UNIVERSIDADE DE SAO PAULO

INSTITUTO DE FiSICA
CAIXA POSTAL 66318
05389-970 SAO PAULO - SP
BRASIL

PUBLICACOES

IFUSP/P-1243

INELASTIC DISTRIBUTIONS IN HIGH-ENERGY
p-NUCLEUS COLLISIONS

Yogiro Hama
Instituto de Fisica, Universidade de Sio Paulo

Samya Paiva

Instituto de Fisica Teérica, UNESP
Rua Pamplona 145, 01405-901 S#o Paulo-SP. Brazil

Outubro/19%



Inelasticity Distributions in High-Energy p-Nucleus Collisions

Yogiro Hama{) and Samya Paiva(® *
M) Institulo de Fisica, Universidade de Sdo Paulo, C.P.663818, 05815-970 Siv Poulo-SP, Brazil

(@) Pustituto de Fisica Tedrica, UNESP, Rua Pamplona 145, 01405-901 S&o Paulo-SP, Brazil

Abstract

Inelasticity distzibutions in high-energy p-nucleus collisions are computed in
the framework of the Interacting Gluon Model, with the impact-parameter
fluctuation included. A proper account of the peripheral events by this fluc-
tuation has shown to be vital for the overall agreement with several reported

data. The energy dependence is found to be weak.
PACS numbers: 13.85.Hd, 12.40.Ee

Inelasticity is one of the basic quantities describing high-energy hadronic and nuclear
collisions. Thus, since early times its study has deserved a special attention both of the
experimentalists and of the theoreticians. Yet, experimental data are rather scarce and the
theoretical understanding of several aspects such as its average value, its distribution and
the energy dependence, is far from being satisfactory.

One of the main characteristics of the high-energy hadronic or nuclear collisions is the
existence of a large event-by-event fluctuation, exhibited in several observed quantities.
Thus, in a given experimental setup and even under the same initial condition of colliding
objects, events with different final state configurations take place. Such a fluctuation has
either a quantum mechanical or statistical origin or even simply associated with the impact
parameter, A convenient model which takes the guantum mechanical fluctuation in the
initial stage of the collision inte account, and thus may provide us with the inelasticity

distribution, is the Interacting Gluon Model [1] (IGM). This model is based on an idea
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(2] that in high-energy collisions valence quarks weakly interact so that they almost pass
thorough, whereas gluons interact strongly, producing an indefinite number of mini-fireballs
which eventually form a unique large central fireball (all possible g7 sea quarks are, in this

model, “converted” to equivalent gluons).

However, the main drawback of the original version was the lack of an appropriate
account of the impact-parameter fluctuation. In a previous work (3] (hereafter called I),
we have improved it, by including this effect. Conceptually, this fluctuation is evidently
necessary in any realistic description of hadronic or nuclear collisions, but we have shown
that it also modifies the observables in a significant amount. In I, our interest was to study
the effects of the initial-condition fluctuations in hydrodynamical models and so fixed our
attention mainly on the rapidity and pseudo-rapidity distributions of the produced particles,
by considering p-p collisions, where, seemingly, the fluctuation effects manifest themselves
more conspicuously, In the present note, we shall focus our attention upon the inelasticity

and extend the previous calculations also to p-nucleus collisions.

The impact parameter gdeﬁnes, in the first place, the prebability density of occurrence
of @ reaction (apart from the normalization) F(g) =1- IS(E)iz, where we assume that the
inelastic processes occur due to the gluon-gluon fusion. So the eikonal function is written as

=, =,

ISB)? = exp{~C [ db [ B D) DA F(E+F - 1}, (1)

-

where D,(b) is the gluon thickness function of proton, DA(E} is the one for the nuclens A
and C is an energy-dependent parameter to be determined by the normalization condition
[ B, (Bydb = oinet(\/s) for pp collision. Notice that, because of this, the pA cross-section

oind(s) = fF,,A(S) db may be calculated by using (1), once pp cross-section is fixed. We

have taken

o,-l'nel = 56 (\/‘;)-1.12 4 18.16 (\/5)0.16 (2)

Pr

as an input [4]. The function £(b) in (1) gives account of the finite effeciive gluon inter-
p g g

action range (with the screening effect taken into account) and is subject to the constraint
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Jf(b) db =1, The simplest choice of f(g) would be 5(3), which represents a point interac-
tion, but we preferred to parametrize it as a Gaussian with a range = 0.8 fm, which is more
consistent with the finite range of the strong interaction and also describes better the data.

For D,(5) we take here a Gaussian distribution. Thus we have eventually

Dy(8) = (B = (a/m) =¥, (3)
with ¢ = 3/(2 RI), where Rp ~ 0.8 fm is the proton radius. For DA(E), we take the

z-integral of a Woods-Saxon distribution

o +eoo - _ +oo Po
DaB)= [ oal2)ds= [ ey AYELE (4)

where Ry = rgAY?, rg = 1.2 fm, d = 0.54 fm and p4(F) is normalized to A. Thus we get

-

Fpa(b) =1 — exp{—Ca(B)}, (5)
with
h(B) = a ]0 @Y Da(F) Io(a bb) 2, (6)

where Iy is a modified Bessel function.

Secondly, the impact parameter determines how the energy and momentum of the fire-
ball fluctuate, because as the impact parameter increases the average fire-ball mass becomes
smaller. In I, we have incorporated this effect by writing the gluon momentum distribution

functions as
Gy, 8) = Dy(B) jz,  Galy,B) = DalB) fy, (7

where « and y are the Feynman variables of gluons in p and A, respectively, in the equal-
velocity (e.v.) frame. With this notation, the density of gluon pairs that fuse contributing
to the final fireball may be expressed as

w(e,vi8) = [ [ " Gy(e,5) Galy, B) apa(e,9) FE+ 5 ~ ) 6 (ay — M2, /)

-

= h(b)w{z,y), (8)

with
w(z,3) = (o) 4]  (m — M2y 1), (9
where Muin = 2m, and the gluon-gluon cross-section is parametrized as [6]
Tee(2,y) = o/ (zys) (10

with o = 21.35, which has been fixed by using the pp inelasticity data [5]. Observe that it

(8), its impact-parameter dependence is factorized out.

Now, we shall give a brief account of how to obtain the probability density x{(E, P; 5} o
collision at an impact parameter b, forming a fireball with an energy F and a momentum P
We assume that the colliding proton and nucleus form a central fireball, via gluon exchanges
depositing in it momenta m(g)\/.;/2 and —y(E)V/E/Q, respectively. Let n; be the number ol

gluon pairs that carry momenta z;1/3/2 and —y;1/5/2. Thus,
> oniwi = x(g) and > myi = y(g} . (11)

In what -follows, we will omit the explicit gdependence of 2 and y in order not to overload
the notation. The energy and momentum of the central fire ball in the e.v. frame of the

incident particles are given by
E=(c+y)v5l2,  P=(z-5)V5/2 (12)
and its invariant mass M and rapidity ¥ are respectively
M= /sty=«v/s and Y =(1/2)In(z/y) . (13)

With these notations, we can follow the prescription given in [1] and write the relative

probability of forming a fireball with a specific energy and momentum as
T(z,y:5) ~ exp{—XTG'K}/ [w 1/det(G)] , (14)

where



x=[ =@ gy e
y—{y) {zy) (%)
with the notation
("y") = f da’ f dy' 2™y w(a’, y'; 5}, (15)

where w(z, y; 5) is precisely the function given in (8).

In terms of £ and P, the probability density is calculated as
T(E, P;b) ~ 2y/aiaz/m]exp{—a;(E — (E})? — a3 P?}, (16)

where a3 = [s((z*) + (zy))]™!, a2 = [s((z?) — (24))]"" and (this is just a notation,
don’t confuse it with the average value; it is not because w{z, y; b) is not normalized) (E) =
(=) + (yN/s/2.

Apparently, the expression {16) is normalized. However, both £ and P are bounded

because of the energy-momentum conservation constraint. There is also a minimum allowed
fireball mass My = 2m» . So, we have to put some additional factor in (16) to recover the

correct normalization,
X(B, ;) = xo(B)L(B, P;B), (17)

where Xu(g) should be determined by the condition

f dP ] dE X(E, P;8) 6(VEZ = P7 — M) = Fypa(B)joins! | (18)

As implied by our parametrization (7), the gluon momentum distribution is independent

9f the particular type of nucleus, the only difference being their density. So, in computing the
.integral (15), ' and g’ vary from some lower limit, defined by the condition /53y = M,
up to 1, corresponding to the complete neglect of any collective effect of the nucleons in a
nucleus. On the other hand, y in (11) may be larger than 1, because gluons from different

nucleons may contribute to give the fireball a momentum transfer that is larger than /5/2,

which is just the incident momentum of a single nucleon in our e.v. frame. So, we take a

.the upper limit of y(g) the overlap h(g), given by (6), whenever it is larger than 1. Wher

h(g) <1, we take it = 1, because in such a case the proton is interacting just with a single
nucleon. It is clear that m((}') corresponding to p is bounded by 1. These conditions, together

with the lower bound ./5zF = M, , determine the integration limits of (18)..

Once x(E, P; 5) Is determined, we are ready to compute the inelasticity distribution,
which is the main object of the present note. In I, following the authors of [1], we have
defined the inelasticity as the variable x appearing in {13), However, the usual definition is
k= .(Eo — E')/Ey , where Eq is the incident energy and E’ the leading (or surviving) particle
energy. We shall adopt this terminology here and as for «, call it just 5. There is also some
difference between k defined in the lab. frame and the one given in the e.v. frame. However,
since this is quite negligible, in this note we will compute everything in the latter, alﬁhough
data are not necessarily given in such a frame. The &-distribution has been obtained in I

and reads

X(k) = f db f dE f dP x(E, P;B) S(\/{E* = P?)fs — &) 8(VET = P? — Mua).  (19)

Then, by using the only existing x(x) data [5] at /s = 16.5 GeV, we can fix the parameter
o of the model. A comparison with the data is shown in Fig.1, where we have also put the
result of [1]. It is seen that, due to the impact-parameter fluctuation, the small-« events
became enhanced and the overall shape flatter, in better agreement with the data. The
enhancement of large-x events is simply due to the larger value of o which is necessary in
this case,

The computation of the inelasticity distribution x(k) is stmilar. Considering p as the

projectile, we have k = =, so, by using (12),
x(k) = [ &b f dE ] AP X(E, P;B)3((E+ P)/s — k) O(VET—P? — Mpa).  (20)

We show, in Fig.2, the results for several pA collisions at 4/s = 550 GeV. We do not have

accelerator data at such a high energy, but it is seen that x(k) is nearly k independent for pp,
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in agreement with ISR data. Recently [7], an estimate of hadron-Pb inelasticity distribution
at an average energy of {\/s) = 550 GeV has been reported, in cosmic-ray experimnent. The
result is y(k) = 3%%. We find that the qualitative features of our result agree well with the
teported one. If one considers that our model does not include diffractive dissociation and
that, seemingly, this component has not been separated from the non-diffractive one in those
data, one may attribute the quantitative discrepancy to this effect. The energy-dependence
of the inelasticity is quite small in our model, in opposition to the results of [1]. The main
origin of this contrast is the factor oirel which has been dropped out from (9). We show in

Fig.3 the average value (k) as function of /3, for several target nuclei.

A related quantity is the leading-particle spectrum, as shown in Fig.4 at /s = 14 GeV.

Assuming an approximate factorization of z;(= 2p;/,/5) and pr dependences, we have
E(ds/dp®) = f(a)h(pr), N (21)
where
Flo) = fdz';f dpf dEX(E, P;E)6(VET = P? - M) 6([Va— (E+ P)| /2= ). (22)
The pr dependence has been parametrized as
Wpr) = (8/7) "%, (23)

where 8 has been determined by fitting the data [8]. One sees that the agreement is almost
perfect. The result of [1] for pp is also shown for comparison. We did not put their curves for
the other targets, but the behavior is similar, namely they are more bent showing a definite
deviation from the data in the largest-z; region. This is a consequence of the neglect of the

peripheral events there,

We conclude the present note by summarizing that, except for the diffractive component,
the IGM seems to describe well the p-A inelasticity, provided the peripheral events are
correctly treated, by taking the impact-parameter fluctuation into account. The average

inclasticity decreases very slowly with the energy, in this description.
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Figure Captions

Fig.1: s-distribution for p-p at 1/s = 16.5 GeV. The data are from {5). The solid line is

our result, whereas the dashed one is from [1].
Fig.2: Inelasticity distribution for p-A collisions with several targets at /3 = 550 GeV.
Fig.3: Energy dependence of the average inelasticity for p-A collisions.

Fig.4: Leading-particle spectra as fuction of z; at pr = .3 GeV. The data are from [8] at
/s = 14 GeV. The solid curves are our results, whereas the dashed one is from {1].
We have chosen in (23) 8 = 6, 2.8, 2.6, 2.3, 2.2 and 2 GeV~2, respectively for p, C,
Al, Cu, Ag and Pb targets.
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Figure 1

Figure 2
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