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Abstract

The dynamic alterations of an electronic cirduit in a chaotic regime,
described by the Double Scroll attractor, subjected to sinusoidal per-
turbation are numerically investigated. Parameter diagrams of the
circuit phase-locking oscillations in terms of the driving amplitude
and frequency are computed. Although these diagrams have highly
interleaved and complex structures they are not of a fractal nature.
In addition, the power spectrum analysis is used to find and char-
acterize three ways of phase-locking the Double Scroll circuit, and
to determine how this process depends on the driving parameters.
Furthermore, the dynamics of bifurcation phenomena, as chaotic at-
tractor entrainment, Arnold’s tongues, coexistence of attractors, and
hysteresis are identified in the parameter space.

1. Introduction

Periodic-oscillating nonlinear systems have important applications in any
sitnation whenever predictability of complex dynamical systems is required.

Besides, in many situations cohtrolling chaotic systems by periodic forcing is

* useful as in the applications reported in Refs. {1], [2], [3], 4], [5]. Thus, deter-

mining the convenient driving parameters {usually amplitudes and frequen-
cies) is relevant to improve the desired control or oscillation phase-locking in
the considered systems. Furthermore, investigating the dependence of this
effect, or other bifurcation phenomena commonly observed in such driven
systems, on the required control driving parameters, is also convenient.

Electronic nonlinear circuits are particularly useful to investigate these
nonlinear phenomena (6], as the mentioned oscillation phase-locking. In
fact, these systems are experimentally easy to build, usually with very low
noise levels, and their dynamic characteristics are well modeled by differen-
tial equations. Examples of experiments with a nonlinear circuit perturbed
by periodic forces can be seen in Refs. [7], [§], [9].

The most well known nonlinear electronic circuit is the Matsumoto’s cir-
cuit [6] (also known as Chua’s circuit). This is a simple nonlinear circuit
with a piecewise-linear resistor.

Several bifurcation phenomena and phase-locking properties are observed
in experiments with the original Matsumoto’s circuit or with slightly modified
versions of this circuit [10], [11]. In particular, we mention here some of the
reported features that are numerically investigated in this work. Adding one
inductor and one voltage source to this circuit, it is possible to induce period
doubling bifurcations, period adding and the Farey sequence, gquasi-periodic
and chaotic behavior, coexistence of multiple attractors and hysteresis [12],
[13]. The same is observed if the circuit is driven by a current source, besides
the frequency entrainment of chaos also reported in this case [14]. For this
last kind of driving force, the appearance of Arnold’s tongues and period-
adding law in the driving parameter space is numerically observed [10].

In this paper, we consider the Matsumoto's electronic circuit in a chaotic
regime described by the Double Scroll attractor, a very known attractor in
the literature [6]. Therefore, in this case, this cizcuit is called Double Scroll
cireuit [16]

We investigated numerically phase-locking and bifurcation phenomena
when the Double Seroll cireuit was driven by a sinusoidal perturbation. The
considered driving was different from those used in other works. Namely, the
voltage source was applied to the linear resistor in series with the inductor.
With this perturbation, we observed, both numerically and experimentally
[17], all phenomena previously mentioned. However, in this work, we ad-
dressed more general questions concerning the representation of these phe-
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nomena in the driving control parameter space. Thus, we identified regions
in this space with points representing the same kind of attractor behavior
(periodic, quasi-periodic, or chaotic), or attractors with the same period.
Generally, the analysis of these structures in the parameter diagrams, can
reveal if the application of a chosen periodic perturbation to a given system
is a good method to obtain chaos suppression. One question is to determine

‘any possible relation between the driving amplitude and frequency applied

to this system and the resulting phase-locked frequency.

Particularly, for small frequencies, there is the phenomenon of frequency
entrainment of chaotic motion [14], [L7]. However, for further smaller fre-
quencies or almost constant perturbations, we observed another new phe-
nomenon: the chaotic attractor cyclically visiting chaotic and periodic re-
gions connected by a period-doubling road to chaos. In fact, this kind of
trajectory reproduced the road to create the Double Scroll attractor by vary-
ing one of the control parameters {17].

Besides the previously mentioned phenomena, these parameter diagrams
show also the period attractor preservation for large ranges of driving fre-
quency and amplitude, as it can be experimentally reproduced [17].

In Sec. 2 we present the driven Double Scroll circuit. In Sec. 3 we present
the algorithm used to compute the driving-parameter space diagrams. We
use power spectrum analysis to show, in Sec. 4, that there are three different
ways of phase-locking the considered oscillations. In Sec. 5 we analyse, for
low frequencies, the periodic entrainment of chaos, the Arnold’s tongues and
their period-adding law in the driving-parameter space. The coexistence of
different attractors led to the phenomenon of hysteresis. All the observed
structures, related with these phenomena are not fractals in the parameter
space. We present the conclusions in Sec. 6.

9. Driven Double Scroll Circuit

The Double Seroll cirenit is shown in Fig. 1 with its three energetic com-
ponents: two capacitors, C1 and C, and one inductor, L. It has also two
resistors, I and r, and the non-linear resistor, Ry, whose characteristic
curve can be seen in Fig. 2.

The Ry, characteristic curve is represented by

Figure 1: The Double Seroll circuit. Althougﬁ, in this work, we consider only numerical
results, the electronic value components used for the realization of a real experiment are:
O = 0.0052 puF, Cp = 0.056 pF, R=1470 Q, L= 92 mH, and r = 10 {L

E'NR(I/rd) = m()v.::.l + 05(?’”.1 — mg) | Vcl + Bp l +05(m0 - ml) I ‘/cl - Bp |
(1)

where mg, ™y, and B, are indicated in Fig. 2. Ve is the voltage across the
non-linear resistor. :
The driving force applied across the resistor r (Fig. 1) is represented by

g(t) = V sin{2n ft) (2)

where V is the amplitude and f is the frequency.
We can simulate the circuit of Fig. 1 by applying Kirchofl’s laws. So, the
resulting state equations are




innfVar)

- I

Vor

-
(RO

M,

Figure 2: The characteristic curve of the non-linear resistor Ryr, where Bp=1.0, mo=-
0.5, and my=-0.8.
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where Vg and Vi are the voltage across the capacitors Cy and C3, re-
spectively, and iy, is the electric current across the inductor L. To avoid
numerical problems we do not use the actual component values in Egs. (3),
but a rescaled set of parameters given in terms of the actual values. Thus,
in this work, the parameters used in Egs. (3) for the numerical simulation of
the circuit in Fig. 1 are

1 1 1 1
— =100, —=10, —=64, =
C G 1.0, I 6.0, i 0.6 (4)
and the normalized initial conditions are
V1(0) = 0.15264, V., = —0.02281, i,(0) = 0.38127. (5)
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For the parameter simulation values given by Eq. (4), and for a vanishing
- perturbing amplitude V = 0, the circuit behaves chaotically. As the circuit
is dissipative its dynamic variables (Ve1, Vo, and ir) evolve on a chaotic

* attractor named Double Scroll that can be seen in Fig. 3.

Figure 3: The chaotic Touble Scroll attractor for ¥V = 0 and other parameters given by
Egs. (4) and (5).

All results shown in this paper are due to numerical simulations. However,
we also built the circuit of Fig. 1 and observed the bifurcation phenomena
here discussed. For further details about this experiment we refer to Ref.
[18].

3. Parameter Space Diagrams

We chose to investigate the behavior of the driven Double Scroll system in
the Poincaré section on the plane Vo = —1.5. Thus, instead of dealing with
the trajectories, we analysed the mapping determined by their intersections
on the Poincaré section. We obtained a good convergence when the transient
length is n = 100, where n is the number of times the trajectory crosses the
Poincaré section.

For obtaining the parameter space diagrams two methods were consid-
ered.
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Figure 4:  Parameter space diagram {f x V) obtained from the Lyapunov spectra,
indicating the bebavior of the driven Double Scroll system through different level of gray.

- Letter ¢ indicates chaotic oscillations, letter p indicates periodic oscillations, and letter q

indicates quasi-periodic oscillations. We used 2 300 x 300 grid of points.

The most known tool for constructing a parameter space diagram is the .

Lyapunov spectrum formed by the three Lyapunov exponents X,. Thus,
for the considered system, depending on the nature of (A}, Ag, A3), we can
characterize an oscillation as follows: (4,0, —) a chaotic attractor; (0,0, —)
a quasi-periodic moviment on a torus T%; (0, -, —) a limit cycle; (—, —, —) a
fixed point. .

We obtained the Lyapunov exponents by applying the Eckmann-Ruelle
algorithm [19], [20] with a transient n = 100, and a time step dt = 0.005
during a integration time ¢ = 3882 which corresponds to n =~ 700. The
Gram-Schmidt orthonormalization is applied each GS = 10 steps.

Due to the non exact computation of these exponents, we consider an
exponent null if its value is withim the interval [—e, €], where € = 0.02, if we
constder the previous parameters of the algorithm. However, such parameters
force us to wait a large CPU time to obtain each Lyapunov spectrum with
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Figure 5: Parameter space diagram indicating the period, indicated by numbers, of
orbits of the driven Double Scroll system. A 300 x 300 grid of points is considered in this
figure.

the desired accuracy.

So, we determined that similar resulis, but not so faithful, can be obtained
if we consider dt = 0.04, ¢ = 1040 which correspond to n == 260. In this case
the tolerance increases to ¢ = 0.03. With these considerations in mind we
obtained the parameter space diagram shown in Fig. 4, where 300 values of
the frequency and amplitude were considered.

In this figure we can see for which value of f or V we have chaos (black
region indicated by c), limit cycles (dark gray region indicated by p), or tori
T? (clear gray region indicated by ¢). We also found unbounded trajectories
(the white region indicated by the letter ) due to exterior crises {21]. In
this figure, the minimum value of f is close to the value of the characteristic
frequency f, ~ 0.29 for the unperturbed system (V = 0}, corresponding to
fo 7 5.40 kHz.

The use of the Eckmann-Ruelle algorithm has basically three main prob-
lems: the large amount of CPU time required, the uncapability of detect-
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ing weak chaos (the toroidal chaos that is due to the breakdown of a two-
frequency torus through the Curry-Yorke scenario [20]) for which the largest
Lyapunov exponent is too small, and the impossibility of determining the
" period of the periodic orbits.

There is a further problem with the Eckmann-Ruelle algorithm. It works
very well for autonomous systems; however, when we have a non-autonomous
case (as when the sinusoidal perturbation is introduced into the Double Scroll
gystem), the choice of , n, G, and dt for a specific f and V may not be
convenient for another set of these parameters. Hence, for computing a
parameter space for which a large range of f and V must be considered, the
use of another algorithm may be more convenient.

So, we realized that in our case an algorithm that identifies only the pe-
riodic regions would be sufficient for our understanding of the driven Double
Scroll system. This can be confirmed by the fact that small quasi-periodic
regions of the parameter space (for the driven Double Scroll system) always
surround periodic regions (therefore, regions that are meither periodic nor
quasi-periodic are surely chaotic). Also, in this work, we have not identified
orbits with periods higher than pmes = 16, because they are not significative.

For determining if an orbit is p-periodic on a Poincaré surface we pro-
ceeded as follows. After the transient (n = 100) we kept the next 11 = Pmag X k
points (X, withi =1,... ; Pmez X k, where X represents the coordinates Ve
and i, on the Poincaré section Ve = —1.5) to verify whether the coordinate
values repeat themselves & times. Thus, we compute

k
accum = Z(XH-X,H.;,). (6)
n==1

We considered we have a period-p orbit if, for the minimum p, and for
k=5, accum < 0.02 within the pre specified tolerance. In Fig. 5 we show
a diagram where the period-p regions, obtained by using the algorithm (6},
are indicated by the numbers and with different gray scales. This figure has
the same range of f and V as the Fig. 4.

Besides the suitable CPU time spent for computing Fig.5 (about ten times
smaller than the previous Gram-Schmidt), we can now precisely identify the
period-p tegions in the parameter space. The considered transient time,
n = 100, used for computing the parameter diagrams (both by using the
Lyapunov spectra and the proposed algorithm) of this paper can be reduced
to n = 20 without significant changes.
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Figure 6: Isopericdic diagram showing the period of the orbits of the driven Double Scroll
system. The regions marked by the letter n represent values of frequency and amplitude
for which no bounded attractor was obtained.

Figure 6 shows a diagram considering the range of V' and f that will be
investigated in this paper. In this figure, we see a large region {indicated with
the letter n) corresponding to a non finite trajectory. We also see periodic
regions (with the period indicated by numbers) and specially a large period-
one island that is a region where we find periodic movimens for a large
varying amplitude and frequency. In this case, for a large varying frequency
or amplitude only small changes are induced in the shape of the period-one
orbits.

4. Phase-locking

We aimed to study chaos suppression caused by driving perturbations in
the Double Seroll circuit. We identified three ways through which periodic
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moviment is induced in this system: two from chaotic and one from quasi-
periodic oscillations. These ways are identified according to the position of
the merging frequency peak in the power spectra when a periodic oscillation
shows up. The power spectra showed hereon were computed using the FFT
algorithm for the time evolution of the variable V. We considered 32768
points.

Figure TA shows the spectrum of the unperturbed system. We see two
main peaks, one corresponding to the characteristic frequency f. = 0.29
and the other, indicated by fi, corresponding to the frequency with wich
the trajectory jumps between the two rolls presented in the Double Scroll
attractor. For f = 0.075 and V = 0.202, in Fig. 7B, the peak at f1is
_destroyed and a peak corresponding to the driving frequency appears. In
addition, the peak f. moves to the left. The amplitude of this moving peak
decreased as we increased V' to 0.204, in Fig. 7C, and a small peak became
evident at f.. Finally, when we set V = 0.206 the system is periodic and
the spectrum has only two peaks, with the harmonic frequencies f and f.
representing the driving frequency and the response frequency respectively.
In this case the orbit is a limit cycle.

In Fig. 8 we see a series of spectra showing for a varying amplitude how
the periodic moviment appeared. In this case both peaks, with Jo and f
((A)), had their amplitudes decreased ((B),(C)), being completely destroyed
when V=0.20 (D). In this last figure there is only one peak, corresponding
to the driving frequency f.

The values of V' = 0.20 and f = 0.17 correspond to the large period-one
island showed in Fig. 6. For any set of parameters, f and V, of this island,
the obtained attractor has only the driving frequency f. This result shows
that for such driving perturbations the circuit has responses characteristics
of linear circuits. .

Until now we showed periodic regimes for which the frequency compo-
nents f. and f, are destroyed. However, we observed that, if we choose a
frequency f harmonic to f, or fi, these last frequencies may be preserved.

So, in Fig. 9 we see that, when we introduced the perturbation with
f=0.650 and V = 0.08 (B), the perturbed spectra is still similar to the one
shown in (A). The peak corresponding to f = 0.650, inside the small box,
had a very small amplitude, indicating that the driving had a small effect
on the Double Scroll system. Increasing the driving frequency to f = 0.652
(and fixing V' = 0.08) we got periodic moviment. Naturally, in these cases
the peaks f; and f, had a frequency harmonic to the frequency f.
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Thus, if perturbing the system with a frequency harmonic to f, we get

" periodic moviment, the resulting trajectory has frequencies very close to har-

monics of the frequencies f, and f;. This fact led us to think that the resulting
trajectory preserves some characteristics of the unperturbed attractor, as it
can be seen in Fig. 10 where we plot an unstable periodic orbit of the non-
perturbed Double Scroll system (the thin line) and the perturbed orbit with
f=0.652 and V == 0.08.

In this system, there is another way through which periodic moviment
can appear from a quasi-periodic moviment. In this case we have two incom-
mensurable frequencies that phase-locks as showed in the next section.
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Figure 7: Power Spectra of the time evolution of the variable Vg, for frequeney f = 0.075
and different amplitudes V, to show the phasing-locking at the driving frequency f. (A)
shows the characteristic frequencies, f, and f;, of the unperturbed circuit. Rising V ((B),
{C), (D)) the peaks f. and f, disappear and the frequencies f and f, show up.
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Figure 8: Power Spectra of the time evolution of the variable Vo, for frequency f = 0.17
and different amplitudes V', to show the phasing-locking at the driving frequency f. (A)
shows the characteristic frequencies, f, and f., of the unperturbed circuit. Rising V' ((B),
{C), (D)) the peaks £, and f; disappear and the frequencies f and f, show up.

5. Bifurcation Phenomena

5.1. Periodic entrainment of chaotic attractor

As one can see in Fig. 6, for perturbations with small driving frequen-
cies, we did not find any periodic regime. However, there is one interesting
phenomenon where a chaotic trajectory tracks a periodic oscillation, named
periodic entrainment of the chaotic attractor. This effect is more evident for
high V considered in Fig. 6.

As a matter of fact, the system (3) has three equilibrium points whose po-
sitions are changing in time according to the value of the driving perturbation
q(t). Thus, this driven system has the equilibrium points: P!, an unstable
saddle-focus, P2, a stable saddle-focus, and P?, an unstable saddle-focus,
each corresponding to one of the three domains of the function (1).
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Figure 9: Power Spectra of the time evolution of the variable Vi, for amplitede V = 0.08
and differcnt frequencies f, to show the phasing-locking at the driving frequency f. (A)
shows the characteristic frequencies, f, and f;, of the unperturbed circuit. Rising f ((B),
(C)} the peaks f; and f; are preserved and the peak corresponding to f has a very small
amplitude.

Pl =(~a—p, qt), ga—meB) P?=(—y, —qlt), —m)

={a-8, -V, ~ga-mf), (7)
where a = Zelmo—mi) 8= Bp(mo—my) ,and y = u""“

{g+mo) g+mg g+m
To see this perlodrc entrainment, in Fig. 11 we pIot the time evolution of

the variable Vir; and the corresponding values of the first coordinate of the
equilibrium points X!, X?, and X®. We note that the trajectory evolves with
the driving period around the equilibrium points. In addition, the attractor
seems to change in sucessive small time intervals {smaller than the period of
the perturbing term ¢(2)), as it can be seen in Fig. 12.

Figure 12 shows the trajectory during eight sucessive time intervals (2 =
32). The first Vi plotted value in these figures can be identified, in Fig. 11,
by the letters inside boxes. '

We see that Fig. 12A represents a trajectory that resembles a limit cycle.
This happens because the equilibrium point P? changes its position with the
equilibrium point P? (see Fig. 11). In fact, there is such a limit cycle for
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Figure 10: The unstable periodic orbit of the non-perturbed Double Scroll system (the
thin line) and the orbit obtained for driving parameters f=0.652 and V' = 0.08, show-
ing that estabilization of chaotic oscillation using the driving sinusoidal perturbation can
preserve the original features of the non-perturbed system.

a constant perturbation ¢ = 0.4 correspondent to an average value of g in
the intervals containing the points A and H of Fig. 11.

In Fig. 12 the trajectory resembles that of the Double Scroll attractor,
with the trajectory oscillating around the two different points P! and P°.
In fact, the time evolution from Fig. (A) to Fig. (D) shows a time period-
doubling routes to chaos. The time-reversed period-doubling bifurcations
can be seen in Figs. (D-H). In other words, the analysed chaotic trajectory
visits different embedded attractors.

If we consider a constant amplitude we observed that we can suppress
chaotic motion of the driven Double Scroll circuit by changing the position
of the equilibrium points.

5.2. Arnold’s tongue and period adding law

When the driving force is turned on, that means V # 0, a new frequency
is introduced in the characteristic oscillations of the Double Scroll System.
This new frequency is responsible for the appearance of quasi-periodic and
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Figure 11 Time evclution of the variable Vg of the system (3) with f = 0.001 and
V = 0.4. The first coordinates of the equilibrium points (X, X2, and X?) whose position
chatige in time due to the perturbation are also plotted, We see that the trajectory evolves
along these points.

periodic moviments on a two-frequency torus (T2).

In the parameter diagrams, beside periodic regions, there exist also quasi-
periodic regions. Between the regions that represent a quasi- periodic tra-
jectory, there exist regions that represents the phase-locked trajectories that
evolves on the previous existing torus T2. These period-p regions may form
what is known as Arnold’s tongues [10].

These Arnold’s tongues appear following a rule called period adding law
[10]. The geometrical interpretation of this law is represented by the known
Farey tree. To introduce the adding law, let us first define the winding
number W,

w=1 (8)

p
where g is the number of the trajectory rotations along the torus to return
back to the same point, taking p complete cycles. It means that p is the
period of the orbit.

]
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Figure 12: Time evolution of the bi-dimensional (Vo) x Vga) projection of the three-
dimensional trajectory of the driven Double Scroll system with the same parameters of
Fig. 11. The figures (A-H) are obtained for intervals with §¢ = 32 and initial condition
indicated in Fig. 11 by the letters (A-H).

Following the notation [10], between two Arnold’s tongues of winding
number ;-‘; and % respectively there exist other Arnold’s tongues with winding
number given by

g_p+P _p+2P
p g+Q g+2P (9)
p+nQ

g+ nQ

The following sequency is also valid

d
— ...ch - —.
cnoos P

%echaos%...:’;-‘-Q
2p+P p+P (10)

-
29+P q+@Q

v Rt
Q
>
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Figure 13: Schematic representation of the Farey tree constructed from the the rational -

numbers £ and 1.

Thus, between two prime (level I) winding numbers, a series of Arnold’s
tongues (level IT) show up. Otherwise, between any two tongues in level IT,
another serie of tongues may appear with their winding number classified
as level III. Each level correspond to a branch in the Farey tree that can
theoreticaly have infinity branches.

In Fig. 13 we represent a Farey tree where the roman numbers indicate
the branch leve!l and the arabian numbers, the winding number. Note that
the period adding law is verified to occur at a given level since the period-p
Arnold’s tongue have their periods following an arithmetic progression.

The Farey tree showed in Fig. 13 is one of the many verified to occur in
the studied system as it can be seen in Fig. 14, a magnification of the box
in Fig. 6. In Fig. 13, we see part of the period-one island and then, after
the period-one trajectory suffers a Hopf bifurcation leading to the creation
of a torus T2, there are the phase-locked trajectories whose localization in
the parameter space diagram are the Arnold’s tongues.
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Figure 14: Magnification of Fig. 6 showing the Arnold’s tongues with their winding
numbers indicated in the figure. These windings numbers follow the period adding law.

5.3. Coexistence of atiractors and hysteresis

It is known that the Arnold’s tongues can overlap for certain ranges of f and
V' [22] and thus the existence of different attractors is possible. However,
different attractors exist not only in the regions were the tongues overlap.

This coexistence of different attractors induces the parameter space dia-
gram to present in some regions a complex and interleaved periodic regions
that may be thought to be due to a fractal structure. However, we showed
that these diagrams are not fractals.

A magnification of Fig. 6 is shown in Fig. 15, We see, by comparing
the different levels of gray, that for small changes in f and V the system
can present different period-p attractors. Successives amplifications of the
two boxes in Fig. 15 show us no-fractal structure. At the point P the
system has a period-three attractor and with small changes of f and V, in
the neighborhood of the point P, one never obtain another period attractor.
In conclusion, these parameter diagrams do not have a fractal structure.

Even though the diagram of Fig. 15 at the point P indicates a period-
three attractor, a period-two attractor coexists as we can see in Fig. 16, where
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Figure 15: Magnification of Fiz. 6 showing the complex structure of this parameter
space diagram.

it is plotted the time evolution of the variable V3 when the trajectory crosses
the Poincaré section Vi, =-1.5, for f = 0.1005 and V' = (.2420 (corresponding
to the point P). In this figure, to change from one attractor to the other,
we reestarted the integration of Eq. (2) with initial conditions as the last
variables of the prior trajectory. The fast transients can be seen in Fig. 16.

The coexistence of attractors leads to the phenomenon of hysteresis due to
jumps between coexisting attractors. To show that, in Fig. 17, for £=0.075
and a varying amplitude, we see that the system can present, for a rising
amplitude ({A)-(F)), a different sequency of attractors obtained for an in-
creasing amplitude ((F)-(G)). Thus, for V' = 0.30 two different attractors
can be obtained (Figs. (D) and (G)).

6. Conclusions

For the purpose of having a better understanding of the phase—lo.cking in
the Double Scroll circuit {6], [16] driven by a sinuseidal perturba.tl_on (10},
[12], [13], [14] we computed original and precise parameter space diagrams
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Figure 16: Time evolution of the variable Vo when the trajectory crosses the Poincard
section Vou=-1.5, for f = 0.1005 and V = 0.2420. This values correspond to the region
indicated by the point P in Fig. 15.

for ample ranges of the driving parameters.

We computed the Lyapunov spectra to distinguish if the driven circuit
trajectory was chaotic, periodic or quasi-periodic. However, this kind of
diagram required a large amount of computation time and an algorithm
parameters dependence on the driving parameter (f and V).

We also computed these parameter diagrams considering another algo-
rithm to identify the orbit periods. For this kind of diagram, the CPU
required time was about ten times smaller than that necessary to compute
the diagrams based on the Lyapunov spectrum.

With such a diagram we have complete knownledge of the phase-locked
regions. With fine resolutions, many bifurcation phenomena presented in this
circuit [12], [13], [14] as period doubling, hysteresis, coexistence of attractors,
phase-lacking, and Arnold’s tongue [10] were identified [17]. These diagrams

" have no-fractal like structure, although they have a very complex structure
due to the coexistence of attractors.

If the perturbing frequency, f, is smaller than the characteristic frequency,
fe, chaotic oscillations were easily suppressed, since the large-sized periodic
islands presented in Fig. 6 appear only for f < f.. In fact, for f > f.,
the only structures in the parameter space are line-shaped lines, indicating
that there are specific values of f to obtain periodic motion. Generally, the
driving frequencies required for phase-locking are close to harmonics of the
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(A) o

V=0.300

Figure 17: Sequency of attractors showing the phenomenon of hysteresis. For a fixed
frequency f = 0.075 and a varying amplitude indicated in the figure we show that the
attractor cam jump to the others existing attractors.

characteristic frequency f..

We determined three ways through wich periodic motion appears for a
suitable variation on the driving parameters: two when the driven circuit has
a chaotic trajectory and one when it has a quasi-periodic trajectory. These
three ways were newly classified acording to the way the frequency peaks (in
the power spectra of such chaotic or quasi-periodic trajectories) change their
position after the driving parameters variation.

These three ways must be considered as the possible scenarios for the
phase-locking. Therefore, if one needs to suppress chaotic motion by applying
a sinusoidal perturbation, the identification of one of these three scenarios, by
inspecting the power spectra of a given sinusoidally-driven system, permits
to suitably adjut the driving parameter to obtain periodic motion.

The first scenario occurs when the driven circuit presents a trajectory
with many frequencies harmonic to the perturbing frequency f and different
from the original characteristic frequency f.. Thus, the region of the biggest
periad-one island in Fig. 6 has an attractor whose all frequencies f, are given
by fu = (2n-+ 1) f; however, the only significant frequency is fi = f because
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its peak amplitude is remarkably bigger than the others. That means, in this
case, the circuit response to the driving is typically linear. This and other
islands that appear for f < f, show us the phenomenon of the preservation
of the periodic attractor for a large variation of the driving frequency and
amplitude. We observed this kind of phase-locking (both, experimentally
and numerically) when f < f.. A special case is when f = f.. In this
case, a periodic oscillation (a period-one limit cycle resembling a circle) is
obtained with the lowest amplitude V. Obviously, a periodical driven system
is expected to modulate with the external frequency if its value is close to
the non-perturbed characteristic frequency.

The other phase-locking scenario is when the resulting frequencies are
close or harmonies of f. and the peak of the driving frequency almost does not
appear in the spectra. In this case, the driven circuit possess a trajectory that
shaddles an unstable periodic orbit of the non-perturbed attractor. In other
words, the perturbing frequency f is close to an harmonic of Je. Numerically,
we have observed that this case usually happens when f is bigger than f..

The last scenario occurs when periodic motion emerges from a quasi-
periodic one. In this case, the quasi-periodic trajectory evolves along a two-
frequency torus, and, for a driving parameter variation, the two-orbit compo-
nents phase-lock and then periodic motion shows up. The phase-locked two-
frequency torus is responsible for the appearance of the Arnold’s tongues [12],
{10] in the parameter space diagrams around the periodic islands. Therefore,
as for other systems [22], Arnold’s tongues only appear beside a periodic
island.

Analysing the phenomenon of periodic entrainment of chaotic motion [23],
[24], [14] we found an attractor that presented in sequential time intervals
(smaller than the perturbing period) doubling routes to chaos and a time-
reversed period-doubling bifurcations. In other words, this trajectory visited
different embedded attractors found in nonlinear systems [25].

Finally, although we analysed sinusoidal perturbations applied to the
driven Double Scroll circuit, we obtained also similar results applying other
periodical perturbations (as triangular and square waves, for example) to
this circuit.
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