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Abstract

In this work we numerically identified three scenarios for the two-
frequency torus breakdown to chaos, in the driven Double Scroll cir-
cuit, for varying driven parameters. Two of these scenarios follow
the Curry-Yorke route to chacs. For one scenario, we identified the
transition to chaos through the onset of a heteroclinic tangle and its
heteroclinic points. In the other scenario, chaos appears via period-
doubling bifurcations. The third scenario is through the type-II in-
termittency for wich a quasiperiodic torus grows in size, and breaks
by touching external saddle points, forming a heteroclinic saddle eon-
nection. These identified dynamic scenarios have distinct structure
evolutions. Thus, for the Curry-Yorke route, chaos appears softly and
alternates with phase-locking, while, through type-IT intermittency,
chaos appears abruptlly and is preserved for a large range of the vary-
ing driven parameter.

I. INTRODUCTION

In this paper we report the dynamical scenarios for the route to chaos found
numerically for a driven electronic cireuit. Qur investigation was motiveted
by the relevance of the observed two-frequency torus breakdown to the gen-
eral dynamical systems theory.

The routes to chaos, found in nonlinear systems by varying control pa-
rameters, are important because they are used to predict the transition from
a regular oscillation to a irregular one [1], [2].

One well known example of route to chaos is the infinite sequency of
pertod-doubling bifurcations [3], [4], universal for a large class of one varying
parameter systems.

Another possible route is the destabilization of the three-frequency torus
[6]. This route has a dynamical scenario through which chaos can appear
just after the third Hopf bifurcation, in other words, after the appearance of
a third frequency into the system [6] and {7]. In this case, an arbitrary small
perturbation can lead to the destabilization of a three-frequency oscillation.
However, for other scenarios, a three frequency quasiperiodic movement can
also persist under a large perturbation [8], [9], and [10]. Indeed, chaos is
more common to appear as higher is the number of frequencies [9].

Moreover, chaos can also occur directly through a destabilization of a two-
frequency torus as proposed by Curry and Yorke [11], {12]. This general route
happens through different scenarios leading to typical folds and wrinkles in
the broken torus.

Thus, in this last route, chaos can appear, for two-parameter families
of maps of the plane, through the destabilization of a two-frequency phase-
locked trajectory [13], [14]. After chaos appears, topological alterations are
responsible for the loss of the smoothness of the two-frequency torus.

In the same route, chaos also emerges from two-frequency torus through
the period-doubling scenario [15]. In this case, a phase-locked band chaos
cornes into sight with a rational rotation number.

However, most of the previous works, about the two-frequency torus
breakdown, does not address the topological transitions induced by the driv-
ing parameters, difficult to recognize in dissipative systems, since the homo
and heteroclinic tangles contract along the stable direction. Nevertheless,
Refs. [13] and [14] contain an overview of the possible topological transitions
for the two-frequency torus breakdown to chaos.

In this paper we deal with the Matsumoto’s electronic circuit [16] (also
known as Chua’s circuit) perturbed sinuseidally. This is a simple nonlinear
circuit with a piecewise-linear resistor that has been studied because of its
electronic simplicity and variety of non-linear phenomena. The driven ver-
sions of this circuit have been extensivelly investigated and many bifurcation
phenomena (not observed in the non perturbed circuit) have been found [17],
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(18], [19], [20], [21], {22] {23].

The onset of chaos by torus breakdown in the Matsumoto’s circuit, de-
scribing a chaotic attractor known as Double Scroll [24]), and driven by a
sinysoidally perturbation, is investigated in Refs. [17] and [20]. In this case,
this circuit is known as driven Double Scroll circuit. Hawever, no topolog-
ical or dynamical analysis is presented and untill now the scenarios for the
appearance of chaos by torus breakdown in the driven Deuble Scroll circuit
remains unknown.

In this paper we show that chaos appears by the Curry-Yorke route
through period-doubling or phase-locking scenarios. We show that chaos
preceeded by phase-locking is due to the transversally erossing of the strong
stable foliations with the stable manifolds of the knots in the phase-locked
trajectory. .

In addition, we found that chaos, in the considered driven circuit, can
also appear through type-II intermittence [21]. In the present paper, a dy-
namical scenario for this destabilization is proposed. So, in this case, the
two-frequency quasiperiodic torus looses its stability by touching external
saddle points that form a heteroclinic saddle connection. This nonlinear
mechanism [25] is vesponsible for the reinjection necessary for the existence
of type-II intermitence.

In summary, in the driven Double Scroll circuit, chaos appears in two
observable ways, characterized by distinct Lyapunov exponent evolutions
and topological changes as a driving parameter is varied. Namely, for the
Curry-Yorke route, these transitions occurs softly in contrast with the hard
transitions associated to type-IT intermittency.

In Sec. IT we present the driven Double Scroll circuit. In Sec. IIT we
analyse dynamically the Curry-Yorke route to the onset of chaos in this
circuit. In Sec. IV we present the new scenario for which chacs appears, in
the same circuit, through a type-II intermittence and, finally, conclusions are
given in Sec. V. -

II. The driven Double Scroll circuit

The Double Scroll circuit [16] is shown in Fig. 1 with its three energetic
components: two capacitors, Cy and Cy, and one inductor, L. It has also
two resistors, R and r, and the non-linear resistor, By, whose characteristic

curve can be seen in Fig. 2.

Figure 1: The Double Scroll circuit. The electronic value components used
in this paper are: Cy = 0.0052uF, Cy = 0.056pF, R = 14709), I = 9.2mH,
and r = 100

The Ry characteristic curve is mathematically represented by

inr(Ver) = moVa +0.5(my1 —myq) | Voo + B, | +0.5(mo—m) | Vo — B, | (1)

The driving force applied across the resistor r is represented by

q{t) = Vsin(2x ft) (2)
whére V is the amplitude and f is the frequency.

We can simulate the circuit of Fig. 1 by applying Kirchoff’s laws. So, the
resulting state equations are

Cl—=

1 ,
dt E(ch - Vm) - ZNR(Vci)
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Figure 2: The characteristic curve of the non-linear resistor Ry, where B,=1.0, mo=-
0.5, and m;=-0.8.

dV 1
2 d;:'z = E(VCI ~ Ven) +ig (3)
di
L =~Vea —qlt)

where Vi and Vi are the voltage across the capacitors C) and C5, respec-
tively, and iz, is the electric current across the inductor L.

To avoid numerical problems we used a rescaled set of parameters given in
terms of the real values (given in Fig. 1). Thus, the parameters used in Eqs.
(3) for doing numerical simulation of the cireuit in Fig. 1 were & = 10.0,
% = 1.0, + = 6.0, L = 0.6 the initial conditions were Va(0) = 0.15264,
Ve = —0.02281, i(0) = 0.38127, and the step size was dt = 0.005. For
integrating Eqs. (3) we used the fourth-order Runge-Kutta. algorithm.

For these parameter simulation values, and null perturbing amplitude,
V = 0, the circuit behaves chaotically. As the circuit is dissipative its
dynamic variables (V1, Voo, and iz) evolve on a chaotic attractor named
Double Scroll [16].

One of the most known tools for measuring chaos is the Lyapunov spec-
trum formed, in this case, by three Lyapunov exponents ). Thus, for the
considered system, depending on the nature of (A;, Ay, As), we can char-
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acterize an oscillation as follows: (+,0,—) a chaotic attractor; (0,0,—) a
quasi-periodic moviment on a torus T%; (0, —, —) a limit cycle; (—,—,—) a
fixed point. Although we computed the three Lyapunov exponents, in this
work we show only the first one. That is because we are mainly interested
in determining how chaotic is the system.

In this paper, we calculated the Lyapunov exponents by applying the
Eckmann-Ruelle algorithm [12], [26], with a transient n = 100, and a time
step dt = 0.005 during an integration time t = 3882 which corresponds to
n /2 700. The Gram-Schmidt orthonormalization was applied each 10 steps.

Due to the non exact computation of these exponents, we considered the
first Lyapunov exponent positive if X; £ 0.005, within the used numerical
precision. .

All results shown in this paper were due to numerical simulations. Com-
plementary information about the considered experiments are given in Ref.
[21].

III. Soft appearance of chaotic motion

A dynamical overview of the Curry-Yorke route can be seen (for a rising
frequency, f, and a fixed amplitude, V) in the bifurcation diagram of Fig.
3A and by analysing the first Lyapunov exponent of Fig. 3B. These figures
show phase-locking of quasiperiodic tori, onset of chaos, and further phase-
locking alternating with chaotic motion. For the considered parameters, the
Lyapunov exponent increases slowly with f. For f close to 0.1978, the ex-
ponent reaches a value A Z 0.05 and after that phase-locking is not anymore
observed. '

The four regions indicated in Fig. 3A, denoted by Aj, As, Az, and Ay,
have their correspondent attractors shown on the Poincaré sections of Fig,
4. So, Fig. 4A shows the quasiperiodic attractor indicated by A, in Fig. 3A.
Figure 4B shows the period-17, phase-locked attractor, indicated by Aj in
Fig. 3A. Finally, Figs. 4C and 4D show the chaotic attractor indicated by
As and A,.

As we see in Fig. 3A, after the onset of chaos, the first Lyapunov expo-
nent increases slowly with f. Additionally, the chaotic trajectory obtained
in the Curry-Yorke scenario is confined to the region previously occupied
by the previous stable quasi-periodic torus. Only for higher values of f the
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trajectory escapes the toroidal surface neighborhood. Because of these char-
acteristics, we refer to this transition as a soft onset of chaos.
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Figure 3: (A) A bifurcation diagram for a rising amplitude f and a fixed driving ampli-
tude ¥ = 0.20, showing that phase-locked regions come into sight within quasi-periodic
regimes and also in the chaotic regimes. So we indicated five regions we will focus our
analysis. In A; we have a quasi-periodic attractor, Ay a period-17 phase-locked attrac-
tor which coexist with other period-N attractors, Ag and A4 we have the onset of chaos
through phase-locking, and A; one of the regions where we find weak chaos. (B) The
first Lyapunov exponent J, for the same parameters of (A). That means chaos for A >0.
Vo = —L1.5.

In Fig. 4C we see that the smooth and closed quasi-periodic attractor
(in Fig. 4A), after phase-locking (4B) and the onset of chaos, becomes a
folded and rough attractor. Further amplifications of these folds would re-
veal a fractal structure and also the streching and folding characteristics of
chaotic regimes. So, in this case, chaos can be better recognised by analysing
the geometric structure of the attractor than by computing the Lyapunov
exponent. Consequently, this procedure could be considered when the first
Lyapunov coeficient values can not be distinguished from zero.

However, in the case of Fig. 4D, a small amplification already reveals
the mentioned geometric properties. This figure shows also a phase-unloked,
nine-band, chaotic attractor. The evolution of the region n is given by the
region 7+ 1. Thus, we clearly see that region 2 is the region 1 folded along a
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Figure 4: {A) Quasiperiodic two-frequency torus (region A; in Fig. 3), (B) Period-17
phase-locking (region As), a chaotic attractor with many folds (region As), and a nine-
band chaotic attractor (region A4). Vo = —1.5.

direction transversal to the torus and streched along a direction tangent to
the torus surface.

The observed folding and streching processes and the computed Lyapunov
exponent assure us that the trajectory is chaotic. However, we want to
see how is the transition from a phase-locked trajectory to the chaotic one.
For this purpose we analysed the attractor when (for the used numerical
precision) we first observed the onset of chaos. So, in Fig. 5 we see a
toroidal-shaped attractor, which is actually chaotic. This atiractor for a
very small change on the value of the driving frequency becomes a period-17
phase-locked orbit. Although the Lyapunov exponent is positive, its value
is very small. Thus, in this example, chaos should not be characterized by
analysing only this exponent. So, a geometric interpretation of this toroidal-
shaped attractor must also be considered for characterizing the transition to
chaos.

Before the onset of chaos shown in Fig. 5, the only attractor observed was
the pericd-17 phase-locked one. To examine the influence of this attractor
on this transition, we examine in Fig. 6 the amplification of the box in Fig.
5, particularly the geometry nearby the unstable period-17 attractor.
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Figure 5: Poincaré section of the chaotic attractor for f indicated by Ag in Fig. 3.

To guide that, let us introduce a mapping & that models the irajectory
in the Poincaré section of Fig. 5. If we consider each period-17 unstable
point represented by P, (with n = 1,...,17), then, G'"(P,) = P, and
G(F,) = Pos1. In addition, G (P, +€) leaves this point to the nearest point
in the clockwise direction. Thus, for example, G'{Py + €) approaches P;;.

To identify the chaotic characteristics of the trajectory shown in Fig. 5,
we plot in Fig. 6 the region around the points P; and Pi7. The points in the
large gray region denoted by X, when iterated by G'7(Xo), rest in the large
black region denoted by X;;. The small box in this region is magnified and
we see that the region Xi; is in fact composed by two regions. The region
X, under the mapping G suffers a streching along the unstable manifold,
W*, tangent to the torus, and a fold along the stable direction, W* (corre-
sponding to the strong stable foliation), transversal to the torus at the point
Py7. In fact, these manifolds are neither exactly transversal nor tangent to
the torus surface, since the mapping near the fixed points is exact and not
a linearized one. The same points iterated by G*(X,), spread along the
unstable direction and squeezed along the stable one, due to the dissipative
effects. So, this and further iterations are difficult to show.

A point somewhere in X, takes a positive infinite time to reach the point
Pz along W, and a negative infinite time to reach P'7 along W®. As the
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Figure 6: Magnification of Fig. 5 showing a region (large gray line} Xy that after 17
Poincaré section crossings is transformed into the region Xy7. So Xp streches along the
unstable manifold of the point P17 and folds along the stable manifold of this point. Within
the box we see a magnification of the region X,;7.

unstable manifold of the point Pj7 drives the trajectory to other saddle point,
the point Py is a heteroclinic point.

So, in this case, for a varying driven parameter, chaos actually appears
from a period-17 phase-locked trajectory that is seen in the Poincaré section
as seventeen kmots. Between each two of these knots, there is one saddle
point. The unstable manifolds of these saddle points direct the trajectory
toward these knots. The scenario from the cnset of chaos is the following:
the unstable manifold of the saddle points crosses transversaly the strong
stable foliation (due to the repellor focus). The existence of this scenario
was theoretically predicted in [13].

In conclusion, infinite period trajectory, chaos, appears from a finite pe-
riod, phase-locked one.

Furthermore, chaos can also appears through an infinite sequency of
period-doubling bhifurcations as seen in Fig. 7. After that, chaotic bands
appear with very low Lyapunov coeficients, and may phase-ocking. More-
over, the Lyapunov exponent increases its value when the bands merge in
only one chaotic band. In Fig. 7 we alsc see the coexistence of two attrac-
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Figure 7: (A) Bifurcation diagram showing coexistence of attractors and the onset of
chaos through period-doubling, by a rising driving frequency f and a fixed driving am-
plitude V' = 0.20. (B) The first Lyapunov exponent A, for the same parameters of (A).
Vo1 = ~1.5.

tors (23], indicated by attractors 1 and 2.

The spectral analysis of the soft onset of chaos is shown in Fig. 8. Figure
(A} shows the spectrum for the Double Scroll circuit (V = 0). We see two
main peaks, one corresponding to the characteristic frequency f, & 0.29 [23]
and the other, indicated by f;, corresponding to the frequency with which
the trajectory jumps between the two rolls presented in the Double Scroll
attractor [16]. For f = 0.18500 and V = 0.20, in (B), the peaks at f, and f;
are destroyed and a peak f corresponding to the driving frequency appears
(the way they are destroyed can be seen in Ref. [23]). Increasing frequency
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Figure 8: Power spectra of the time evolution of the variable Vp;. Spectra of the nonper-
turbed circuit (A) and for driven varying frequency and fixed amplitude V = (.20; phase-
locking in (B), quasi-period oscillation in (C), phase-locking (D), and chaos in (E,F,G).

to f = 0.19500 another incommensurable frequency f; appears and thus we
have a quasiperiodic moviment. In (D)} the frequencies f and f; become
commensurable and so phase-locking occurs. A low amplitude broad band
appears in (E) revealing a chaotic attractor, also observed in (F) and (G).
Note that Figs. 7C-F correspond respectivelly to Figs. 4A-D.

IV. Abrupt appearance of chaotic motion

The abrupt appearance of chaos, via two-frequency torus breakdown, was
investigated through numerical integration of Eqs. (3), for a fixed driving
amplitude, V' = 0.28. Thus, Fig. 9A shows a bifurcation diagram of the
variable V2, when the trajectory crosses a Poincaré section at Vi = -1.5,
as a function of the driving frequency, f. The abrupt appearance of chaos,
seen in this figure, is confirmed by the first Lyapunov exponent, A (Fig. 9B).
Chaos first appears for f = 0.16897 leading to A > 0.

In this bifurcation diagram, there are no periodic orbits after the onset
of chaos. In addition, the first Eyapunov exponent has a large value at the
onset of chaos, which is preserved by increasing the frequency f.
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Figare 9: (A) Bifurcation diagram showing the two-frequency torus creation (via Hopf

bifurcation) and its destruction, generating chaotic behaviour, by a rising driving frequency
f and a fived driving amplitude V = 0.28. (B) The first Lyapunov exponent A, for the
same parameters of (A). Vo = —1.5.

For increasing f and a fixed V we see, in Fig. 10, a sequency of four figures
showing the attractor modification on the Poincaré section at Vor = —1.5.

The two-frequency torus (T2) is created after a supereritical Hopf bifur-
cation. In this situation, before the onset of chaos, the torus is a deformed
circle with no folds or cuspides, as shown in Fig. 10A {f = 0.16600). How-
ever, increasing the frequency to f = 0.16899, the torus T? grows in size and
folds in four parts resembling a four-sided polygon (Fig. 10B). The torus
breaks as in Fig. 10C (f = 0.16900) leading to the appearance of type-II
intermittency [21], which causes the trajectory to evolve spirally around the
previously existing repellor focus point, localized close to the origin of the
angular frame in Fig. 10B. Increasing further the frequency we can hardly
recognize the previous existing torus 10D.

In Fig. 10B the four folds of the T? torus can be recognized by the num-
bers 1,2,3, and 4. These folds are approaching four invisible saddle points
(whose position could be determined by introducing neise); each pair of sad-
dle points represents a period-two basic cycle. So, in the vicinity of the fold
4, there is an invisible basic cycle that crosses the section again near the fold
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Figure 10: {A) A quasiperiodic torus T? for f = 0.16600. (B} The four-sided quasiperi-
odic folded torus for the critical parameter f = 0.16899. (C) The destruction of the torus
leading to a type-II intermittency. (D) A chaotic attractor with a heteroclinic saddle
disconnection for f = 0.17000. Vo, = —1.5.

2. And the same occurs to the others folds, the eycle crosses from the fold
3 to the fold 1. Along the torus, not yet destroyed, a quasi-periodic trajec-
tory is clockwise oriented with a winding number {(w = 0.4806...) near to
the rational fraction w = %—% Twelve is the number of the trajectory rota-
tions along the torus to return back near the same point, taking twenty five
complete poloidal cycles.

In Fig. 10C, after passing nearby each saddle point, the trajectory crosses
this Poincaré section two times before returning to the same saddle point.
We can consider the flow on this section as a mapping G. Se, if ¢, with
n = 1,...,4, are the saddle points, then G%(c,) = ¢z, G(es) = o, and
G(C3) =C1.

As amatter of fact, the laminar spiral trajectory is a four-spiral trajectory,
which means that the trajectory visits each time one of the four spirals. These
spirals evolve approaching asymptotically the saddle points (Fig. 10C). In
fact, each spiral tends to one of the four corners of the polygon. These
corners , indicated by numbers, reache the saddle points when chaos shows
up. . These saddle points have two different unstable manifolds. Along one
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Figure 11: Angular period-two return map for two values of the parameter f indicated in
figure. An evidence that, increasing £, the torus grows in size approaching two period-two
saddle points.

unstable manifold of the saddle point the trajectory is ejected outside the
polygon causing a chaotic burst, characteristic of intermittent regimes [21].
Along the other unstable manifold the trajectory is directed to the nearest
saddle point in the clockwise direction, i.c., G*(cq + €) leaves ¢4 to ¢y, for
example.

The angular frame shown in Fig. 10B is used to locate the four folds in
an angular space. So, in Fig. 11 the angular period-two return map shows
that before the torus breaks (f = 0.16800) there is no angular two period-two
fixed points as shown by the large black line (although the large line seems to
touch the identity straight line, it does not.). However, just before the torus
breaks (f = 0.16896) we see that two period-2 fixed points will be formed by
an infinitesimal increase of the parameter f.

Figure 12 shows a sketch of the flow of the mapping G®. We see in (A) the
stable two-frequency torus and the surrounding invisible four saddle points.
Then, the torus grows in size, folding and touching the four saddle points.
After the torus touches these points (B), it is no longer closed (since its
breakdown already occured); the saddle points become visible, and form a
heteroclinic saddle connection [25]. This heteroclinic saddle connection is the
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Figure 12: The geometry behind the torus breakdown. In this figure we see the flow of
the mapping G* for the stable two-frequency torus (A) and for its breakdown forming the
heteroclinic saddle connection (B).

nonlinear mechanism responsible for the chaotic burst and reinjection around
the repellor foeus, characteristics of type-II intermittent behavior [21].

After the heteroclinic saddle connection be created, increasing further
the frequency generates the heteroclinic saddle disconnection where there
is no longer the spiralling laminar behavior of the trajectory around the
repellor focus. In fact, each one of the four-spirals turn into four-straight
lines. It means that, after the trajectory be reinjected around the repellor
focus, it approaches the saddle points along an oriented straight line, no more
spiraling.

The unstable manifolds responsible for the chaotic burst are indicated in
Fig. 12B by W}, and by W2 those responsible for the heteroclinic saddle
connection {an orbit in G® that connects the two period-two saddle points).
So, the unstable manifold of the saddle point 1 (indicated in Fig. 12A),
WZ(1) is the stable manifold of the point 3 (indicated in Fig. 11B) , W2(3).
This heteroclinic loop is also called a Poincaré homoclinic contour [27].

In Fig. 13 we see a sequency of power spectra for a limit cycle {A) with
frequency f, that suffers a Hopf bifurcation with the appearance of a second
frequency fa, originating a quasiperiodic two-frequency tori (B,C,D) only

16
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Figare 13: Sequency of power spectra, indicating phase-locking (A}, quasi-periodic two-
frequency tori (B,C,D), onset of chaos {E), and large chaotic band (F).

with frequencies nf + mf; (n,m eN). Furthermore, in (E} we see the onset
of chaos and in (F) a large chaotic band. So, we see in these spectra that for
a very small change in the driving parameter a large chaotic band appears,
what is different from the soft onset of chaos for which a large parameter
variation is required to these chaotic bands become remarkable.

V. Conclusions

We analysed numerically the oscillations and the onset of chaos induced in the
sinusoidally driven Double Scroll circuit, For varying driven parameters, the
attractors were identified by power spectrum analyses, and by computing
bifurcation diagrams and the first Lyapunov exponent. Furthermore, we
described also topological changes due to the onset of chaos through two-
frequency torus breakdown.

We showed that in the driven Double Scroll circuit chaos can appears
directly through the breakdown of a two-frequency torus, when varying a
parameter. Furthermore, we identified three possible scenarios for this tran-
sition: two in the Curry-Yorke route, and one through type-If intermittency.
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Firstly, we found that, for the system considered in this work, the torus
can softly breakdown to chaos through the route of Curry-Yorke [11]. One
scenario for this route is when phase-locked trajectories become unstable and
heteroclinic chaos shows up, as generally proposed in Rel. {13]. Moreover,
in this case we identified the geometry (a transversal crossing to the strong
stable foliation with the stable manifold of the knot) in the vicinity of the
heteroclinic point (in the phase-locked trajectory that losed its stability).

" This is difficult to realize for a dissipative system like the driven Double

Scroll circuit. Secondly, ancther identified seenario for the onset of chaos in
the Curry-Yorke route is is the period-doubling bifurcations, like for instance,
for the driven p — n junction passive resonators circuit [15].

Furthermore, we recently identified another scenario for the onset of chaos
in the analysed circuit [21], namely, the abrupt appearance of chaos through
type-Il intermittency. In this scenario, a two-frequency quasiperiodic torus
looses its stability by touching the saddle points and forming a heteroclinic
saddle connection. We identified this as the nonlinear mechanism responsible
for the reinjection of the trajectory, around the repelor focus, that produces
the laminar phase of the type-II intermittence.

These identified two-frequency torus breakdown to chaos, for a varying
parameter, have two distinct dynamic characteristics. Chaos appears softly in
the Curry-Yorke route, through phase-locking and period-doubling scenarios,
and after chaos onset phase-locking is again observed. On the other hand,
via type-1I intexrmittence, chaos appears abruptlly and is preserved for a large
range of the varying parameter.

Furthermore, the two-frequency torus breakdown preceeded by a torus-
doubling, as reported in Refs. [28] and [29], was not seen for the considered
system.

Generally, the Curry-Yorke route has another possible scenario for the
onset of chaos through quasiperiodic two-frequency torus breakdown [14],
not yet observed in the driven Double Scroll circuit. However, this scenario
ig difficult fo observe since the attractors usually phase-lock before breaking.
This happens because one must apropriately choose two parameter variations
to mantain the attractor with the same irrational retation (consequently,
avoiding phase-locking).

Although, in this paper we only presented results for driving varying
frequencies and fixed amplitudes, the vice-versa was also explored and lead
to the same kind of conclusions.
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Finally, the scenarios reported in this pa.pér might be usefull to determine
other scenarios for torus breakdown observed in other systems with two or
more basic frequencies [30].
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