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Abstract

In this work, we show experimental evidences, confirmed by nu-
merical results, from type-11 intermittency in the driven Double Scroll
Circuit. Numerically, we found a new scaling power law dependence
on the critical parameter. This result is a consequence of the first
identified global bifurcation scenarium for the T? torus breakdown ob-
served in this system: a heteroclinic saddle connection is the nonlinear
mechanism responsible for the reinjection of the trajectory around a
repelior focus. In fact, in this global scenarium the total laminar phagse
is the spiraling laminar period (usually considered) plus the time the
trajectory spends in the vicinity of the saddle points.

I. INTRODUCTION

The Double Scroll Circuit [1] has been studied for its electronic simplicity

| and variety of non-linear phenomena, The driven versions of this circuit have

been extensivelly investigated by many authors [2], {3], [4], [5] which have
found many bifurcation phenomena not abserved in the non perturbed cir-

1 cuit. In this work, although the perturbed circuit version is not the same

as those used in the previous cited references, we found all phenomena ob-
served in the other driven circuits as Hopf-bifurcation, type-I and chaos-chaos

intermittency, hysteresis, inverse cascades, regularity of periodic windows,
quasiperiodicity, devil’s staircase structures, crisis, frequency entrainment of
chaos, period-adding sequence, and phase-locking. Moreover, in this work,
for the first time type-Il intermittency was observed in the driven Double
Seroll Circuit.

Intermittency is a phenomenum related to the onset of chaotic motion.
Intermittent systems behave regularly , the laminar phase, and irregularly,
the chaotic burst, alternately. Add to that, the time the system spend in the
laminar phase depends on the distance € =| p — p, |, where p is a parameter,
that in this work can be both the amplitude and the frequency of the driven
force, and p, is the critical parameter for which intermittency comes to sight.

In a classical theoretical work about intermittencies, Pomean and Man-
neville identified three possible manners the periodic motion loses its stability
[6]. So, depending on the way the eigenvalues of the monodromy matrix cross
the unit circle we can have type-I {a real engenvalue, -1}, type-II (conjugate
complex eigenvalues), and type-III (a real engenvalue, -1). After this pioneer
work, other types of intermittencies were found [7].

We give especial attention to the type-II intermittence that show up after
a limit cycle loses its stability by a subcritical Hopf bifurcation, what gener-
ates an unstable focus in the origin. From a mathematical point of view a
periodic motion loses its stability if the conjugate complex eigenvalues of the
monodromy matrix cross the unit circle. Porneau and Manneville conjecture
that there must exist a global nonlinear mechanism that reinject the trajec-
tory in the vicinity of the limit c¢ycle. To simulate this nonlinear behaviour,
they consider the trajectory was randomly reinjected around the focus. How-
ever, they do not specify this global nonlinear bifurcation scenarium.

For the determination of the laminar length for the usual type-1I intermit-
tency they supposed a random reinjection distribution in a bi-dimensional
disk. If this assumption is correct, the predicted length of the laminar phase
should have a scaling law < n >oc In(l) [6]. However, for numerical sim-
ulations, and choosing a random reinjection, they found not a logarithmic
scaling law but a power law, < n >x ¢ 3, with # = —0.5 [6] like the type-I
intermittency [8].

After the work of Pomean and Manneville, a clear theoretical work about
type-II intermittency is provided in Ref. [9], where the authors study a peri-
odically driven third-order nonlinear oscillator. They also find a scaling law
for the laminar (spiraling) episodes that fits < n >oc ¢ ™. Furthermore,
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they show that this result agrees with the theoretical scaling law obtained
assuming a one-dimensional reinjection process. In addition, in this work
they argue the possibility of the existence of a homoclinic bifurcation, the
global bifurcation scenarium that could explain the reinjection process. How-
ever, the existence of a Shil'nikov type homoclinic trajectory [10] can only
be proved if the drive is turned off, and the appearance of type-II intermit-
tency in such system is only possible if the driven is turned on. Thus, the
reinjection process, responsible for the laminay (spiraling) length, is yet an
open question, as also pointed out in reference [11). ‘

The type-II intermittency was experimentally verified to occur in an elec-
tronic oscillator [12]. In Ref. [13] there is an inverted version of the type-
II intermittency corresponding to a spiraling behaviour assimptoptic to the
origin. In Ref. [7] a type-I1 intermittency coexisting with a type-II intermit-
tency is described. In Ref. [11] a double reinjection channel that directs the
trajectory to one of the two focus is presented.

In crder to better characterize the type-II intermittency we study how
the average length of the laminar episodes {regular behaviour) scale with the
distance from the parameter V to the critical parameter ;. For that we first
redefine what we call lamimar phase.

Usually, the laminar phase is considered the spiraling evolution of the
trajectory from the time when the reinjection process happens up to the
chaotic burst. This spiraling behaviour is caused by the existence of a stable

repellor focus.

In the driven Double Scroll Circuit, there is a stable repellor focus inside
a stable two-frequency torus. We can only obtain a intermittent regime when
this torus is destroyed. Before that happens the two-frequency torus grows in
size, leading to the appearance of folds, and a heteroclinic saddle conection
among the saddle points [14], which is called a homoclinic countour.

In our case, type-II intermittency is found after the heteroclinic saddle
connection is created, which happens after the stable two-frequency torus
become unstable by a suberitical Hopf bifurcation. Thus, this global bifur-
cation scenarium explains how the trajectory is reinjected, from the unstable
manifolds of the saddle points to the stable focus. Moreover, in addition
to the reguiar spiraling behaviour there is also a regular saddle permanence
identified by the time the system spends in the vicinity of the saddle points.
So, in this work, we consider as laminar phase the spiraling length, usually
treated as the laminar phase of the {ype-II intermittency, plus the saddle
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permanence. _
We have also found evidences that the global bifurcation scenarium (the

heteroclinic saddle connection) has a tipically homoclinic trajectory to the
saddle points.

This paper is organized as follows. In Sec. II we present the driven
Double Seroll Circuit and the system of equations that simulates its dynamic.
In Sec. IIT we show experimental observations of the type-Il intermittency
in this electronic circuit. For a better understanding of the experimental
results we show in Sec. IV numerical results confirming the -existence of
the type-II intermittency transition to chaos. In this section we also show,
by analising the Lyapunov exponent, that the onset of chaos in this case is
abrupt. Finally, in Sec. V we study the laminar phase length as a function
of e. Conclusions are given in Sec. VL

Il. The driven Double Scroll Circuit

This circuit is schematically shown in Fig. 1. It is composed by two capaci-
tors, Cy and C,, two resistors, R and r, one inductor, L, and the non-linear
resistor, Anr.

The electronic value components used in our experiment are

C,=0.0052 pF, Cy=0056 pF, R=1470Q, L=92mH, r=10Q (1)
and the driven force applied to the circuit can be represented by

g(t) = V sin(2n f1) (2)

where V' is the amplitude and f is the frequency. The Ryy, characteristic
curve can be seen in Fig. 2 and is mathematically represented by

iNR(V;:l) = m(]Vc; =+ 05(m1 e mﬂ) l V:::l -+ Bp +05{mg """ml) | V;,l —_ Bp (3)

We can simulate the circnit of Fig. 1 by applying Kirchoff’s laws. So, the
resulting state equations are




Ve 1 )
& ek E(VCQ = Vo) — ivr(V)
Ve 1
C. ‘“Wﬂ = E(Vm — Vo) + 11, 4)

iy,

| ke —Ver — g(t)

v‘.rhere Ver f_-md Vo are the voltage across the capacitors ) and Cs, respec-
tively, and iy, is the electric current across the inductor L. To aveid numerical
problems we do not use the real component values in Eqgs. (4), but we use
a rescaled set of parameters given in terms of the real values. Thus, the

g:fxrameters used in Eqgs. (4) for doing numerical simulation of the circuit in
ig. 1 are

osclloscope
L ’L“ ") chanalz [T
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Figure 1: The sinoidally perturbed Double Scroll circuit and the aparatus for the data
aquisition.

1 1 1
— =100, —=1.0, =
Cy Cs L 6.0
1
= 0.6, mg = ~0.5, my =—08, B, =1.0. (5)

falVe)

Figure 2: The characteristic curve of the non-linear resistor Byt

For the electronic components in Eq. (1), or the parameter simulation values
in Eq. (5), and for a null perturbing amplitude V = 0, the circuit behaves
chactically. As the circuit is dissipative its dynamic variables (V¢i, Vo, and
i7,) evolve on a chaotic attractor named Double Secroll.

III. The experimental two-frequency torus break-
down

When the driven force is turned on, that means V # 0, a new frequency is
introduced in the characteristic oscillations of the Double Scroll Cirenit. This
new frequency is responsible for the appearence of a quasi-periodic moviment
on a two-frequency torus (T%).

In Fig. 3, the oscillations in (A) correspond to a limit cycle just after
a Hopf bifurcation. In (B} we identify a second Hopf bifurcation of this
limit cycle creating a torus T2 Increasing further the driven frequency, we
show in {C) a two-frequency torus breaking through type-1I intermittency as
confirmed by numerical simulations.

The bi-dimensional projection of the Double Scroll attractor on the plane
{Vios X Vizy) for the parameters of Figs. 3B and 3C is shown in Fig. 4. In this
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Figure 3; Time evolution of the variable Ve for a fixed amplitude V = 0.700 V and
frequencies f = 1.852 kHz (A), f = 1.923 ki (B) and f 2 1.923 klfz (C).

figure we see the torus T2 (A) and its breakdown (B). After the breakdown
the attractor grows in size and its trajectory evolves erraticaly all over this
plane. This behaviour is only observed in a two-frequency torus breakdown
through the type-II intermitency.

To obtain the image of the torus 7'? one must analyze the crossings of the
three-dimensional trajectory of the dynamic variables on a Poincaré section.
However, as indicated in Fig. 1, we can only collect data from two channels.
Therefore, only two dynamical variables are considered, Vi (t) and Veq(t).
To obtain the three-dimensional attactor needed to visualize the torus T2, we
reconstruct the 3-D chaotic attractor by using the time-delay method [15].

The considered dynamic variable is Vi (t) and the time-delay (time shift)
rate is p = 24 us (with the aquisition time § = 2 ps). Thus, for a time
series Ve (t), we construct a three dimensional trajectory. The first point
of this trajectory is (Vo (t), Vou(t + p), Ve (t + 2p)), the second is (Vi
(6 + &), Vou (t + 6 + 1), Vo (8 + 8 + 2p)), and so on. In this notation,
the reconstructed trajectory has three coordinates represented by (X,Y,Z).
Thus, the intersection of a reconstructed torus T? with the section X=0 is
shown in Fig. 5A. The way chaos appears by torus breakdown is shown in
Fig. 5B. In this last figure, the characteristic chaotic bursts due to trajectory

Ve, (V) VeulV)

Figure 4: Projection of the attractor on the variable space plane (Vo1 X Vi) for f =
1.923 kHz (A), and £ 2 1.923 kHz (B).

ejections (as analyzed in Sec. V) can be already identified.

1V. The simulated two-frequency torus break-
down '

The route to chaos via torus breakdown, described in Sec. 1II, is better
understood through the numerical results obtained by integrating Eqs. (4)
with the parameters given by {5), for a fixed driven frequency f = 0.18.
Thus, Fig. 6A shows a bifurcation diagram of the variable Vi, when the
trajectory crosses a Poincaré section at Vg = -1.5, as a function of V. The
abrupt appearance of chaos, seen in this figure, is confirmed by the first
Lyapunov exponent A {Fig. 6B). We have numerically determined that chaos
first appears for V = 0.2328691 leading to A > 0. )

In Fig. 7 we see a sequency of three figures showing the attractor through
the Poincaré section positioned at Vg = -1.5. 8o, in this figure we see the
attractor through the variables Vizy and ij.

The torus T? is created after a supercritical Hopf bifurcation. In this
situation, before the onset of chaos, the torus is a deformed circle with no
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Figure 5: (A) Poincaré section of the reconstructed quasi-periodic torus T2 of the three
dimensional attractor obtained for ¥V = 0.700 V and f =1.923 kHz. (B) The torus T?
breaks generating chaotic behaviour for V = (.700 V and f 2 1.923 kHe. (A) and (B)
have different axis scalings. ~

folds or cuspides, as shown in Fig. 7A (V= 0.2280000). However, rising the
amplitude (V' = 0.2328690), the torus T? folds in five parts resembling a
five-sided polygon (Fig. 7B). The torus breaks as in Fig. 7C (V= 0.2328691)
leading to the appearance of type-II intermittency, that causes the trajec-
tory to evolve spirally around the previously existing repellor focus point,
indicated in figure by 0. So, we can say that the critical parameter is V, =
0.2328690.

Along the torus, not yet destroyed, a quasi-periodic trajectory is non-
clockwise oriented with a winding number near to the racional fraction w = 3
‘Three is the number of the trajectory rotations along the torus to return back
to the same point, taking five complete cyeles. It means that, after passing
rearby a saddle point of Fig. 7, the trajectory crosses this Poincaré section
five times before returning to the same saddle point. We can consider the
flow on this section as a mapping G. Soif ¢, withn = 1,...,5, are the saddle
points, then G°(¢,) = ¢, and G(c,) = cpuy.

As a matter of fact, the laminar spiral trajectory is a five-spiral trajectory,
which means that the trajectory visits each time one of the five spirals. These
spirals evolve approaching asymptotically the previons stable five-sided poly-
gon torus. In fact, each spiral tends to one of the five corners of the polygon.
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Figure 6: (A) A bifurcation diagram showing the two-frequency torus creation (via Hopf
bifurcation) and then its destruction, generating chaotic behaviour, by a rising amplitude
V and a fixed driven frequency f = 0.18. {B) The first Lyapunov exponent A, for the
same parameters of {A). That means chaos for A >0. Vg = —1.5.

These corners , indicated by ¢,, are saddle points with two different unstable
manifolds. Along one unstable manifold the trajectory is ejected outside the
polygon causing the chaotic burst. Along the other the trajectory is directed
to the nearest saddle point in the non-clockwise direction {sampling each five
steps in the Poincaré section). That means that G.G%(c,) tends to cpy-

In Fig. 7C the unstable manifolds responsible for the chaotic burst are
indicated by W, and those responsible for the heteroclinic saddle connection
(an orbit in G® that connects the five saddle points) by W2, So, we see that
the unstable manifold of the saddle point ¢, W2{e,) is the stable manifold of
the ¢3, W2(4). This heteroclinic looping is also called a Poincaré homoclinic
contour [10].

We will not go into details about the chaotic burst. It is enough, for now,
to say that the trajectory approachs the saddle points spiraling, is expelled
from the broken torus along W, and then is reinjected back inside the broken
torus (into the foeus) leading again to the spiral laminar phase.
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Figure 7: (A} A quasi-periodic torus T? for V-=0.2300000. (B} The five-sided quasi-
periodic folded torus for the critical parameter V' =0.2328690. (C) The destruction of the
torus leading to a type-II intermittency. Vi = - 1.5

V. Analysis of the laminar length

As mentioned before, the trajectory stays for a while in the saddle poinis
before it is ejected out of the broken torus. Contrary to what is usually
done (when the laminar phase is considered to be the spiraling behaviour},
we consider as laminar phase any regular behaviour. So, the laminar phase
is due to the spiraling behaviour caused by the repellor focus located at the
origin plus the permanency of the trajectory in the vicinity of the saddle
points.

In Fig. 8, we show the evolution of the variable V%, through the Poincaré
section Vg = 1.5, where the index n represents the n-th time the trajectory
crosses this section. In this figure we see typical spiraling laminar phases
and permanency in the saddle points, followed by chaotic bursts, with the
trajectory ejected along the unstable manifold of the saddle points.

In figure 8, we see that the permanency in the saddle point is smaller
than the spiraling beliaviour. In fact, the bigger e the shorter the saddle
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Figure 8: Evolution of the variable Vg through the section Vi = -1.5 showing the
laminar length composed by the spiraling bebaviour plus the permanency in the saddle
point.

permanency. However, for an amplitude very close to the critical value the
spiraling length is short. Furthermore, for a rising amplitude, both the spiral-
ing length and the saddie permanency became smaller. In fact, the laminar
phase is very complex if we consider it composed by the spiraling behaviour
plus the saddle permanence. As we shall see, there is a competition behaviour
between these two regular phases.

For numerical analysis, we consider that a point in the Poincaré section
represents a laminar trajectory if it is positioned within a pelygon composed
by the junction of the five saddle points (ploted with a filled circle in Fig.
9) or within the five circunferences of radius p =0.005 centered in the saddle
points. Naturally, the saddle permanence (Sp) is the number of steps the
trajectory spends inside these circunferences. Therefore, if we call the length
of the laminar phase as Lp, and the spiraling length as 5y,

Sy =1ILp—Sp (6)

Pomean and Manevifle [6] considered a randomly and spatial uniform
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reinjection in the repellor focus to derive their logarithmic scaling law for
the laminar (spiraling) phase. Richetti [9] obtained a power scaling law for
the laminar (spiraling) behaviour for a unidimensional spatial reinjection. In
the driven Double Seroll Circuit we find that the reinjection process due to
the heteroclinic saddle connection puts the trajectory in any part near the
two-dimensional focus. However, the reinjection placement is not uniform as
we can see in Fig. 9, where the squares indicating the first iterations around
the focus (the reentrance location) are mainly distributed along two main
directions.

220

2.00

— 1.80 -

1.60

o0 0.9¢ 1.10

[-+]

.F igure 9: The destructed torus obtained for Ff=0.18 and V = (.2328750, where we can
identify the first points to reenter the focus {filled squares), and the saddle points (filled
circles). ¥y = —1.5, and the number of steps n=200000.

The reentrance distribution along two main directions cause the two-
peaks observed in the laminar phase distribution P(n) (where 7 is the num-
ber of times the trajectory crosses the Poincaré section during the laminar
behaviour). Each peak decays exponentially P(n) x ezp{—2en) as deter-
mined by Pomeau and Manneville [6]. There is one main peak for small n
that represents the trajectories reinjected in the neighbourhood of the sad-
dle points and therefore quickly ejected. This is an evidence that there may
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exist a homoclinic trajectory through a saddle point, since the trajectory is
biasymtoptic to the basic cycle responsible for the saddle points, as we see
on the Poincaré section [16].
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Figure 1(: Probability distribution P(n) for the laminar length (the spiralling length plus
the saddle permancence). The number of steps n=2000(}). For the main peak P(n) = 7000.

We now show a new scaling law for the laminar phase considering the
two regular phases: 5y and Sp. Thus, Fig. 11 shows the saddle permanence,
Sp, and the laminar phase, Lp, indicated respectively by squares and circles,
as a function of e. We fitted this points, and obtained that Sp oc €, with
o = —0.542 & 0.019 (the fitted function is indicated by (1}}. The laminar
phase behaves as Lp = #ﬁe, with 3 = 0.07540.002 and A = 6 x 1073, for
e > 0.000011 (indicated by (2}), and Lp o< €7, with v = -0.151+ 0.009, for
¢ < 0.000011 (indicated by (3)).

Using Eq. (6), we can obtain a spiraling length that is distinct from
the laminar (spiraling) length predicted by Pomean and Manneville. Thus,
through the fitted functions, Sp and Lp, the spiraling average length, St, as
a function of € is shown in Fig. 12.

So, the function 51, has a fast growth for ¢ < 0.000011, because o > v,
and a inverse decay for € > 0.000011 becanse ¢* vanishes for € > {.000011.
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Figure 11: The saddle permanence (square) and the laminar phase (circle) in respect to
€. The number of steps n=30000.

This is exactly what we can see in Fig. 12, where the function 57 is shown,

One can say that the fast growth of the spiralling length for e < 0.000011
is a negligible effect because it is localized in a very small neigbourhood of
the critical parameter; however, this effect is due fo the heteroelinic saddle
connection and if we disconsider it, we have to disregard the global bifurcation
analisis that sustain the reinjection process.

For e > 0.2340000 there is a saddle disconnection bifurcation [14] and the
spiraling behaviour loses its original shape. Before the saddle disconnection,
each of the five spirals would go spirally, around the origin, approaching
the saddle points. After the saddle disconnection, this spiraling behaviour
becomes oriented and a point falling down in the previous stable focus is
directed to the saddle point, without present the spiraling behaviour.

The power scaling law for the saddle permanence {with & = —0.542) may
give us the wrong impression that this permanence would be due to a type-1
intermittence. However, the saddle permancence can not be associated to
such a phenomenum since, as pointed out in Ref. [16], as a consequence of
the marginality of the basic cycle in the intermittent systems, the trajectories
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Figure 12: The function Sp, obtained through Eq. {6). The number of steps n=30000.

leaves the cyele as o for t — —oo (with p =1 for type I intermittency) while
the escape from the cycle in systems with a homoclinic tangency behaves like
e* for t = —oo (with o > 0).

What we found in the neighbourhoed of the saddle points is that the
trajectory is ejected from these points exponentially as we can see in Fig.
13. in this fizure we choose the saddle point ¢, in Fig. 7 and consider a
trajectory passing through a neighbourhood 4 of this saddle point. After the
trajectory crosses the Poincaré section Vi = —-1.5 at the point P = (Vgg, i),
we analise how § grows up after n steps. So, for n = 1 we see the spatial
displacement § = G*(P) — ¢y, and for n = 2 we see § = G°.G°(P) — ¢y, and
50 on,

This result assures that the trajectory leaves the unstable manifold W2(c,)
with an exponentially spatial divergence. Furthermore, the unstable mani-

. fold W} has also an exponential divergence. 'We know that the junction of the

manifolds W7 form the heteroclinic saddle connection (a Poincaré homoclinic
contour). Following the same thought, it is natural to believe that from the
unstable manifolds W, there may exist an orbit that leaves the basic cycle
along W} (c,) and returns to this cycle through the stable manifold W,{cy,)
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Fig_‘ure 13: The spactal relative distance § between a sequence of points P of an ejected
trajectory (in the neighbourhood of the point c2) and the saddle point ¢;.

(note that n # m). If such orbit exists, it is an orbit that is byasimptotic
to a saddle point for ¢ — oo along the W2(cy,), and for t — —oo along the
Wlic,). :

In the neighbourhood of such an orbit there exists the Smale Horseshoe
process [14], and therefore chaotic motion. That means that its neigbouhood
belongs to the vicinity of the repellor focus.

We numerically found at least two orbits that seems to behave like a
homoclinic orbit and are localized in the two extremes inside the basic cycle,
and, due to their existence, the area inside the atractor of Fig. 4 is filled by
trajectories.

The possible existence of this two main homoclinic orbits could explain
why we have found two main regions where the reinjection in the focus hap-
pens.
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VI. Conclusions

In this work we identify, for the driven Double Seroll Circuit, the first global
non-linear mechanism responsible for trajectory reinjections around s repellor
focus, leading to the type I intermittency. This mechanism is 2 heteroclinic
saddle connection that surrounds the repellor focus. Because of such a sce-
narium, the considered laminar phase is the time the trajectory spends in
the vicinity of the saddie points plus the spiraling length around the focus.

We have found that this new considered laminar phase, Lp, scales as
Lp oc €, with v = -0.1514 0.009, for € < 0.000011, and Lp = ﬁﬁe, with
B = 0.075+0.002 and A = 6 x 1075, for £ > 0.000011.

Although the trajectory reinjection is typically two-dimensional, the set
of reentry points is mainly disiributed along two directions. This reentrance
causes the appearance of two peaks in the probability distribution for the
laminar length. Each peak decays exponentially P(n) o< exp(—2¢n), as pre-
dicted by Pomeau and Manneville for a reentrance model with a random
uniform two-dimensional distribution. Besides these two peaks there is one
main peak that represents a trajectory reinjected along the stable manrifold of
asaddle point and guickly expelled along the unstable manifold. Th existence
of this peak is a strong evidence of the presence of a homoclinic trajectory
to the heteroclinic saddle connection.

The saddle permanence may be erronealy interpreted as the regular phase
of a type-I intermittency because of its observed scaling power law. How-
ever, we have shown that the spatial escape along the unstable manifold of
the saddle points is exponential, typical of homoclinic tangencies, one more
evidence about the existence of a homoclinic trajectory to the saddle points.

Finally, we have numerically found two orbits that seems to behave as a
hemoclinic orbit to the saddle points. If such orbits exist in its neighbour-
hood there is an Smalle Horseshoe process that would be the reason for the
reinjection process. Naturally, the neighbourhood of this orbit belongs to the
vicinity of the repellor focus and so the reinjection process is explained.
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