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Abstract

The p-meson electromagnetic form-factors are calculated, both in a covari-
ant and light-front frameworks with constituent quarks. The effect of the
breakdown of rotational symmetry for the one-body current operator in the
null-plane is investigated by comparing calculations within light-front and
covariant approaches. This allows to choose the appropriate front-form pre-

scription, among the several ones, to evaluate the p-meson form-factors.
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I. INTRODUCTION

T

Since Dirac [1}, it is known that the light-front hypersurface givenby 2t ="+ 23 = 0
(null-plane) is suitable for defining the initial state of a relativistic system. Relativistic
models with null-plane wave-functions have becoming widely used in particle phenomenology
[2]. They permit to calculate the matrix elements of certain operators in a framework of a
fixed number of constituents, while mantaining a limited covariance, under transformations
that keeps the null-plane invariant [3]. As the generators of rotations around z and y-axis do
not belong to the stability group [4], the covariance of & composite null-plane wave-function
with a fixed number of constituents can be hroken.

This fact has corsequences, for example, in the calculation of the electromagnetic form-
factors of a composite spin one particle [5]. It is well known that, the JH= 1"+ J9
component of the current, looses its rotational invariance and consequently violates the
angular condition [5,6]. The matrix elements are computed with null-plane wave-function
[6,7} in the Breit-frame, where the vector component of the momentum transfer is along the
z-direction. If rotational symmetry around the z-axis is valid, then JE = J}, where the
subscripts are the polarizations of the spin one particle in the cartesian instant-form spin
basis [8]. Such requirement is the angular condition [5,6). It can also be derived in the
front-form spin basis, using general arguments of parity and rotational invariance of J+ [9).

The breakdown of rotational symmetry, implies that, it does not exist an unique way to

extract electromagnetic form-factors from the matrix elements of J *+, for composite systems

with spin equal or higher than one. Consequently, in the literatnre, there are different

extraction schemes for spin one form-factors [6-8,10].

Recently, the issue of the breakdown of rotational covariance for the one-body compo-
nent of the J* current, has been discussed in the calculation of p-meson form-factors with
constituent quarks [11,12]. In these works, it was stressed the importance of relativistic ef- |
fects related to the constituent mass scale and the p-meson size. Such relativistic effects are

smaller in 2 test case of a S-wave deuteron system and the violation of the angular condition



s quite small [13].

The judgement of the different prescriptions for obtaining electromagnetié form-factors
with a specific p-meson null-plane wave-function, could be done in principle by a comparision
with the results of a covariant calculation, within the same model. |

It is our aim in this work to calculate the p-meson form-factors from the covariant
Feynman one-loop triangle-diagram for the '+’ component of the current, in two ways.
The first one corresponds to integrate directly in the four-dimensional phase-space and the
second one corresponds to first integrate in the >-’ component of the loop momentum (k- =
k% — k*). This last procedure is equivalent to the use of a wave-function in the null-plane to
ob-tain form-factors [14]. To deal with a finite value for the triangle-diagram, we introduce a
covariant regulator, in a manner proposed in Ref. [15]. The covariant regularization generates
a null-plane p-meson quark wave-function [15].

We compare the covariant and front-form results for the p-meson form-factors, and then,
we are able to point out the appropriate prescription to evaluate the form-factors of the
p-meson with the null-plane wave-function.

The plan of the work is the following: in section II is discussed the different extraction
schemes for obtaining the spin one electromagnetic form-factors, from J+, and the notation
is defined. In section III, the matrix elements of J* are obtained from the Feynman triangle-
diagram, and the covariant and front-form calculations of the form-factors are discuss.ed. The
covariant regularization is shown to be related to the null-plane wave-function. In section
1V, it is presented the numerical results for the p-meson form-factors calculated in both

frameworks and a summary of the main findings are given.

II. ELECTROMAGNETIC CURRENT AND FORM-FACTORS

The general expression of the electromagnetic current of a spin-one particle has the form

18] :
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where, m,, is the p-meson mass, ¢ is the momentum transfer and P* is the sum of the initial
and fina] momenfum.

We write the instant-form mairix elements of the J* component of the current, given by
Eq. 1 in the Breit-frame, where q". = (0,4,0,0), The instant-form cartesian polarization

four-vectors are given by:

& = (—vMy/1+m0,0), & =(0,0,1,0), & =(0,0,0,1), (2)

for the initial p-meson polarization states and,

E‘;lz(\/ﬁi\/1+ :G»O):E::‘=5u75;”352s (3)

for the final polatization states; n = —q2/4mf,. The p-meson four-momentum in the Breit-
frame are, p! = (p° —¢./2,0,0) for the initial state, and 77 = (1°,4-/2,0,0)for the final
state; p? = mpm.

We use the spherical polarization vectors, and in the instant-form spin basis are given
by:

== nr =, (@)
The *+" component of the electromagnetic current in the instant-form spin basis is written
as:
T A dL VR T - Tk
ezl ovan o wp v | 5)
BAVE SARRVEN o AT g
where the spin projections are in the following order m = (+,0,—). The first and second
subseripts of the current means the polarizations of the final and initial states, respectively.
The matrix elements of "+" component of the current in the instani-form spin basis,

Eq. 5, are related to the matrix elements in the front-form spin basis. For notational conve-

nience, we use I+, to express the front-form matrix elements. The unitary transformation




between these spin-basis is the Melash rotation [9] (Appendix). The generd form of the *+”

component of the current in the front-form spin basis is written as [§]

VR A
AR RS S A S (6)
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We express the front-form matrix elements in terms of the instant-form matrix elements
of the current, by using the results of the Appendix,

JL L+ ) E — gl + 2,475
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The angular condition J}, = J* can be written in front-form spin basis (see Appendix),

giving its usual form {6,9]

AP = (14 2)I + I, - Vonlh —Ih=0. (8)

In general, the impulse approximation to the electromagnetic current does not satisly
such condition [6,11-13], this fact led to different extraction schemes of the form-factors from
the matrix elements of the current [6-8,10,12]. Let us review the prescriptions existing in
the literature for calculating the form-factors for spin-one particle, from the matrix elements
.

The charge, G, magnetic, Gy, and quadrupole, Gy, form-factors are obtained from linear
combinations of the covariant form-factors, Fi, F and F; [8], see Appendix. Below, we give
the different prescriptions for obtaining the form-factors, which are also written in terms of
matrix elements in the cartesian instant-form spin-basis. Such spin basis is used because it

facilitates the algebraic manipulations of the covariant amplitude for the photon absorption

process, and it is completly equivalent to the front-form spin basis.

3

In reference [6], the ehmma.tlon of the matrix elément I, glves the following prescnptmn

to calculate the form-factors:

Ih+ It 1]_—[J+ +25b — gt +nJl
J+
\/ﬁ
V2

-] = VR (-1 - m) +ndl) (9)
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In Ref. [7], they have obtained

GEK =21 -
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The prescrition of Brodsky and Hiller [10], to obtain the form-factors is:
1
63" = gy~ 20 + By/2n 1 + 22y — 1IL]
1
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2 G ) P
GPH = IH— I I
1 (I+2 Joo — fisa + Nz o]
1 I + +
= (1+2 ) \f( + 2} —JF + JE]

" =3 +2)\/_ 0l — 1l — (7 + )

V3
EEES NG

According to Ref. [8], the electromagnetic form-factors, are obtained from the matrix

T a1+ 20) = TR (1 +9) — nJ) (11)

elements JX , JX and JF

zz) Vaz yy?
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The low-energy p-meson observables, mean square radius, magnetic moment and
quadrupole moment, are given by [7],

Gz(qz)
qt

2 —
< 2 >= lim S(Gg(q ) 1)

e e P

» #=1m Gi(q"), Q= lim 3v2 : (13)

respectively.

III. COVARIANT AND FRONT-FORM CURRENTS

The p-meson electromagnetic form-factors are obtained in the impulse approximation.
It includes only one-body current operator, and the amplitude for the photon absorption is
given by the Feynman triangle-diagram, \%rith the photon leg attached to one of the quarks.
We compute only the "good” component of the current {J*), which is diagonal in the null-
plane Fock-state. The pair creation diagram is supressed for J*+ [16].

The spinor structure of the p — qg vertex, is written in the following form,

m kH 4 ks
e kY=g £2__~ ~ =~ 14
TR E) = 2 pktmym—ae (14)
where, the p-meson is on-mass-shell, and its four momentum is o= k¥ — k"™ the quark

momenta are given by k* and &, and their mass by m. Eq. 14 reduces to the vertex given
in Ref. [17] for a on-mass-shell quark, This vertex corresponds to a relative S-state quark-
antiquark wave-function [5,17]. Above, we wrote the spinor structure of the vertex. The
complete null-plane wave-function comes from the regularization factor and the denominator
of the propagator, as it will be clear in the following. -

The impulse approximation to J¥, is given by the Feynman triangle-diagram, and we

assume the constituent quark as a Dirac pointlike particle,
Tty d'k TrlefTa(k,k —p}(F — By + myy*(k - fi + m)elTa(k, b — pi)(f + m)]
PR (R R - m (B i sG]
xA(k,ps)A(k, pi) ‘ (15)

where J}',-' is written in the cartesian instant-form spin basis, and e;-“ is the final polarization
four-vector (Eq.3) and ¢’ is the initial four-vector polarization (Eq.2), the subscripts 1 and

J stand for =, y and =,

The regularization function,

N

Ak, p) = Fpf —mE e (16)

was cﬁosen to turn Eq.15 finite. The special form of the regulé.tor, allows to identify a
null-plane wave-function similar to the one proposed for the pion in Ref. [15]. They have
used a monopole form-factor, instead of a dipole. The normalization factor N is found by
imposing Go(0)=1 .

The covariant calculation of the form-factors, is performed with Eq. 15, which is ana-

litically integrated in the k° complex-plane. The integration over k is done numerically.

The angular condition is satisfied exactly by the covariant ¢alculation, as it should be. Also

for ¢* = 0, J}(0) = J}(0) = J7(0). The matrix elements of the current satisfy current
conservation, g*J.(q?) = 0, as we verified explicitly.

The front-form calculation, corresponds to integrate analitically in Vt.he complex-plane of
k™ variable [14]. The pair diagrams are not present with g* = 0. The pole which contributes

to the integration is

k4 m®— e

k™ o

(17)

for p* > k* > 0, where p* = 2" is the energy of the p-meson in the Breit-frame. This
pole helongs to the lower complex semi-plane, where no other pole is present. Eq. 17, is the
on-mass-shell condition for ihe spectator quark, in the process of photon abserption.

The null-plane wave-function of the p-meson appears after the substitution of the on-
mass-shell condition, Eq.17, in the propagator of the quark that absorbs the photon and in

the corresponding regulator,

1 1 1

(G S (g e R L e [ L e T R A

where, = k¥ /p*. The free quark-antiquark mass squared is given by

k2 4+ m?
2 _ K}
Mo = z + l—=

7— )2 4+ m?
A (19)




The function M2 is given by

El +m? 5 — k)2 2
=5 B i) i . (20)
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The null-plane wave-function is obtained from the combination of denominators in Eq.18
with the spinor structure of the vertex, Eq.14. We leave out the phase-space factor 1/(1—=).

The resulting expression is evaluated in the center of mass system,

—

il & — ] (21)
(1= a)i(m2 =~ ME)(m2— MEY | T o

&;(z, k1) =

the polarization state is given by &. The wave-function corresponds to a S-wave state {17].

IV. DISCUSSION

The constituent quark model for the p-meson null-plane wave-function has two param-
eters, the constituent quark mass, m, and the regulator mass, mp. The p-meson mass is
0.77 GeV. In this case, the composite wave-function corresponds to a bound state, which

imposes a lower bound for the regulator and constituent quark masses, such that

M,
m > —2—,mn+m >m, .

The scale of the model is obtained by adjusting the parameters to get a mean square
radius of about 0.35 fm?, and Ga(g® ~ 5GeV?) ~-0.25, as calculated in Ref. [12], with point-
like constituent quarks. They used a wave-function in the null-plane which is dominated by
one-gluon exchange at short distances and linear confinement at large distances.

In the non-relativistic limit, the quadrupole form-factor vanishes for a S-state wave-
function. The non-zero values of G are a consequence of the felativistic nature of the
model, and for this reason we consider it in the parameter fit. We used the covariant
calculation for the form-factors to get the parameters m = 0.43 GeV and mz = 1.8 GeV.

The low-energy electromagnetic parameters, are calculated using the different front:form
prescriptions and are compared with the covariant results. In Table I, we show the values of

< 72 >, g and @,. The mean square radius, calculated in the front-form scheme has values

9

at most 10% higher than the covariant result of 0.37 fm?2. .The magnetic moment obtained
in the covariant calculation is 2.18, which can be compared with the non-relativistic value
of 2, In Ref. [12] they obtained 2.26.. ‘The front-form calculations for the magnetic moment,
give values with a spread of 15% above the covariant result. The quadrupole moment in
the covariant calculation is 0.052 fm?, somewhat higher than the value quoted in Ref. [12].
The front-form calculations are within 10% to 15% of the covariant result for the low-energy
parameters.

In Fig. I, we observe that the charge form-factor, Gy, is sensitive to the different front-
form prescriptions. The calculations show a zero placed around 3 GeV? consistent with Ref.
[12]. We found an increasing discrepancy among the several prescriptions and the covariant
results, for momentum transfers above the zero crossing. The {GK) presctiption gives results
in agreement with the covariant calculation, while the (BH) results are about 30% below at
higher 2.

The diﬁ'erences between the various front-form calculations for the magnetic form-factor
and the covariant resulls are not so pronounced, as shown in Fig. 2. At small momentum
transfers the (FFS) prescription has a value about 15% higher than the covariant result,
in agreement with the results of Table I. In the momentum range considered, the {GK)
prescription is consistent with the covariant calculation. ‘

The relativistic effects in the model are the origin of G, and thus it is more sensitive to
the difference between the front-form prescriptions. In Fig. 3, the values of G5 calculated
in the front-form with prescriptions given by (CCKP) and (BH) are 20% lower than the
covariant result. The calculations with (GK} combination of the currents, present the best
consistency with the covariant results, among the four prescriptions tested.

;
We conclude that, in the scale of the p-meson bound state, tunned by a parametrization |-

H
i
i

which reproduces the size and quadrupole form-factor, of an effective constituent quark

model, which embodies gluon exchange and confinement; the prescription for a front-form |
;
calculation of the form-factors as given by the work of Grach and Kondratyuk {6] shows

consistence with the covariant results. We have used a vertex for the p-meson, that was

10

f
i
i
i




amenable to covariant integration and reproduced to some extend the size properties of a

physically inspired null-plane wave-function.
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) }
Jh= m[fﬁ +2y/ 201 — iy — 1)
V2 /2 7 V2
Jh = o 5 T+ (- DIG + \/%IJB - 5]
JJ; = Il+1 + I]+_1
i
T = Ty b+ 22l + I AT (A3)
The relations between the form-factors Gy, G and G5 and the covariant form-factors
" I, Fy and F3, are given by:

APPENDIX A

The Melosh rotation for spin 1 particle is given by:

{1+cosd) __sing (1—cos®)
2 W2 2

By = %'-22 cosf _%150. . (A1)
(1—cos8} sing {I+cosd)
2 V2 2

where cos 8 = (/T4 7)"! and sinf = "“\/(‘1:;;

The matrix elements of the current in the instant-form spin basis (J*), Eq.5, and in

front-form spin basis (I7), E(i.ﬁ are related by the Melosh rotation,
RLUITRL, =Jt . ' (A2)

The instant-form matrix elements are expressed in terms of the front-form matrix ele-

ments as [8], using the above equation,

2
Go = —gmy/1+ a3 -+ 2(F, + Fa + (1 + 7))l
Gl = 2mp 14 7]F:';

2
Ge = “4\/?_'”%’7\/1 +alfi+ (L4 0)F+ B (A4)
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FIGURES ' : . TABLES

FIG. 1. Charge form-factor Gy(g?) for the p-meson as a function of ¢, calculated with covariant

TABLE I. Results for the low-energy electromagnetic p-meson observables, for the covariant

and froni-form schemes. The solid line is the covariant calculation. Results for the different (COV) and front-form calculations. The front-form extraction schemes to obtain the form-factors :
front-form extraction schemes, Ref.[6] (GK) (dotted line) (it is not possible to distinguish from the are given by Refs. {GK) [6], (CCKP) [7], (FFS) [8] and (BH) [10]. In the last column, the results g
covariant calculation), Ref.{7} (CCKP) (short-dashed), Ref. [8] (FFS) (dashed) and Ref.[10] (BH) of Ref. [12] are given.

(long-dashed).

FIG. 2. Magnetic form-factor G;(g?) for the p-meson as a function of ¢°, calculated with MODEL cov GK cexp BH 5 Ref(12]
2 2 :
covariant and front-form schemes. The curves are labeled according to Fig.l . <t > (fmf) 0.37 0.37 0.38 0.40 0.39 0.35
H 2.14 2.19 2,17 2.15 2.48 2.26
FIG. 3. Quadrupole form-factor G2(¢®) for the p-meson as a function of ¢2, calculated with Qa(fm?) 0.052 0.050 6.051 | 0.051]  0.058 0.024

covariant and front-form schemes. The curves are labeled according to Fig.1 .
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