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Abstract

We study the dynamics of a one parameter family of two degrees of free-
dom Hamiltonian systems that includes the Hénon-Heiles system {1]. We
show that several dynamical properties of this family, like the existence of
large stochastic regions in the phase space, are related to two canonical in-
variants that can be explicitly computed. These two invariants characterize
universality classes of 2-degrees of freedom Hamiltonian systems with orbits
homoclinic {bi-asymptotic) to saddle-center equilibria (related to pairs of real

and pure imaginary eigenvalues).
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I. INTRCDUCTION

Let us consider the one parameter family of Hamiltonian systems related to the following

Hamiltonian function

H=1(p§+p2+z2+y2)+bmy2—£. (1)
2 v 3

For the parameter b = 1 this is a well-known system first studied by Hénon and Heiles [1].
Regardless of the value of b > 0 this system has, among others, (z, Y0z py) = (0,0,0,1) =1
as an equilibrium point. This equilibrium is related to a pair of pure real eigenvalues
+r = +1 and a pair of pure imaginary eigenvalues +wi = /1 + 26 i. It is said to be
of the saddle-center type. The energy of 7 is H(y) = I It is called the escape energy
because all trajectories starting at = = y = 0, with energy F < %, remain bounded, while
there are trajectories starting at this same point, with energy E > 1, that are unbounded.
System (1) has the invariant plane (z = 0,y,p. = 0,p,). On this plane the dynamics is

given by the second order equation § = —y + y® Integrating this equation, we conclude

. that syster.. (1) has a continuum of periodic orbits T'g with energies K < é that accumnulate

on the orbit T' 1 homoclinic to the equilibrium 5. The orbit Fé_ is given by z = p, = 0,
Py =¥, ¥ = 1 — Jsech’®(}), and its energy is 1. The idea of this paper is to study system
(1) through the map f of first return (or Poincaré map) to a surface section T (or Poincaré
section) transversal to the family I'g, given by £ = {(z,y = 0,p.,p, > 0)}. As usual, it
is convenient to use the conservation of energy, and to consider a one parameter family of
Poincaré maps, fg : Eg — Eg, where Zg denotes the restriction of ¥ to the energy level
E. For each E, we can use p, = \/m and take z,p;, with 2E —p? — 2% > 0, as
coordinates on Ig. Notice that the sections Tg that we are using are different from those
used by Hénon and Heiles, and others. Their section is defined imposing z = 0, p, > 0, and
Py, ¥ are used as coordinates.

The reason for choosing a different section is that, for 0 < E < L, the point (z,p,) =

(0, G)d—ﬁfg is- a fixed point of fg. For E < } this fixed point corresponds to the periodic




orbit I'z. The map can be locally approximated by its derivative at 0, which, in particular,
determines the stability of 0. For E = § the point 0 represents the homoclinic orbit Fé- The
map f 1 is not differentiable at this point and no linear approximation can be made. In this
case, it has been shown by Lerman [2] and Mielke et al. 3] (see also [4,5]) that the dynamics
of f 1 near 0 is approximately given by a map that is continuous but not differentiable at 0.
Moreover, these authors showed that, for |E — Y and ||(=, p,)“d—gfﬂz“ sufficiently small, fg

can be approximately given by the following family of maps (see [5])

w2l

Fp(z) = AR [c —7ln

SCEE )

. — 2 H 2 1 def,
where: z = (z,p.) € IR?, with ||2{] > VE(E~§) for E > L and F0)=0for E=¢, ¢
is some constant, 7d§f‘,‘,—’ =14 2b, and

R(Q)dgf cosf —sinf , Adzef a 0

sinf  cosé ¢ 1/a

The number @ > 1 is obtained from a scattering problem (sinﬁla.r to that appearing
in I-dimension Quantum Mechanics) given by the (x,pz) components of the equations of
motion linearized on 'y (see [6,7]). In this case, using the procedure presented in {6,7], it

can be shown that

o= B B2 41 where (3

(Bl =

cos(Fv/1 — 485) or |B] = cosh(Z+/48b — 1)
sinh(27+/1 T 25) | sioh(2ry/T £ 28) |

for b < L or b > L, respectively. The only unknown coefficient in (2} is the constant c.

._ It does not play an important role in the dynamics topology of Fg (it can be removed by
-_ rescaling z and £ appropriately).

There exist several well-known mathematical results on the dynamics of Fg and fg
7 (see [8,2,3,6,4,5]). Here we shall mention only some of them. For E = é, Fé presents

a remarkable symmetry [4]: it is invariant under discrete dilations z — e™/"z (namely,

Fé(ear/"fz) = e”’”Fé(Z)). “This implies that the dynamics of Fé_ is self-similar in the sense
that it is the same in every annulus given by e¥™/7 < |[z|| < e+ k€ Z. For o > 1
F 1 has a hyperbolic fixed point p distinct from 0. The dilation symmetry then implies that
Fé has an infinite family of fixed points given by e""/"p, k € Z. In [5] it was proved that if
Y(@—a"'} > 1 then the unstable manifold of p intersects transversally the stable manifold of

e™p. This and the dilation symimetry imply that the unstable manifold of e**/7p intersects

transversally the stable manifold of el**1}*/7p for all k € Z, therefore F 1 contains an infinite

heteroclinic chain, or “Arnold’s transition chain” [9], that connects 0 to infinite. We remark
that this transition chain is intimately related to the so called “resonance overlap criterium”
of Chirikov [9]. Indeed, the dilation symmetry of Fz can be used to show that if there is
an overlap between two adjacent resonance zones, related by the scale factor €7, then all
resonance zones of Fg will overlap.

A numerical study of F' 1 (equation (2)), presented in [7], has shown that there exists a
critical curve in the (v, a) parameter space, approximately given by Ha — a™l) = 1//2,
such that if {7, @) is below this curve, then there are invariant curves encircling 0; if {7, e}
is above this curve, then the transition chain, mentioned above, exists and no invariant
curve encircling § can exist. In particular, if (v,a) is below (above) the critical curve,
then 0 is a stable (unstable)} fixed point of Fi. In [5] it was rigorously shown that if « is
sufficiently close fo one, then, for every § > 0, it is possible to find A > 0 such that, for
all £ € [é - A,é + A], both Fg and fg have an invariant curve around 0 with diameter
smaller than d. The numerical simulations of {7] and of this work suggest that the condition
“a is sufficiently close to one” in the above statement may be replaced by v, a) is below
the critical curve”. In [5] it was also shown that if F; 1 has the transition chains mentioned
above, then the same is valid for f L. _

The goal of this paper is to understand the dynamics of the family of systems (1) near
the escape energy é, by comparing the numerical results of {1) and (2). Our main conclusion

is that the existence of large stochastic regions in the Poincaré maps exhibited by Hénon and




Heiles {1] is a consequence of the existence of the infinite transition chain mentioned above,

1 : : :
g» We can predict the existence or non-existence of a large

Moreover, for energies close to
stochastic region by using the property that there exist critical values Yes @ such that the
properties of Fy change drastically when the critical curve 7,(a; —a;1) is crossed. Using the
number y{a — ') we can also predict whether solutions with energy £ > 1 escape or not
from a certain bounded region of the phase space. This problem has been studied recently
by Contopoulos et al [10], and our results can partially explain their numerical results on

the properties of escaping. In the next section we present our numerical results, followed by

the conclusions.

II. NUMERICAL RESULTS

In the following we present numerical results for iterations of the Poincaré map (1st return
map) fx related to (1), as defined in the previous section, and for the map Fg defined in
(2). The number ¢ = 3,582 in F was chosen so as to have one particular bifurcation of 0
occurring at the same value of E for both #z and fE.

In Figure 1 we show iterations of fx {top) and Fg {bottom} for b = 1 (Hénon-Heiles
system) and for three values of E, E = L1,0.14,0.12. We can see that the closer the energy
is to &, the better is the agreement between fe and Fg. Figure 1 shows that, for £ = 5
the topology of hoth maps is similar up to a radius [|lz]| = 0.2, which is appfoximately
fourty percent of the maximum possible radius of llz]| = V2. As the energy decreases, the
radius of agreement decreases, and at E = (.09 fe, and Fg, exhibit similar topology only
for |z < 0.1.

From Figure 1 it is evident the self-similarity of the iterates of f& near 0. The scaling
factor agrees with the scaling factor of Fg which is given by ™", where v = /3.

Using the value of ¢ above, we obtained an excellent agreement between the sequence of
bifurcations of fg, and of Fg, at 0, as E is varied from é to 0.09. From the expression (2)

for Fg, it is easy to see that, as £ — (%)_, the linear stability of O changes infinitely many

times from elliptic to hyperbelic, and vice-versa. The same is true of fz {this result was
first presentéd in [11]).

Using the approximate critical curve of F' 1, vla—a!) = 1//?2, and the explicit formulas
for v-and a as function of b (see (2) and (3)), we were able to predict that the fixed point
0 of Iy would loose stability at values of v and e corresponding to b &~ 0.49. A careful
numerical analysis of the dynamics of Fz has shown that, in this case, the transition to
instability occurs at values . and «, corresponding to b = 0.43. These critical values
obtained numerically are such that v.(a; — e;') = 0.55 < 1/v/2, in agreement with the
remark in (7] that the approximate critical curve, y(a — o~!) = 1/V/2, is overestimated.
It is remarkable that, under iterations of f% , 0 undergoes a stability-instability transition
also at & = 0.43. In Figure 2 we show iterations of fé and FGL for & = 0.40 and b = 0.48.
Again, the self-similarity of the figures near 0 is excellent. This sequence of figures shows
that the existence of large stochastic regions in (1) is related to the existence of the already
mentioned transition chain, and to the fact that y(a + a7!) > 1/v/2.

Orbits of (1) that start on £ with £ > 1 and |[2]]* < 2E can escape over the saddle
point of the potential of the Hamiltonian (1) and become unbounded. These escaping orbits
correspond approximately to the set of points z satisfying [|Fe(z)|]* < 2(E — 1). Using
the results in [5] and [7], we were lead to the conjecture that the above mentioned invariant
circles exist for (v, o) below this critical value of Fg or, correspondingly, for & < 0.43 in
the case of fi. Our conjecture is fully supported by our numerical results. In Figure 3 we
show two sets of iterations of fg, for E = (.17 and b = 0.40,0.48,1.0. We considered initial
conditions on radii at intervals of 45 degrees. The iteration starts at the origin and many
initial conditions were required to obtain the Poincaré sections displayed in Figure 3. The
iterations that {do not) escape are represented by black (grey) dots. Points falling inside
the central white circle escape immediatly. In the Poincaré section for b = 0.40 we can see
an invariant grey circle enclosing the black dots. These invariant circles are destroyed in the

case b = .48. In the case b = 1.0 all of the initial conditions used by us escaped. '




III. CONCLUSION

Our important conclusion is that the dynamics of the maps Fg and fg agree very well
for £ not far from é and z not far from 0. This implies that, in this region, the dynamics of
f&, and therefore of (1), can be characterized by the two invariants, v and a, related to the
equilibrium 7, and to the homoclinic orbit F;—’ respectively. Our numerical investigation has
shown that the dynamical properties of (1) changes a lot depending on whether b is above
or below a critical value, b, corresponding to (4., ) such that Ye[ore = 71) is close to the
(overestimated) approximate value 1/+/2 obtained in [7]. This is the reason for system (1)
exhibiting large stochastic regions for energies close to &, and for the existence of large sets
of non-escaping orbits for energies larger than 1. In the particular case of the Hénon-Heiles
system ((1) with b = 1.0), v(« — a™1) = 3.09 explaining the existence of the observed large
stochastic regions for E close to 5 and of the small non-escaping region for £ > L It
should be remarked that there is a theorem in (5] that proves the existence of transition
chains in (1) if y(@ — @™!) > 1, which is in agreement with the properties exhibited by the
Hénon-Heiles system.

Concluding we assert that the map Fy (equation (2)is universal in the sense that any
Hamiltonian system [2-5] with two degrees of freedom, and having solutions homoclinic to
saddle-center equilibrium points, can be described by Fg in a neighbourhood of the homo-

clinic orbit. The numbers @ and 4 determine the universality classes of these Hamiltonian

systems.
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FIG. 3. Poincaré sections of fg for F = 0.17, and b = 0.40,0.48, 1.0 from left to right. The
black dots correspond to orbits that escape and grey dots to orbits that do not escape. Points

falling inside the central white circle escape immediatly.
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