UNIVERSIDADE DE SAO PAULO

INSTITUTO DE FiSICA
CAIXA POSTAL 66318
05315-970 SAO PAULO - SP
BRASIL

PUBLICAGCOES

IFUSP/P-1247

DETERMINATION OF THE ELECTRIC FIELD
GRADIENT TENSOR BY 2D NQR

Hernan Cervantes R. and Said R. Rabbani
Instituto de Fisica, Universidade de Sio Paulo

Christovam Mendonca
Departamento de Fisica, Universidade Federal de Séo Carlos
CEP 13565-905, Sdo Carlos, SP, Brazil

Novembro/1996



it o b by R

Single Graded—Responsé Neuron Model with

Recurrent Excitation:
Distributed Delay

K. Pakdaman!, C.P. Malta?, C. Grotta-Ragazzo® and J.-F. Vibert!

1) B3E, INSERM U 444, ISARS
Faculté de Médecine Saint-Antoine
27, rue Chaligny
75571 Paris Cedex 12 FRANCE

2) Instituto de Fisica
Universidade de Sao Paulo
‘CP 66318, 05389-970 Sio Paulo, BRASIL

3) Tustituto de Matematica e Estatistica
Universidade de S0 Paulo
CP 66281, 05389-970 Sao Paulo, BRASIL

Correspondence should be addressed to:
K. Pakdaman

B3E, INSERM U 444

Faculté de Médecine Saint- Antoine

27, rue Chaligny

75571 Paris Cedex 12, FRANCE

tel: 33-1-44738444

fax: 33-1-44738462

email: pakdaman@b3e.jussien.fr

Abstract: The asymptotic behavior of a single graded response neuron model with a delayed

© self-excilatory connection is studicd. The connection delay s distributed over a bounded

interval. The dynamical system associated with the system generates a strongly monotone
semi-flow, and therefore trajectories have a strong tendency to converge to equilibria. In
fact, it is shown that the system is either globally asymptotically stable or bistable. In the
latter case, the union of the basins of attraction of the two stable equilibria is an open and
dense set. The two basins are separated by a codimension one, unordered Lipschitz manifold
containing oscillating solutions.

1 Introduction

The time it takes for a signal to be transmitted from one neuron to another, referred to
as the transmission delay or simply delay, can influence the behavior of neural networks.
A number of studies have dealt with the local and global stability of networks with delay
(Marcus and Westerwelt, 1989: Marcus of al., 1991; Civalleri et al., 1993; Roska ef al., 1992;
Bélair, 1993; Burton, 1993; Roska et al., 1993; Gopalsamy and He, 1994; Ye et ql,, 1994). In
some cases sufficient conditions have heen derived for (almost) all trajectories to converge
to stable equilibrium points in networks with delay. This can be of prime importance for
neural network applications such as content addressable memories. However, even in such
(quasi) convergent networks, the delay may induce changes in the transient regime and the
boundary of the basins of attraction of the stable equilib.rium points, as we have shown in
the case of discrete fixed delays (Pakdaman et al., 1996b and 1995a-b}.

In this paper we study the dynamics of a single neuron with recurrent excitation with
continuous distributed delay. In this system, likewise in the case of fixed discrete delays,
most trajectories converge to stable equilibrium points, whatever the delay, thus constituting
a more general example to illustrate how the delay may alter both the transient regime and

the basin boundaries.



In section 2 we present the neuron.m'odel. The stationary dynamics of the trajectories are
described in sections 3. In section 4 we show that the transient regime duration of a systemi_
with a single discrete delay provides information about the system with a continuous delay
distribution. The dura‘ti;on of the transient regime is computed for different delays and

different constant initial conditions in section 5.
2 The neuron model

The graded response model (GRM) is characterized by the neuron’s activation a and a
sigmoidal output function o(a). In the absence of inputs, the activation decays with a
constant rate v. For more details and references on the GRM see (Hopfield & Tank, 1986;
Pasemann, 1993). We consider a neuron that has a delayed excitatory self-connection with a
positive connection weight w(u) and distributed delay u bounded by A. The neuron receives
a constant input K.

The neuron activation evolves according to the following delay differential equation (DDE}:

%(f.) = —vyait)+ K + ./“DAw(u)o(a(t-i- ©))du )

Where o is the sigmoidal function defined by:

1
o) = )
and w is & positive continuous function!. We assume that A = ~inf{u, such that w(u) > 0}

0
is a strictly positive real number. We note W = wa(tﬁ)du > 0.
Let C[-A,0] be the space of contiruous real functions of the interval [-A4,0]. Tor ¢ in

C[—A,0], there exists a unique real function a(t,¢) on the interval {—A,+o0), such that

'This assumption can be rtelaxed to w being a positive measure such that: A =

: —A+te
—inf{u, such that ]

o
dw(u} > 0forall € > 0} and W = f du(u) be strictly positive real numbers.
—A —-A

3

—a{t,d) = ¢(t) for —A <t <0, and all, ¢) satislics equation (1} for t > 0 (ale and Verduyn

Lunel, 1993). For such a solution of the DDE, we note e(¢) the element of C[—A, 0], defined

by a:($)(9) = a(t + 6, ), for —A < ¢ < 0.
3 Asymptotic Stability

We first. examine the local stability of the equilibria of DDE (1) and then the global stability.

3.1 Local stability

In this section, the local stability of the solutions taking a constant value, i.e. equilibrium
points of the DDE (1), is studied. A function taking the value x, that is, a(t) = « for all
t > —A, is a solution of equation (1) if and only if = is a zero of Z, the right hand side of
equation (1):

Z(x) = —yz + K + Wealz) (3}

The number and value of the zeros of Z depend on the values of the parameters (v, W, K)
(see also (Pasemann,1993)). The parameter set can be separated into two regions, one in
which the equation has a unique zero, noted zg, and another such that it has three zeros
Ty < X < Ty

More precisely we have:
s For 0 < W < 4v, Z has a unique zero noted .

e [or W > 4y, let:
K_(v, W) = —yLogl W—2—y+1/W(W—-I-y)) W= VW)

2 2 4+ (4)
W—2- W(WW—4 W WV —4
Ky (7, W) = yLog(+—t T =ly ey Bt

L. For either K < K_ or K’ > Ky, Z has a unique zero also noted .



2. For K. < K < K, Z has three zeros noted Ty < g < T3,

For the study of the local cxponential asymptotic stability of each equilibrium point, the
real parts of the solutions A of the characteristic equation (5) at the equilibrium point are

examined,

Aty — o"(a:,-)j_lw(u)e)‘“du =0. {(5)

3.1.1  The locally stable poinis

For the equilibria @, #; and @3 the following inequality holds:
¥>Wo'(z;) >0 for i in {0,1,3}. (6)

From inequality (6) it can be deduced that the characteristic equation (5) admits a real
strictly negative solution, noted (), and that all its other solutions are complex with real
parts smaller than i, (z;). This ensures that these constant solutions be locally exponentially
asymptotically stable (Hale and Verduyn Lunel, 1993).

Moreover we have:
=7 < pws_ (i) < pu(z) < paws_, (21) < 0, (M

where dx is the Dirac distribution at X, and B is defined by%: B = —sup{u, such that w(u) >

0}.
We define a continuous function v on the interval [~A— A, —A] (A > 0) by v(u) = w(u+A).

This represents the effect of increasing the delay. Then we have:

pulzs) < ) < 0, (8)

-H

?B = —sup{u, such that ] dw(u) > 0 for ali e > 0}
—-B=¢

and, in fact, y,(%;) increases and tends to zero as A increases and tends to infinity.

In summary, the local asymptotic stability of the stable equilibrium points of the system

does not depend on the delay.

3.1.2 The unstable point

At w3 the situation is different, we have:

v < Wa'(as) . (9)

From this inequality, it can be deduced that the characteristic equation admits a real strictly
positive solution, noted #(xz), and all its other solutions are complex with real parts smaller
than v{x3). Therefore the equilibrium point =, is a locally unstable point (Hale and Verduyn

Lunel, 1993). Using the same notations and definitions as for y we have:
0 <rwws_,(22) v} < wws_p(22) . an

and also:

0 < v{ms) < ez}, {11)

and, in fact, 1,(x,) decreases and tends to zero as A increases and tends to infinity.
Depending on the delay distribution, the characteristic equation at x; may have other so-
lutions with positive real parts. In fact, for a system with a single fixed delay A, (ie.

w(n) = Wd_,) there is an increasiug sequence of delays Ay, defined by:

tau(Ak\/chr'(mg)? -7 = \/!/Tfrzcr’(:r.g)2 — 2y, (12)

with 2kmy/W2a'{(23)% — 42 < Ay < (25 + 1/2)7 /W 20%{zs)2 — 42,




such that at A there is a pair of complex conjugate solutions of the characteristic cquation

crossing the imaginary axis from left to 1ight. For a system with distributed delay, there is
at least one sequence of increasing delays Ay at which a pair of complex conjugate solutions

of the characteristic equation cross the imaginary axis, and:

2k
Ay = A+ Tﬁ. ) (13)

where Ag is the delay at which the first crossing cccurs and +i2 and —if (# > 0) are the
solutions of the characteristic equation at all A,

| The number of solutions with positive real parts determines the dimension of thé unstable
space of the unstable equilibrium point of the linearized equation, and it also gives some
indication about the extent of instability of the nonlinear equation near this point (Hale
and Verduyn Lunel, 1993). Therefore, increasing the delay renders the unstable point more

unstable.

3.2 Return and escape times

The solutions of the characteristic equation at the equilibria change with the delay, even
though for the stable equilibrium points their real parts remain negative for all delay values.
This iz important for evaluating the response of the system to perturbations. A system,
stabilized at a locally stable equilibrium peint, returns to it when perturbed with a charac-

teristic return time T, (2, w) (Brauver, 1979a-b) and we have:
= B/us g = Tr{wi, Woop) £ To(wi,w) € T2, W) = —Afpws_, (=) . (14}

T,.(w;,Wd_p) is an increasing function of B tending to infinity.

In the same way we can define a characteristic escape time T.(#z, w) for the unstable point

7

Bluvs_g = Te(ra, Wé. ) € Telza,w) € Te(ma, Wo_n) = Afrvws. {2}, (15)

T.(22, Wé_pg) is an increasing function of B tending to infinity.
Therefore, the characteristic return and escape times close to the equilibria are lengthened

and tend to infinity as the delay is increased.

3.3 Global stability

The DDE (1) generates an eventually strongly monotone semiflow:
Let ¢ and ¢ be two clements in Ci—A,0], then we say that ¢y is larger (resp. strictly
larger) than ¢ noted do = ¢, (resp. ¢ >> ¢y) if for all § in [—4,0] we have ¢o(8) > ¢1(0)

(resp. ¢o(0) > ¢1(8)). Then for ¢ and ¢, in C[—A,0}:
if ¢o> ¢y and o £ f1, then for t > 24 afdo) >> add) . (16)

This is iliustrated in Fig. 1.

FIGURE 1 HERE

This property (16) strongly restricts the possible asymptotic behaviors of the solutions

(Smith, 1987; Roska ef el., 1992).
o For W < 4v, all solutions converge uniformly asymptotically to zq.
e For W > 4y

1. For either K < K_ or K > K, all solutions converge uniformly asymptotically

to xg.



2. For K. < K < Ky, the 'LlﬂiOI.l of the basi.ns of attraction of z; and 73 i.s a dense
open subset of C[-A,0]. For ¢ in C[~A,0], there is a unique real number b(¢)
such that a,{¢ + ¢) tends asymptotically to z; (resp. z3) for all ¢ < b(a) (resp.
¢ > b{¢)); where for a real number ¢, we note ¢+ ¢ the element of C[~ A, 0] defined
by (¢ +c){t) = ¢(t) + ¢, for —A <t < 0. alt, (¢ + b)) oscillates around =,
in the sense that the function a{t, (¢ + ¥(¢)) — 23 has at least one zerc on each
interval kA < 1 < (k+ DA, lor k > ~1. Properties of these oscillatory hehaviors,
such as periodicity, depend on the instability of z, which increases as the delay is
increased beyond critical values (Arino and Séguier, 1979; Arino and Benlkhalti,
1988).

The function b from C[—A,0] to the real line is continuous. The boundary
of the basins of attraction of the two locally stable equilibria is the closed set

{¢, such that b(9) = 0}.
4 Properties of solutions

In this section we show that for a system with distributed delay with a globally asymp-
totically stable equilibriurn point, the duration of the transient regime of an orbit with an
arbitrary initial condition is bounded by that of the solution of an equation with a single
fixed delay, with properly chosen values of the delay, weight and constant initial condition.
For a system with two stable and one unstable equilibrium points, the same result holds for
initial conditions that ave either larger or smaller than the unstable point 5.

We identify constant functions with the value they take. The orbits of constant initial condi-

tions are monolonous. When the DDE (1) has a globally asymptotically stable equilibrium

point o, the orbit of a constant initial condition ¢ > xg (resp. ¢ < 2y} decreases down (rosp.

increases up) to zo:

a{t,e) 2 xp for—A<t<{and c> 1, 17
a{t,e)<ap for —A<t< and c < mg. (17)

When the DDE (1) has three equilibrinm points 2; < &y < a3, we have:

a(t,c} = a(t',e) 2 x5 for ~A<t<tand ¢ > 23,
Ty < alt,c) <althc)<ay for —A<i<tand zy <c<ay,
za > all,e) > all,c) > for —A<t<tand zy <e< g,
a{t,¢) € all',c}) < for —A<ti<tande< .

(18)

And the orbit going through the constant initial condition ¢ = x», is constant.

For a given constant initial condition ¢, we note x(t, ¢} (resp. y(t,c)) the solution when the
weight function is Wé_4, the weighted Dirac at —A (resp. Wd_p, the weighted Dirac at
—B), and as previously, a{t,¢) is the solution for a distributed delay with weight function

w(n). Then, a is bounded by x and g, that is:

< alt,e) < z(t,e) forall £ > —~A, when a(t, ¢} is decreasing , 19
z{t,c) < a(t,c) < ylt,e) foralli> —A, when a(t,c) is increasing . (19)

Any given function ¢ in C[—A4,0] is hounded, so that there are kwo constant functions in
C[—A,0], taking the values m and M, such that m < ¢ < M. As the DDE (1) generates an

eventually strongly monotone semiflow, we have:
a(m) < ay(¢p) < a(M) foralli> —A. (20)

From the previous two sets of inequalities (19)-(20) we deduce that the orbit of any initial
condition is bounded between the orbits of two constani initial conditions of two delay
equations with the same global weight, one with the shortest delay and the other with the

longest delay.

10



Therefore, the orbits of constant initial conditions of equations with a single delay pro-

vides information about the solutions in the general case, and they can be used as a first

approximation for estimating the duration of the transient regime.
5 The transient regime

For solutions of the DDE (1) converging to equilibrtium points, the transient regime refers
to the dynamics before the system stabilizes in its steady state. Practically, the transient
regime ends when the state of the system cannot be distinguished from the equilibrium point
with some given precision (Hubermann and Wolff, 1983).

FIGURE 2 HERE

Figure 2 shows the transient regime duration (TRD) for a globally asymptotically stable
system and Figure 3 shows the TRD for the bistable system. In both cases, dashed and
solid lines show the TRD as a function of the initial condition for short and long delays
respectively. The figure is based on the numerical resolution of the DDE (1).

FIGURE 3 HERE

In the system considered in figure 2, we have W < 4+, so that the system has one globally
asymptotically stable equilibrium point zo = 0. A system with W > 4y and K < K_ or
K > K, behaves in the same way. In the system considered in figure 3, we have W > 4~y
and K_ < K < K"” so that the system has two locally stable (zy = .—2.6 and £3 = 2.6) and
one unstable (z; = 0) equilibrium points.

The TRD is an increasing function of the distance between the initial condition and the
stable equilibrium point to which its orbit converges. This stems from the _fact that the

system preserves the order of initial conditions (section 3.3). Moreover, for a given initial

11

condition, the TR increases with the delay (see also seclion 3.2).

It should be noted that for a bistable system (Fig. 3) the orbit of a constant initial condition
¢ strictly smaller (resp. larger) than z, tends to z; (resp. z3) and the orbit of the injtial
condition ¢ = z; is constant (section 3.3) and that constant initial conditions close to the

unstable equilibrium point 2, tend to have long transient regimes (section 3.2).
6 Discussion and conclusion

In this paper, emphasis is put on some effects delay can have on transient responses without
altering much the asymplotic behavior of a neural network. The results extend our previous
work on the dynamics of a single neuron with recurrent excitation with a single discrete
delay (Pakdaman et al., 1996b). We have shown that the phase portrait of the system with
distrtbuted delay is similar to that of the system with a single discrete delay. Both systems
are globally asymptotically stable when the nonlinear part is smaller than the linear part
{0 < W < 4v), and both are bistable when this is not the case. The attraction basins of the
stable equilibria are not intertwined as they are separated by a smooth boundary which is an
unordered codimension one manifold. Trajectories on the boundary are oscillating for both
systems. However, for the case of a single discrete delay, the number of zeros on intervals
of length equal to the delay are decreasing, thus hehaving as a discrete Lyapunov function
{Arino & Séguier, 197%; Arino, 1993}. This leads to a Poincaré Bendixson Theorem for such
systems (Mallet-Paret & Sell, 1996), which together with the non-existence of homoclinic
orbits {Arino, 1993) shows that in the case of a single discrete delay, oscillatory solutions on
the basin boundary are either damped or asymptotically periodic. Such detailed description

of the trajectories on the boundary is not available for the case of distributed delays since

12



the existence ol the diécrete Lyapunov [unction cannot be extended to 1.]1°|r.s casce.

In the case of discrete delays, studying the case of two-neuron, ring and irreducible networks
(Pakdaman et al., 1995a; 1996a; 1996c), we have shown that the results for the single neuron
are representative of larger networks. In the same way, in the case of distributed delays, the
results for a single neuron can be extended to larger networks.

Stability against perturbations is of prime importance for hoth living organisms and artificial
systems evolving in changing environments, and so may be the speed of convergence to an
attractor. Doth these may be altered by the presence of delay. In our example, the delay
slows down the system’s response which can be detrimental for the performance of a neural

network.
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Figure 1: Examples of solutions
Ezamples of solutions for the histable system are shown. Ji can be seen thal solutions of
constant initial conditions are monotonous increasing or decreasing depending on the relative
position of the initial condition to the three equilibria, and that solutions of arbitrary initial
conditions can be bounded by those of fwo appropriate constant inttial conditions. Abscissae:
time. Ordinates: aclivation.

FIGURE LEGENDS

Figure 2: TRD for the stable system, for constant initial conditions.
and ' System with a globally asymptotically stable equilibrium point (g = 0). Model parameters:
¥=1, W =2 and K = —1. Dashed line: short delay d = 0.5. Solid line: long delay d = 25.
Abscissae: constant initial condition value; ordinate: duration of the transient regime.

FIGURES

Figure 3: TRD for the bistable system, for constant initial conditions.
Bistoble system with lwo locally asymptotically stable points (w; ~ —2.6, 73 ~ 2.6) and one
unsteble (zo = 0) equilibrium points. Model parameters: v = 1, W = 6 and K = —3.
Dashed line: short delay d = 0.5. Solid line: long delay d = 25. Abscissae: constant initial
condition value; ordinate: duration of the transient regime.
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