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Abstract We complement the study of the asymptotic behavior of the dynamical thresh-
old neuron model with delay, introduced in [1], by providing a description of the dynamics of
the system in the remaining parameters range. We characterize regions of “harmless” delays
and those in which delay-induced oscillations appear.

It was shown in [1] that after appropriate transformations the behavior of the dynamical
threshold neuron model with a single delay, denoted by 7, can be described by a delay-

differential equation similar teo:

2(4) = ~a(t) + Ao(=(t)) + Bolalt - 7). 1)

DDE (1) is defined over the infinite dimensional phase space S = C[—r,0] of continuous
functions on the interval [—7, 0]. The function ¢ is smooth, odd and o(z) — +1 as £ — +co,
its first derivative satisfies ¢'(0) = 1 and its second derivative o”(x) is strictly negative for
z > 0. In [1] it was considered o{z) = tanh(z), and the parameters were A > 0, and B < 0
{in their notation A = a, B = —ab, where a > 0 and & > 0).

In [1], the parameter set such that the neuron exerts instantaneous self-excitation (A4 > 0),
delayed self-inhibition (B < 0), and displays global asymptotic stability independent. of the
value of the delay 7 was determined as the region enclosed within the triangle delimited by
the three lines A = 0, B = 0 and A — B = 1 in the A-B parameter-plane (shaded region
in Fig 1). Studying the dynamics of DDE (1) is important for understanding the behavior
of larger neural networks in the presence of delays, so that in the following, we examine
other parameter regions and determine those where the delay does not affect the system.
Our analysis combines the theoretical results on delay-differential equations that have been
established in recent years to provide a full picture of the effect of delays in the dynamics of

the neural network model considered.




Asymptotic dynamics

i

Depending on the parameters A and B, DDE (1) has either one or three eciuilibria. More

 precisely, for A+ B < 1, the origin is the only equilibrium point of (1), whereas for A-+B > 1,
this equation has three equilibrium points, denoted by z; = —a, 3 = 0 and 5 = a, where
a is the unique strictly positive real number satisfying @ = (A + B)o(a).

The region corresponding to A+ B < 1, in which the origin is the unique equilibrium
of DDE (1}, is divided into regions Ia and Ib by the line A — B = 1. In Region Ia, global

asymptotic stability is preserved for all delays:

Delay-independent global asymptotic stability. f A+ B <l and A- B <1 (ie

|B] <1 — A) then the origin is globally asymptotically stable (GAS) for all 7 > 0.

‘This result stems from the fact that in this range of parameters the system is contractive
" ie. dissipation exerted by the first two terms in the right hand side of (1) dominates the
perturbation (the delayed term) so that solutions, whether oscillating or not, are damped to
the origin.

In Region Ib (B < —|A —1|), the system is frustrated i.e. it possesses a delayed negative
feedback loop. Since the gain of this loop (]BY) is larger than the dissipation (|4 — 1|), the
origin loses its stability through a Hopf bifurcation at

1 1-A
TH = —p—==——arccos{———

B2 — (1 — A)? B
ag the delay is increased. So that global asymptotic stability subsists only for delays shorter
than a critical value 7, (with 0 < 7, < 7y, the strict inequality 7. < Ty can occur, for
example, when the Hopf bifurcation is subcritical). For delays larger than 7, undamped
oscillations appear. In fact, for > 74, only solutions in the stable manifold of the origin

3

are convergent and most solutions display undamped oscillations. 'The monotonicity of
o restricts the complexity of undamped oécillations so that no asymptotically aperiodic
oscillations including chaos can occur. Indeed, thanks to the Poincaré-Bendixson theorem [2]
and ti1e non-existence of homoclinic orbits [3, 4] it can be shown that undamped oscillations
are asymptotically periodic. More on their organization in the phase space can be stai:e& by
remarking that along any oscillating solution the number of sign changes decreases in time
I5, 6, 7.

In the same way as for the region with a unique equilibrium point, the region where
system (1) has three equilibria (A + B > 1) can be divided into a region of “harmless”
delays (Region Ila) and one in which stable undamped oscillations occur when the delay is

increased beyond a critical value (Region ITb). These dynamics are described below.

Delay-independent almost convergence. If B> 0and A+ B> 1 thenforalit >0
1- z; and 3 are locally asymptotically stable while z4 is unstable,

2- the union of the basins of attraction of and z3 is an open dense subset of 5,

3- the complement of the union of the two basins is the boundary separating them. It is a
codimension-one locally Lipschitz manifold M containing z,. This manifold divides S into

two regions in the same way a line separates the plane into two half-planes.

This result is similar to those in [8, 9] where the case A =0 and B > 0 is studied. The
proof relies on the fact that in Region Ila, system (1) is cooperative i.e. it posseses a delayed
positive feedback loop (B > 0), so that it generates an eventually strongly monotone semi-

flow [10, 11]. This result shows that most solutions tend to either one of the stable equilibria

independent of the delay. Thus, in Region Ia bistability is preserved in the presence ofi
}
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delays.
For short delays, DDE (1) is convergent in Region 1la as the boundary separating the

two basins is exactly the stable manifold of the origin. However, as the delay is increased,

- the origin undergoes successive Hopf bifurcations leading to the generation of peribdic orbits

[12]. Thus, for large delays, there are solutions that do not converge to any equilibria.. In the
same way as for the oscillating solutions in Region Ib, these are asymptotically periodic. The
important difference between Regions Ib and Ila lies in the fact that in the latter the periodic
solutions are unstable, and, together with their stable manifold, are contained in the “narrow
band” forming the boundary separating the basins of attraction of the two stable equilibria
(hence the “almost convergence” denomination attributed to this region). Therefore, as far
as practical applications are concerned, such oscillatory solutions are unlikely to occur and
the system behaves like a bistable convergent network.

In Region ITh, DDE (1) is again frustrated with a negative feeback gain that dominates the

dissipative terms so that convergence is not preserved for all delays. Indeed, the instabilities

that occur by increasing the delay when 1 - A < B < 0 (Region Ib) are similar to those
in Region I and will not be detailed here. We only remark that again for small delays the

system is convergent, with two stable equilibria, namely z; and z3, and one unstable one

(#2), but convergence is lost as the delay is increased as both stable equilibria lose their

stability through a Hopf i)ifurcation giving rise to periodic oscillations. So that for large
delays most solutions display asymptotically periodic oscillations.

In summary, we have shown that a typical solution of DDE (1) converges to the orgin
(resp. to either =y or z3) when the system is contracive (resp. cooperative), i.e. for A

and B in Region Ja (resp. in Region ITa) no matter what value the delay 7 takes. These

. two regions define thus the harmless delay regimes. Conversely, in Regions Ib and IIb,

the system is frustrated with a strong delayed negative feedback loop so that convergence
is preserved only for delays shorter then a critical value. For delays larger than this value
stable undamped oscillations occur, and in fact for large delays, a typical solution of DDE (1)

displays asymptotically periodic oscillations.
Transient dynarmics

The delay also affects the transient behavior of solutions of (1). To clarify this point it

is more appropriate to rescale the time to the delay, and rewrite (1) as:

eig-(t) — —x(t) + Ac(o(t)) + Bo(a(t - 1)) @)

where ¢ = 1/7. Then for ¢ small, it can be shown [13, 14] that the solutions of (2) follow

transiently those of the difference equation:
z(t) = f(Be(z(t — 1)) (3)

where [ is the inverse function of g(z) = = — Ao(z). Note that for A > 1, the function f
is two-valued in the neighborhood of the origin, leading to hyst;aresis in the evaluation of
(3). The difference equation (3) has attracting periedic orbits in Region Ila so that some
solutions of DDE (3) display long-lasting transient oscillations in this range of parameters

I8, 9}.

Conclusion

The A-B parameter plane of the neuron with dynamical threshold in the presence of

i
¢

delay was partitioned into three regions, namely,
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i) R;sgion Ia in which the system is contractive, leading to global asymptotic stability
independently of the delay;

ii) Region Ila in which the system is cooperative, implying almost convergence for all
.- delays;

iii) Regions Ib and ITb in which the system is frustrated with strong delayed negative
feedback, and delay-induced oscillations occur.

Finally, we would like to point out that similar results apply to networks of arbitrary
size, as contractive networks display delay-independent global asymptotic stability [15], co-
operative networks are almost convergent for all delays [16, 17] and frustration is necessary

for delay-induced oscillations {18].
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Figure 1: Convergence and oscillations in A-B parameter pIaf‘n.e. o
Regions la and Ib represent parameter values where the system has a unique equflfbr}ur:
point, while Regions ITa and IIb correspond to those where the sysffem has three equilibriur
points. In Region Ia the system is globally asymptotically stable mdepen.dent .of the delay
The shaded triangle contained in Ia corresponds to the region of (.3AS obta..med m[l} Inila
it is almost convergent for all delay values. In Ib and IIb delay-induced instabilities occut

leading to stable periodic oscillations.
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