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Abstract

We consider a disentanglement of the operator functions of the form
7“---7ﬁexp {wre "} where v# are generating elements of a Clifford al-
gebra (y matrices, for example). To this end we formulate a path integral
reduction procedure which allows one to get the funetions under consider-
ation in Sym-form. Then by means of the path integration we get explicit
decompositions of the operator functions in Sym-products of ¥ matrices (in
the linearly independent y-matrix structures) valid in arbitrary dimensions.

Several particular examples are analyzed in details.
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- L INTRODUCTION

As it is well known, the path integrals are widely and fruitfully applied in the contem-
porary theoretical physics. For example, they are used to solve Schrédinger equation and
equations of diffusion theory, they are well adopted for quasiclassical calculations in quantum

mechanics, path integrals are used for quantization of gauge theories and serve as the basic

language in the instanton physics, they have found wide application in statistical mechan-

ics, especially when methods of the quantum field theory are used there. The integrals over
Grassmann variables introduced by Berezin [1] made it possible to define the corresponding
path integrals over Grassmann-odd trajectories. This enlarged even more the field of applic-
ation of path integrals. In the present paper we would like to stress on a possibility how one
can use path integrals over Grassmann-odd trajectories to disentangle complicated functions
on noncommuting operators {some rules of dealing with such functions were considered in

the works [2-4]). Namely, we are going to consider the operator functions of the form

Ry = 4% 7" exp w7}, k<D, (1
k
where the constant matrix w is antisymmetric, w,, = —w,,, and ¥¥, g =0,1,..., 0 —1,

are generating elements of some Clifford algebra,
[, 7]+ = 29 (2)

The latter can be, in particular, understood as y-matrices in D dimensions (in this case ., =
diag(1,—1,...,—1)). Expressions of the form (1) arise frequently in different theoretical
constructions. Here one ought to mention spinor representations of the Lorentz group. It
is also known that propagators of relativistic spinning particles and superstrings in external
fields, derived by means of the Schwinger proper-time method, contain y matrices in the form
(1). Doing calculations with propagators of that kind, one inevitably comes to the problem of
the expansion of such expressions in terms of the independent y-matrix structures. One has

also to mention that modern field theories and superstring theory are usually formulated in



space-time dimensions different from four. Thus, it is important to analyze the structure of
the operator functions (1) for arbitrary dimensions. Besides, commutation relations between
the generators I', of a Lie algebra can be realized by bilinear combinations of some Clifford
algebra generating elements, similar to Schwinger type representations via creation and
annihilation operators [5]. Indeed, let, for example, I';, a = 1,:--,n, be generators of
SU(NY group, [[a, Ts] = iful.. Then one can see that the commutation relations of
the algebra can be oheyed by means of the following representation: 'y = —}facﬂcw,
where v, are generators of the corresponding Clifford algebra, [va, %]+ = da. Then finite
transformations of the corresponding Lie group are presented by the operator functions Ryg.
Thus, the operator problem under consideration seems to be quite actual by itself. We
present a decomposition of the operator functions (1) via symmetrical (Sym) products of
4 matrices which constitute linearly independent structures in finite number. To do that
we formulate a Grassmann path integral reduction procedure which allows one to get the
functions under consideration in Sym-form. Then the problem can be solved by means of
a path integration. Thus , we get the explicit v-matrix structure of the operator functions
under consideration in arbitrary dimension. In the end we consider particular cases in
lower dimensions (D = 3, 4) identifying the corresponding decompositions with some known
before formulas derived by means of direct combinatoric methods strongly related to concrete
properties of ¥ matrices in such dimensions. We find it remarkable that the solution of the
operator problem is facilitated considerably by using the method of path integration. This

extends the list of its useful applications.

II. T AND SYM FORM OF THE OPERATOR FUNCTIONS

Let us consider first a particular case of the operator expression (1), namely, Ry, Using

the famous Feynman's consideration [3), we can present Ry in the following form

By =P exp {[Dl wﬂ,,a“”(t)dt} , (3)

where the index ¢ (we will call it time) is formally attached to each matrix o# = %{7’“, 7*) and
P means that “the operator with higher time acts later”. Under the sign of the chronological
products the operators ¢#*(t) commute and can be treated as ordinary cnumbers.

One can remark that expressions similar to (3) arise naturally in quantum-mechanical
problems with Hamiltonians of the form H(t) = iw,.(t}7*7". In this case the evolution

operator between the instants { = 0 and ¢ = 1 has the form

U="P exp {jﬂl w0 ()™ (1) dt} , (4)

where the index ¢ is now attached in a natural way to ¢ matrices.

How to calculate efficiently expression (3)? A convenient way is to use Wick theorem
[6] for appropriately defined T' products of some operators whose commutators or anticom-
mutators are c-numbers. In the case under consideration 4 matrices are such operators with
anticommutators (2) being c-numbers. This dictates the choice of the “fermionic” T' product

for v matrices,

Ty (b} (ta) = S =V POt ppy, . - s Epguy ) yP0 - - yHr), n=23-..,
r

TAH¥(r) = +*, Oty (ta) = Ots — f2) - - Otnoy — ta). (5)

where sgn(P) stays for the parity of the permutation P. In the T product v*(t} anticommute,
i.e. behave like Grassmann-odd objects. Another product of y-matrices in which they have

the same behavior is the symmetrical product,

SymaHt .. = %E(-—)SE“(P)W"PUJ N L n=1,2_..,
*P

Sym~# = v*. (6)

In contrast with the case of T product, ¥ matrices in the Sym-products carry discrete indices
only and the latter take a finite number D of values. Hence, due to the antisymmetry of (6)
under permutations of the indices, every Sym-product of more than D) y matrices vanishes.

D-t

The unique (up to permutations) non-vanishing Sym-product of 4 matrices, Symy®--- 4P,

in case of D — odd coincides with the identity operator 1 due to the anticommutation relations
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(2). For D - even the matrix ¥” = 4*..- 47~ is distinct from 1. So, in any dimension D

the identity 1 and the matrices
S B1 .., Bk D
ymatteea®t o <pp < <y k=122

form a basis in the associative algebra generated by 4°,--+,4”~! and will be refereed to
as independent - matrix structures. A meodification of the Wick theorem allows one to
express the T' products in terms of SymAprodﬁcts of v matrices. The difference between the
T product and the Sym-product of two -y matrices (the contraction), being proportional to

their anticommutator, is a ¢c-number,

T‘)"“ (il)'}’m (f'z) — Sym 71“ ,yuz 4 A ﬁlz(tl, tz),

1, t>0
APt 1) = pfii2e(t; — tg), e{t) = . (7
-1, t<D
Let a functional
1 1
F[C] = ng dt, fo di., fmmun(tl . "fn)C”‘(tl)"‘C”“(in) (8)

on the space of Grassmann-odd valued functions £#(t) be given. Then the matrix T'F[y] can

be presented as a series in Sym-products

} Flc)

TF[y] = Sym [exp{_%%*‘ﬁ“"* ;Tc
H #

L
()=~

where 5—‘2% stays for left derivative, and condensed notation is used in which the integrations

over time are denoted by star, i.e.

5,5 v ¢ _ ! ! i uy l__
(SC“*A *(5C" —]0 dh/ﬂ dtzfjc"(tl)A (tl’tz)(SC"(tg) .

Sometimes discrete indices will be also omitted. In this case all tensors of second rank have

to be understood as matrices with lines marked by the first contravariant indices of the

tensors, and with columns marked by the second covariant indices of the tensors.
The representation (9) is a functional formulation of the Wick theorem {Hori procedure

[7}}, modified to the fermionic case and to transition from T to Sym-product [8]. Fo use the

5

Wick theorem (9) in the problem at hand we may replace the P product in (3) for the T

product,

1 1
P exp { jﬂ wwa‘“’(t)dt} =T exp { fn w,w'y"(t)'y”(t)dt} . o)
To justify the formula (10) one has to define the T product also for coinciding values of some

continuous indices (the chronological prescription (6) fails to do it) and then to check (10)

itself. It is convenient to define the T' product for all values of the times by
T (1) 7 (o)

== Sym [exp {—%% * AP % %} T E78 EERY ol {49

]) n=112‘l"'1 (11)
(=7

where A" is given by (7), A" (¢, t) = n*¢(0) and some finite value has been assigned to ¢(0).
Due to Wick theorem (9) this definition is compatible with the chronological prescription

{5). Using (11) one obtains
Ty (ty" () - Y ()" () = P (0™ (1) + €(0)) -+ (e (ta) +(0)),  (12)

where the times ¢,,- - - , ¢, are supposed to be distinct. Substituting (12) in T exp{w,.7**7v"}
one finds that the terms depending on €(0)} vanish due to the antisymmetry of w, and Eq.(10)

takes place independently of the value assigned to €(0).

III. PATH INTEGRAL FORMULATION OF THE HORI PROCEDURE

Wick theorem (9) admits a path-integral formulation. We define Gaussian and quagi-
Gaussian path integrals over a space of Grassmann-odd trajectories in the framework of the

perturbation theory approach [9-11]. The first one is defined as
(eva gt s o)
I(KvpaE) = ]};}Dé‘ exp Zf * Ky % &+ pux
= A Det KV exp {p, * G* *p.} (13)
where £4(t) are Grassmann-odd trajectories of integration, pu(t) are Grassmann-odd sources,

K is a Grassmann-even antisymmetzic kernel K., (t,t) = —K,.(t', 1), G*(t,t') is an inverse

kernel (Green function),
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- LAY a2 !
. ./u dt’k#u(tai )G Yy = 5;-‘:5&’ - ), : : (14)

and A is a numerical factor which contains no parameters essential to the theory (parameters
defining the matrices K, (¢,%')). In general, Eq.(14) has more than one solution and G(¢,1'} is
specified by imposing some boundary conditions. In a natural way these boundary conditions
can be understood as defining the space of integration E. In particular, the kernel K is not
degenerate on £, i.e. the homogeneous equation fj dt'K , (£,1)¢" (') = 0 has not nontrivial
solutions in E. Thus, the equation (14) for the Green function has an unique solution. One
can understand the space £ as one of functions of the form £t} = Jy dt'K,.(t,1)p"(t)
where p belong to the space of sources [8]. In this case the invariance of the space E under
the shifts on such functions is a trivial fact, the latter is important for efficient manipulations
with the integrals under consideration. The quasi-Gaussian path integrals are defined via

the Gaussian ones by the prescription
L v 7 & -
[ Dgexp {364 K n €+ pux € FIEL = FIS1I(K,p, ), (15)

where F[£] are arbitrary analytic functionals on E and 5% stays for the left derivatives. In
the construction under consideration we encounter matrices K, (¢,'} part of the indices
of which are continuous. To avoid problems with the calculation of the determinants of
such matrices as well as problems with the factor A definition we may consider the relative
quantities

1(K,p, E)

AP L Det( K/ Ko) G* % p, 16
(Ko, 0, E) et{ K/ Ko)? exp{pu* *pu}, (16)
which are sufficient for our purposes. The matrix K can be often chosen in a form simplifying

the calculation of the determinant Det{K/Ko) (see further).
We will use two properties of the quasi-Gaussian path integrals which can be checked

using the given definitions. First, the Gaussian path integral can be expressed as a quasi-

Gaussian one,

1 6 - v 6 -
K, p,E)= exp{z-(sp—eﬂ * (K - Ko)" 6£ } I{Ko, p, E), (17)
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provided both Gaussian integrals I(K,p, E) and I{Ka,p, E) exist. Second, quasi-Gaussian

path integrals are invariant under the shifts, i.e.

Jope exp {6+ 0w K €4+ 0} Fie + 0 = [ D exp {6 % e} FlEL, 19)

where (¥ is an arbitrary trajectory from E.

The path-integral formulation of the Wick theorem (9) is based on the following repres-

entation of the quadratic exponent,

I{f,p, E)

I(K,0,E) (19)

exp {p. * G* % p,} =

Choosing G*(&,#') = —1A#*{t,1') (where A is given by (7)), the matrix K is easily recog-

nized to be (Ko}, (t,1'} = —5,,8(f — ), and the space E is determined by the boundary

e (

condition satisfied by A,
AP(0,1) + A*(1,8) =0, 0<t<t. {(20)

According to the definition given, E in (19) is the space of Grassmann-odd trajectories £*(t)

obeying the antiperiodic boundary condition
£(0) + £(1) = 0. (21}

Replacing the odd sources p,(t) in (19) by left derivatives and applying the operator obtained

to a functional F[(], one gets

1 5g p 6! _ .,_l ; :
P {“55_{; * AT EC_.,} Fil= ~[E(0)+£(1)=n DS exp { il E} Fle+a, (22)

where

D¢
DE = — . (23)
fe(o)+e(1)=o DE exp {—iﬁ* f}

Using Eq.(22) one can present Wick theorem (9) in the form

Dg exp |~ 36x €} FlE+ ()

TFy] = Sym [ f£ c=~,] . (24)

(0)+£(1)=0



IV. REDUCTION OF THE OPERA"I‘OR FUNCTIONS

Choosing the functional F[(] in (24) of the form

Pl = exp{ [ wnnc* )¢t}

and using (10), one gets the following representation for the matrix Ry

] L)
C=v

The quasi-Caussian path integral in (25) can be understood as a Gaussian one due to the

Ro = Sym [ L e o PE 50 {76 € e el 10" (€401

property (17). Taking into account Eq.(23) one gets

(K, 2%w, E - )
o= sym [{ 202 o 0 ) (20
where
K, () = —n'(t —t) +4wé(t - t"). - (27

Evaluating the ratio of the path integrals in (26) by means of (16) and setting (#(¢) = v*

one obtains

KNP
Rg = (Det K—w) Sym exp {Muu"rul)‘y} H (28)
0
where
MLW = Wy — 4&.?[!,; * G:’\ TNy (29)

@, being the Green function for K.,
[ D6 G = 620,
obeying the boundary condition (20). Evéluating
Gu(t ) = _%e“’“-l’) {e(t — t'} — tanh 2w),

and substituting in (28) we find

1
M= 3 tanh 2w . (30)

Calculating the determinant
. 1
Det{ K, Ky') =expTr {4w/ Gmds} = det cosh 2w, (3D
0
and substituting (30), (31) in (28) we finally get

Ry = exp {w,, 77"}

= (det cosh 2w)l/2 Sym exp {Eli(tanh Qw)”,,'y"'y"} . (32)

A remarkable feature of the expansion in the RHS of Eq.(32) is that it contains only a
finite number of terms. Indeed, every Sym-product of more than D y-matrices vanishes.
We have found, in fact, an explicit decomposition, valid in any dimensions, of the spinor
representation matrix exp{w,,v*y"} for the Lorentz transformation L = exp 4w in terms of
the independent y-matrix structures.

2, we gek

Taking D = 3 where, for example, ¥¢ = o3, 4! = i6',4* =10
I 1
Ry = exp {wu,v"y"} = (det cosh 2w)1/2 14 3 (tanh 2w}, v*¥"1, (33)
which can be easily transformed to the familiar form

: ¢ .0
exp{%&'-a’}:cos§+in-asm—2—, 8 = fn, n®=1,

where 6% =Y3 0%, 6 =4diw, 0 =diwn, fO3= 4w

In the case D = 4 one obtains

Ro = exp {w 77"}
1,
= (det cosh 2w) 1/2 [l + % (tanh 2w}, o + ge"“" (tanh 2w),, (tanh 2w),, ')'5] ,  {34)

where 45 = ~%y1924® and € is the Levi-Civita symbol normalized by 22 = 1. A

different form of the decomposition in the left side of (34) was obtained in [12] using direct

combinatoric method and concrete properties of y-matrices in four dimensions,
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- 1 '
Ry = [16G(L)]™"/? G(L) + G upr L L7 — (L?)Wauu(um) LWJW],

G(L)y =2(1 + tzL) + %(trz,f - %trlf" . (35)

The equivalence of the decompositions (34) and (35) can be checked by a straightforward,
although long, calculation which we do not present here. We stress again that the derivation
in paper {12] is strongly related to D = 4 and its generalization to other dimensions is not
clear.

For disentangling more complicated operator functions, in particular those of the form

(1), it is convenient to introduce the generating functional

ol= [ DEexp{iexébunlEH O HEHO) ok €+ 0] (@0

£(0)+¢(1)=0
Then

&
palte) -~ Spalte

Taking into account (23), the generating functional J[p, (] is calculated by means of (16),

) J[pv C]lp:ﬂ;(:’y] N (37)

Ry = lim -+ lim Sym [
te—31 ty—+1

(31) to be
J(p,¢] = (det cosh %) P exp {(p + 20w), * G2 » (p — 20¢), +ww (%'} (38)
Using Eqs.(37), (38) one finds a formula which is valid in any dimensions
Ry = 7 exp (w7} = Sym [(n + tanh 2w)™ 7, exp {% (tanh 2&))“”1“7"’}] )
For D = 4 ithe expression in the RHS reduces to

Ry = % exp {wuy"7"}

1 o
= (5 + tanh 2w)*" 7, + 56"’“”\ {n -+ tanh 2w)™ . (tanh 2w),, 1°7> - {40)

Another representation for the left side of (40) has been derived in D = 4 using concrete

properties of y-inatrices in such dimensions [13],
Ry = " exp{w ¥y} = (62"‘ cos 2w*)a T+ (62“’ sin2w*) Y (41)
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One can prove the equivalence of both decompositions (40,41).

As it was mentioned in the Introduction operator expressions of the form (1) appear often
in different constructions especially in quantum field theory. Their decompositions in the
independent y-matrix structures are necessary for concrete calculations. A simple example
gives us Dirac propagator of a spinning particle in a constant uniform electromagnetic field

calculated first by Schwinger [14] in four dimensions:

, 0 oo
SS(ﬂiou:, -Tz'n) = [7“ (3 P - EA,u(mout)) + m] L dsy(xauh Tin,y S): (42)

out

where the transformation function g has the form

1 sinheFs -1
g(‘rouf) Tiny 3) = 167]'2 (det eF )
es

X exp {igfcoufo,-n —sm®— iqg(scout — %in) F coth (e F's) (Zour — ®in) + 2 F',“,a“"} . {43)

and contains an operator construction of the form Ry. By means of the formula (34) one

can get the explicit y-matrix structure of the transformation function to be

1 tanh eF's -1/
g(xouf: Liny 5) = 1672 det oF

X exp {igmou, Faym —sm? — i%(:cm‘, o T4n ) ' coth (e F's) (@our — a:,-,,)}

1
ps [1 + % (tanh eF's),, o™ + ge“ﬂ*"’ (tanh eFs) , (tanh eF's),, 75] . (44)
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