or anti-symmetric composition (1) of the wave func-
| tions wa and wa of the two particles, i.e., during this period the particles cannot be indis-
| tinguishable. Such possibility only exists after the moment when the two light cones begin
_ to intersect, that is, an interaction begins to take place.

1 Since the initial description of the system (requiring two independent wave functions wa
1 and ys) does not coincide with its final description (made in terms of the common wave
function (1)), then the existence of a transient process must necessarily be assumed and
{since there is no known (or conceivable) physical process whose outcome would restore
‘Itwo indistinguishable particles to their original identities, this process is irreversible.

1.3. Uncertainty Reactions

Such a bransient process in which two indistinguishable particles come out as the result
4of a collision of two distinguishable ones can be visualized in the same way we see a
jchemical reaction in which a compound molecule comes out of independent atoms. We
ishall hereafter name these processes uncertainty reactions for short. These essentially rela-
itivistic reactions are the manifestation of what we should recognize as a ton-reversible,
inon-potential, fundamenial interaction.

2. Indistinguishability in combinatorial analysis

iThe same conclusion we arrived at in section 1.2, i.e., that indistinguishability must be
jtaken not as a property of particles but as the resull of an interactive process, can also be
jreached when we examine a simple mathematical combinatorial system from the stand-
Ee;)int of physics.
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Let us consider a system formed by ideal coins. One might stress that from a purely logi-
cal standpeint, the quality of being indistinguishable cannot be assigned to a single coin.
Indistinguishability is only meaningful when applied to two or more coins, i.e., indistin-
guishability does not manifest when a single coin is considered in the absence of others.

We should therefore understand indistinguishability not as some physical property pos-
sessed by a coin (something that always existed together with the coin) but instead as an
emergent property that appears as the effect of putting two or more coins together. From
the standpoint of Physics, emergent properties are usually identified with the result of a
process of an interactive nature. Since it is a well established fact that there is no instan-
taneous interaction in nature, such a process must necessarily take a finite time to elapse.

3.  The entropy of a monatomic gas

In this section, a derivation of the entropy of a monatomic gas - which requires no ad-hoc
correction, is free of any paradoxes and provides the explanation on how equilibrium is
reached - is obtained under the assumption of the transient distinguishability of its con-
stituent particles.

3.1, Irreversible processes in microcanonical systems

Let us consider, as a preliminary discussion, an elementary, abstract microcanonical sys-
tem composed of two independent identical systems, each one containing a single ideal
coin that can take, in the absence of other, the values head (H) or tail {T) as its only con-
figurations.
As long as the coins are maintained isolated or independent, the combined outcome of
flipping the coins is one of the elements of the set

= {HH 'HT 'TH,'TT}
Although, if these coins are identical in the quantum meaning of the term, i.e., if they are
of such a nature that when put together one cannot be distinguished from the other, then
the outcome of throwing two such coins will be one of the elements of the set
Qu={"hi’ ‘hi=tk','t¥'}. Since neither the results ‘HT or ‘“TH’ can be taken as equivalent to
the single indistinguishable outcome “hf =th’, we can not consider £ as a subset of Oy, In
fact, 2 2 Q.
Hence, when the conditions that keep two originally identical coins independent are re-
moved, a non-reversible process takes place so that the number of possible configura-
tions the system can take will decrease from the original four to the final value of three.
This conclusion requires, as we shall see below, a re-formulation of the equilibrium cri-
terion of Statistical Mechanics.

3.2.  Gibbs’ corrected derivation of entropy

The procedure usually adopted in the microcanonical approach to Thermodynamics for
the calculation of the entropy S of an ideal monatomic gas is to take, as a model of the
same, the superposition of N identical, mutually independent, non-relativistic quantum
particles with mass n confined to a cubic box of volume V and with total energy U. The
number Q of different configurations the system can take, can be obtained from the solu-
Hon of the Schrjedinger’s equation for the problem of ene particle in a cube. The number
Q2 is equal to the number of solutions of the diophantine equation:

%nz - [S_T")UVM
i hl

=1

@
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and the entropy 5 is cbtained from the Boltzmann's Principle, § = KnQ), The asymptotic
value for kInQ) is:

312
kinQ = Nkln[;ya—(4mﬂU) }%Nk @

IN

In the traditional derivations of the entropy of the monatomic gas, since (3) does not sat-
isfy the additivity condition for entropy, it is generally assumed that a correction factor
(Gibbs’ correction) is required. This correction, done under the assumption of the indis-
tinguishability of particles is obtained by dividing <2 by NI thus leading to the corrected
value for the entropy [3].

3.3.  Transient distinguishability and equilibrium

In the following, instead of introducing an ad-hoc correction factor for the derivation of
entropy, we shall assume the transient distinguishability of identical particles as the mo-
tive power that drives the gas towards its equilibrium state.

Since according to phenomenological thermodynamics additivity of entropy is not a condi-
tion of necessity but of equilibrium it is legitimate Lo assume the value given by (3) as corre-
sponding to a state of the gas out of equilibrium. In fact, this state has not been produced
by a natural process but as the result of a mental construction where its N constituent
particles were artificially superposed in the cube. As a consequence of this artificial super-
position, a gas is formed whose particles are, at the moment of their superposition, by
construction, completely independent and distinguishable.

By generalizing the process for the two-coins microcanonical system described in section
8.1 and taking into account that identity (3} corresponds to an extreme state of the system
in which KInCQ} assumes its maximum value, we can state that

as the system moves towards equilibrium, the value of KinQ) decreases monotonically
until it attains its minimum value,

In other words, in its way te equilibrium, the system loses configurability. Since this fact
is in complete disagreement with what is well established for entropy, kIn{2 can not be
set equal to the entropy 5 as it has been usually done in the formulation of the Boitz-
mann’s principle,

Nevertheless kIn{) represents a legitimate thermodynamic fanction. In order to stress the
difference between this function and entropy as well as its fundamental role in micro-
canonical theory, it is proper to give it a distinctive name, say the complexity of the sys-
tem, and denote it by a different letter, say, L. Since neither L nor 5 are observable quan-
1Hties, the existing relationship between them cannot be directly established by experi-
jence. The shortest path we found to solve this problem was to postulate the equation S =
L not as a universal identity but as the condition for equilibrinm.

3.4 The macroscopic homogeneity principle

Since L is here recognized as a monotonic decreasing function of time we can not adopt,
as a criterion for equilibrium, the maximum probability principle. It will be replaced here
{by a phenomenological criterion that we shall call the Macroscopic Homogeneity Princi-
1ple. This criterion [7] states that:

in the equilibrium state, any thermodynamic extensive quantity can be expressed as a
first-order homogeneous function of the remaining extensive quantifies that completely
defermine the macroscopic state of the substance.
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Since L can be identified as one of these extensive quantities, it must satisfy, in the equi-
libritum state, the equation:

L*=gl*

where L* denotes the equilibrium complexity, £ is the Euler operator for homogeneous
functions
n
£ A, i
- o4,

and the A/'s stand for the extensive thermodynamic parameters such as U, V, N etc.

Defining the auxiliary function y =L - 5, and taking into account that in the equilibtium 5
is also expressed as a first-order homogeneous function of the same extensive parame-
ters, we obtain the differential equation:

gy-y=e-L
whose solution allows the determination of the entropy 5 when L is given. It can be easily

verified that, for the perfect gas whose complexity is given by (3), y coincides with the
Gibbs’ correction factor.

If we now define the fotal complexity of a system as the value of L corresponding to the
state in which the system’s constituent particles are completely distinguishable, then we
can express the thermodynamic equilibrium in terms of the following principle:

The total complexity of a microcanonical system represents an upper bound for the differ-
ent values the system’s complexity can take. Progressive non reversible interactions
among the system's constituent elements produce, in the course of Hme, a monofonic de-
crease in the value of the system’s complexity until all pending interactions are consum-
mated. The system then attains its state of equilibrinm,

4. The equilibrium in a gas of bosons

Evidences of the existence of states of incomplete indistinguishability can also be found
in the ideal gas of bosons. It is well known that Bose-Einstein statistics can be independ-
ently obtained either as a consequence of the equilibrium condition for a creation-
annihilation process or as a mathematical consequence of the indistinguishability of
identical particles.

4.1.  Equilibritsn in a creation-anniliilation process

The movement of a gas of bosons towards the equilibrium state can be obtained from the
restatement, in terms of a Markovian birth and death process, of A. Einstein's arguments
for the equilibrium between matter and radiation [4]. A general Markovian birth and
death process is described by the fellowing system of differential equations [5,6]:

pul(’) = ”z‘opo(f) + 4 Py (t) 4
P, '(f) =A.4P. (t) - (‘;!'n + #ﬂ')pﬁ(t) + iy D (t)

where the p.(#) represent the probability of finding 1 elements in a population at time #,
the A.'s are the elements' birth rates and the p.'s, their death rates. The equilibrium
(stationary) probabilities pn(c0) are obtained by equating p'«(t) =0 for all n.

Let us suppose that the rates of birth (creation) and death (annihilation) of the particles are
independent of n, respectively in =X and p, = p for all #. The equilibrium number of par-
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ticles in the system can then be obtained as the expectation 7 of the random variable # for
the stationary solution p.= pn(w) of the system of equations {(4):

o 1
=2nm,=—
2= ©)
A
We assume that both the birth and death rates % and 1t obey the Arrhenius” law:
-E. =&
5 | 6
A=fe ¥ and u={le¥ @

where E1 and E; (Ez>E1) represent the energy levels of the substance with which the par-
ticles interact, k is the Boltzmann's constant, T is the absolute temperature and the Ar-
thenius’ frequency factor & is constant.

Taking into account the Bohe's frequency condition
Ez - E1 = hv

where h is the Planck's constant and v the characteristic frequency, then (5) can be identi-
fied with Planck’s radiation law:

A= )

The time evolution of a bounding limit for the probability p.(#) of finding » particles in
the system at time ¢ is known [6] to be given by the expression

7.(1) - p. () < ae™”

where:

a:i(l/_giz[\/%]" md  p=(f7-VA)

&)

Therefore, whatever the initial probability distribution of particles, in the final equilib-
rium condition the particles will become indistinguishable.

The Markovian birth and death process analysis of stationary states shows that equilib-
rinm is characterized not in terms of the most probable subset of all states available to
the system, as usually assumed in the traditional formulation of the Boltzmann's Princi-
ple, but as the stationary probability distribution function pn = pofec). In the case of bosons
(whose birth and death rates are constant) p. is given by the geometric probability distri-
bution function:

" hv nhv
P = P,,(OO) = (l - i][i] = [1 - Q_E}E-F (8)
HINH
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4.2.  Probability distribuiion of indistinguislmble particles

Let us take the combinatorial system formed by the random placement of n indistin-
guishable balls in r cells. The asymptotic probability distribution function for #—wo, r—w
so that the average number k = n/r of balls per cell remains constant is known to be [5}:

IR A ©)
- n (I+K)(1+K)

4.3.  Equivalence between indistinguishability and equilibrium

Both probability distribution functions (8} and (9) are identical with x = 7, as expected.
Therefore the equivalence between the equilibrium state of the gas and the complete in-
distinguishability of its constituent particles can be formally established so that

when a gas of bosons is removed from its condition of equilibrium then its constituent
particles are necessarily removed from the state of complete indistinguishability,

a result that can only be explained in terms of our previous findings.
5.  Conclusions

In this paper we have shown that transient distinguishability is a consequence of the
relativistic uncertainty principle where uncertainty can be understood as the manifesta-
tion of a non-reversible, non-potential fundamental interaction existing among identical par-
ticles so that indistinguishability results as the final outcome of their collisions. The pic-
ture we usually make of chemical reactions seems to be a suitable paradigm for a heuris-
tic description of this interactive process.

It was also shown that transient distinguishability is a necessary hypothesis both for a
paradox-free derivation of the entropy of a perfect gas and for the explanation of the
non-equilibrium internal states of the constituent particles of a gas of bosons. The equi-
librium state in these systems is characterized by the complete indistinguishability of
their constituent identical particles as opposed to non-equilibrium states where incom-
plete indistinguishability is to be found. Besides, it was shown that when the system’s
constituent identical particles are in the extreme state of complete distinguishability, its
complexity L = kIn(} attains its maximwmn value.

The time asymmetry observed in macroscopic natural phenomena (time’s arrow) should
then be explained not as a corsequence of the movement of microscopic particles to-
wards states of increasing probabilities but, instead, as the inexorable tendency of natural
substances to lose configurability, i.e., to consume, in the course of time, ail pending un-
cerfainty reactions existing among identical particles giving rise to observable change.
This change ends, microscopically, in the complete indistinguishability of identical parti-
cles and, macroscopically, in the homogeneous state of thermodynamic equilibrium.
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