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Abstract

A quantum group formulation of the many-body BCS approximation for
a pure pairing force in terms of SU;(N)-covariant fermion operators is pre-

sented. A set of quantum BCS equations is derived, as well as a g-analog to

the gap equation. The quantum occupation probabilities and gap are shown

to depend explicitly on the guantum parameter.
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In the last few years, g-deformed algebraic methods have béen of much interest in many-
body physics [1-9]. In the framework of the ¢-deformed quasi-spin algebra, the phenomenol-
ogy of nuclear rotational states [1-4], the pairing problem for a single j-shell [5] and the
Lipkin-Meshkov-Glick model [8,9], to quote some, were studied (for a brief review on these
topics, see [10]); a recent application of this formalism to boson expansion ﬁlethods can
be found in ref. [11]. Nonetheless, the g-fermionic theory used in previous works, following
[12-15], is a generalization - or deformation - of the usual one, compatible with the standard
Drinfel’d-Jimbo quantization of U(su(2)) rather than strictly covariant under some linear
quantum group transformations [16-18]. This fact originated some confusion, mainly with
respect to the language adopted in the literature, but we hope that concepts here will be
clearly defined.

Recently, Ubriaco [19] has studied thermodynamical properties of a free quantum group
fermionic system with two “flavors”. In particular, it was given there a SU,(N)-covariant
representation of the fermionic algebra for arbitrary N in terms of ordinary creation and
annihilation operators. This enables one to attempt the construction of a quantum group
invariant second quantized Hamiltonian for an arbitrary fermionic system. In this paper wé
propose a construction of the Bardeen-Cooper-Schrieffer (BCS) many-body formalism [20,21]
for a pure pairing force in which the usual fermions are replaced by quantum group covariant
ones satisfying appropriate anticommutation relations for a SU,(N)-fermionic algebra. Oﬁr_
main purposes are: 1) to study, in a simple case, the eflects of introducing ¢-covariance
in a many fermion system, 2) to introduce a many-body model based on quantum group
covariance rather than in g -deformed fermionic symmetry and 3) to obtain the first results
concerning with the application of the BCS framework in the g # 1 realm. In what follows,
we write the quantum invariant pairing Hamiltonian and BCS vacuum wave function and
apply the standard variational process to the this wave function obtaining the g-analog to
the BCS and gap equations.

We will work in the usual spherical basis {j, —j < m < j} and use the BCS phases for |

convenience (we are allowed to use BCS phases irrespectively of quantum group angular
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momentum coupling coeflicients because the coupling between |jijomim;) and |j1j2] M)
states is unique and independent of g, see ref. [22]). In this basis, the usual BCS vacuum

wave function is written in terms of particle operators as [21]:
IBCS) = ]I [u; + vichnci_m]0), (1)
Jm>0
where the u; and v; are variational coefficients, ¢;, and c}m are the usual particle fermion
operators satisfying {cjm,c},m,} = 6;j0mm with all other anticommutators vanishing and
|0) is the bare vacuum state. We assume that we can rewrite the wave function (1) as a
quantum group invariant one in the following fashion:
\BCS), = TI luf + viCL,CL110),, (2)
Jm>0
where the operators Cj,, and C}m play the role of creation and annihilation operators for
SU,(27 + 1)-fermions within the j-shell with angular momentum projection m. The g-bare
vacuum ket is a vector in the product Fock space defined through Cjn[0), = 0. The
superscripts on the occupation probabilities mean that these quantities may now depend
upon the quantum parameter g. Now, the g-fermion operators Cj, and C’;m are required
to satisfy an algebra covariant under quantum group transformations; we clearly want this
algebra to act on physical vectors, that is, we want it to have a representation in the direct
product Fock space generated by the eigenstates nj=1/2,nj=3/2,...> = };[n®lnj) of the
operator N = %c}mcjm (we use n; as a shorthand for njm, n; = {njm}). If we put the
quantum groupJ operators in one-to-one correspondence with differentials in the quantum
plane, then a g-fermionic algebra explicitly invariant under linear SU,{2j41) transformations

can be cast in the form (we assume real g and consider ¢ > 0} [18,23]:

CitCii + R 1kmnCimCin = 0; (3)

Cik j-z + Q_IkamC;ijn = gy (4)

(sum over repeated indices}, where —7 < p < j, u = k,I,m,n with the matrix Riwmn =

SmGrn[l + (g — 1)6k1)] + 6xmbinf(m — k)(g — ¢7*), with the usual theta function 8(z — y)

3




(R = PR, where P is the permutation matrix and R is the R-matrix of GL,(2j + 1)). It is
easy to check that in the classical limit ¢ = 1 these expressions become the usual SU (25 +1)-
invariant anticommutation relations for fermions. For a given j, a representation of this

algebra can be given by [19]:

i
Cim=¢im I (1+(g7" = 1chies); (5)
te=m+1
t T : 1 t
Cim = Cim H (14 (g7 — Dcjcs). (6)
i=m+1 .

The g-fermions for various j orbits are given by C = [[ ® A;, where A, is the algebra (3, 4).
J
The products in (5) and (6) can be written as:

P Jj
Mpm= J] A+ =Deheny =1+ 3 (' —1el;, e, +
j=m+1 i1=m+1
] 1 2.1 T 1 j t
+ D (@7 = D% i gy + o (g7 = 1T 1 G ol (7)

ig>ip=m+l

It is easy to see that the ¢;;, and c;'-m commute with M;,,. We may interpret the actién
of this operator on a given state as taking into account, in some effective way, not only the
mean-field strength but also two-body and higher order contributions (a similar interpre-
tation has already appeared in the literature when the consequences of g-deformation were

concerned). Let us now assume that we can expand in a convergent manner the g-bare
vacuum as:
2i+1 :
|O>q = Z e Z e Z PN f(q, Rje1/2y Tj=3/2, - . ) Inj=1/2,nj=3/2, .. > s (8)
nj =0 .

where the coefficients should satisfy £(¢ = 1,0,0,..) = 1 and &(¢ = 1,...,0,0,n; #

0,0,0,...) = 0. Acting on the vacuum state with the operator Cj,,, we obtain:

2771
C'j'm |0>q = Z Z e z - g(q? Thji=1/2, Tj1=3/24 . - ) X
n ;=0 ' :
X?Tl.jm(nj!=1/2. Mjre3/ay - .)ij, !'n.ji:l/g, Nji=3j2; . > = O, (9)
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with 'm,:,-,,.1 > 1 the eigenvalue of Mj;,, (which can be immediately inferred from (7)). We
should note that all states with occupation number 7, originally equal to zero are auto-
matically excluded from the sum; therefore, since all the state kets are orthogonal, all the
coeflicients corresponding to states with n;y, originally equal to one must vanish. But j and

m are arbitrary, which implies that:

0), = ae® 0). | (10)

Here the factor ae® is undefined, and we choose a? = 1 independently of g. (Note that, due

to M;m |0) = |0), Cj |0) = 0; with this it is shown the uniqueness of a ray in the product
Fock space which is annihilated by the operator Cjp,.) Thence, the BCS g-covariant vacuum

ket reads:

|BCS), H[u +dict,cl,, H[u + vichnCl_ o MjmM;_p) |0) =

—H[u +v! c cJ ] 10} . (11)

(The superscripts will hereafter be omitted in v] and u}). We now turn to the expression of -

the g-Hamiltonian. We are interested in a pure pairing Hamiltonian, whose ¢ = 1 version
we write as [21]:

H= ZEJ CimCim — G Z C}m1c}—m1cj'—m2cj’mzs (12)

Jjlmyma

- where G is the pairing strength and the ¢; are the single-particle energies; here we understand
that the indices m; and m; are greater than zero. We write a g-Hamiltonian following
expression (12) in the form:

Hq = ZﬁjC}ijm(ﬂfjm -G Z JTH1 Ci- mJMJmlMJ my Gy m°MJ'“m'>c.7 m'>Mj’m2' (13)
im

Ji'mima

One can observe that the “mean-field” term in {13) already contains explicit interaction
among different levels (see also eq. (16) of ref. [19]). Using expression (7). and anticom-
mutation properties of ordinary fermion operators, one can perform straightforwardly the

calculation of the mean-value of (13} between |BCS>, states. The result is:
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=1 1o 40
q<BCS|Hq|BCS>q: Zejvf X (—q—i-j'tT -G Z VU5 Utp X (—)2‘T+23 X Qjﬂjf -
3 (q F#£5 q
G 1.giim 1...
-3 > Uf“?[(a)aj C2j-m + (6)2’Clijlj—m] x £, (14)
Jm>0

where
Cogm =14+ (g = 1)(j —m—n) + (¢ = 1)*x

. 1 '
(7 m)(.;! m )—nj—nm—n 4o+ (gt 1)

(15)

and €; is the pair degeneracy of the j-shell. The coefficients of each power of (g7 — 1)

in ¢ obviously have to be either positive or zero. The variational g-Hamiltonian is H’ =

H— Ag ? 2'032-. Performing a naive variation with respect to the Lagrange multiplier A, one

obtains:

4 BCS|H,|BCS),
¢ a3 2v ’
2

(16)

which means that A, works as the chemical potential in the frame of the g-energy E, =

(BCS|Hy|BCS ). One may now calculate the variation with respect to the occupation

probabilities:

a .
§ (BCS|H, — A, S 20*|BCS ), = (— L w0 ) #BCS|Hy— )\ > 207 |BCS),, (17)
7 ov; v Ouy 5

which one then imposes to vanish for some fixed g. The resulting g-BCS equations are:

1
HaU:l€es X .._......q;...;.m
il ([(5 T,

where

) = 22 + (uf =)A= 0, (18).

x[(j—‘m)-—n(m—l—3)(m+2)...(j—m.—3)¥?1(—m.— Dx(m42(m+1)...(j—m-—2) —-]




. | P UV ) 1.,
Ag =G Z uj’”j‘(—)zﬁgg 0y + “% Z (=) Coem + (=) 1jml1m (19)
Frg q >0 q q

is the quantum gap parameter (which, in opposition to the standard pure pairing case,

depends upon the shell label 7). It is easy to verify that when ¢ = 1, the quantum equations
(18) are the BCS equations: '

2uiui(e; — A) + ('u,? - v?-)A =0 (20)

for the nuclear pairing problem, with the non-quantum gap parameter A = G u;v;0;.
: J

The solution of equations (18) for the variational parameters u; and v; is:

A (e % (_@_1) A

U AR )

=3 (1)49:1 Lo (21)
vy 9 "

’ (o am) —) -+ oty

The quantum gap equation is obtained in an analog way as for the standard case by

substitution of {21) into (19 ):

G 1 i Al
q_ = 29424 " ¥
Af = Z.(q) Q; — - +
J'#S (=) -1 a2
(Ejr X (m) - /\q) + (AJJ)
N 1 s 1., o |
+ - S (=)™ gpem + (E)szlijlj—m : (22)

(1)"% -1 2 m>0 4
(oo () —) +

For the case of a single j-shell, the quantum gap parameter assumes the form:

G2 . . 2 4,
A§ = 4 (Z(%)Sj_m@j—m + (é)zJCUmgljwm) - (Ej X ((Q)—) - Aq)

m>0

411/2

(23)

The qualitative behavior of A;I- is, as one can see, independent of the shell label. A 3D

plot shows the dependence of the curve v? X ¢; upon the parameter g, for a j = £ shell (Fig,

la). Figure 1b shows the behavior of v% x ¢; for three different values of q.
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In summary, we presented a quantum group form of the BCS method for the case of a
pure pairing force, following the SU,(N)-covariant representation of the fermionic algebra
~ given by Ubriaco in ref. [19]. The quantum bare vacuum was shown to be identical {apart
from a multiplicative constant) to the product Fock space vacuum. The g-analogues to
the BCS equations (18) were derived along with the quantum gap equation (22). The
quantum gap (19) was shown to depend explicitly on the deformation parameter; we found
that the quantum gap is reduced as the deformation increases, as if the system collapsed
into its ground-state and, conversely, that it goes to infinity as ¢ tends to zero making the
system unexcitable. A 3D plot was made to illustrate the depeﬁdence of the occupation
probabilities U;‘-’ versus the single-particle energies on the quantum parameter. One can
check this dependence is qualitatively in agreement with the remark in the first paragraph
below eq. (19) in ref. [19]. The study of introduction of g-covariance may be interesting in
other many-body systems, in special in toy models such as the Moszkowski and the Lipkin-

Meshkov-Glick ones, studied previously (in the deformed algebraic approach) in [6,7] and

[8,9]. A g-analog of two-level pairing is under study and we hope to address it in a future

publication.
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Figure Captions
Figure 1. Quantum occupation probabilities 1)32- as a function of the single particle
energy €; and the quantum parameter ¢ for § = 3/2. Figure la is a 3D view whereas Figure

1b presents the behavior for three different values of q.
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