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Abstract

The interaction of a magnetic dipole and the inductor of a RLC circuit without
batteries, is described using the approach of stochastic electrodynamics. The purpose
of this study is to clarify the effects of the current fluctuations on the paramagnetic |
behavior of a sample of magnetic material which is close to the solenoid. It is pre-
dicted a suppression in the average magnetization even in the case in which the circuit

temperature is arbitrarily close to the absolute zero.

.1. Introduction

Some years ago Boyer!!! has shown how an essentially classical model could account
for the paramagnetic behaviour of a magnetic dipole in an external magnetic field.
The classical model makes use of the random electromagnetic fluctuations associated
with the zeropoint and the thermal radiations of Stochastic Electrodynarmics (SED)IE.

After that, it was shown by Barranco, Brunini and Franca®, that his model provides

indeed a very good description of the observed paramagnetic behaviour at high and

low temperatures.

More recently some authors~7 have addressed themselves to the study of the
interaction belween a microscopic subsystem, an electric dipole, for instance, and its
environment, in ar effort to clarify certain ideas brought to light by the Casimir effect(?.
We propose then to study the interaction between a rigid magnetic dipole, spinning
around an external magnetic field, and a macroscopic solenoid which is part of a RLC
circuit. Our aim is to show the environment induced modifications in the paramagnetic
behaviour of the magnetic dipole and to understand the dynamical role played by the
large energy reservoir associated with the stochastic zeropoint electromagnetic field.

In section 2 we review Boyer’s model for free space paramagnetism in order to
extend his method to treat, in section 3, the paramagnetic behaviour of 2 magnetic
dipole in interaction with the inductor of a RLC circuit. In section.4 we resume our

conclusions.

2. Free space paramagnetism

In this section we briefly review the treatment presented by Boyer!!! concerning

the paramagnetic behaviour of a rigid magnetic dipole # placed at the origin of a



coordinate system and subjected to an external constant magnetic field B, = By é,
and to the fluctuating zeropoint plus thermal electromagnetic fields. In the dipole

approximation the fluctuating magnetic field is given by
2
Byr(t) = Zf &k &k, ) H(w, T) cos(wt + £(F, ) (2.1)
A=1

where w = ¢|k| is the angular frequency of the plane wave of wave vector k. The unit

vectors E(E, A) characterize the state of polarization of each plane wave and satisfy

E-tkn=0 , - (2.2)
e kik;

> &k, Nk, A) = 6y ~ = (2.3)
A=1

and E(E, M) are random phases!].
The function H{w,T) is associated with the energy spectral density of both the

rzeropoint and the thermal fields at temperature T and it is given byl!

H¥w,T) = Juw coth (ﬁw_) . (2.4)

22 2kT

The magnetic dipole [ is related to the spin angular momentum vector § by

" g =z
= 2'
K 2mece 5 (2:5)

where e is the electric charge of a particle of mass m, and gyromagnetic factor g .
The equation of motion of the spinning dipole is the Bhabha equation [

2

§=l_t‘><éo+ﬁ><évp(t)+363ﬁxﬁ . (2.6)

The first term in the right hand side corresponds to a precession around the z axis

with frequency

n=7, (2.7)

whére 5 = !§| and g = [Z|. In this motion, precession without fluctuation and
dissipation, the spin vector § makes a constant angle 8y relative to the z axis. The
second term in (2.6) describes a random torque generated by the fluctuating magnetic
field Byr and the last term is the selftorque {due to the interaction hetween the
magnetic dipole and its own radiation reaction field). These two last terms can be
considered small in comparison with 7 x By.

The net effect of the terms contained in the equation (2.6) is to produce an alignment

- probability distribution P(#) associated with the angle of orientation § between i

and By. Boyer!!] was able to find P(#) by using a stationary Fokker-Planck equation

for P(#), namely

—P(6) ﬁ%ﬂ + % % [i(ATﬂ P(ﬂ)} =0 , {2.8)

where {Af) and ((A#)?) are the first and the second moments, respectively, for the
change A¢ in ¢ during a small, but otherwise arbitrary, time .
In order to evaluate those moments Boyer used a perturbative quasi-Markovian

approximation in equation {2.6) and found that

2 2
(af) -2 r “5ind + il (E) cot 8 n° H*(n, T} (2.9)

where the first term is due to radiation reaction and the last one is due to the random

torque cavsed by the zeropoint and thermal fields. Boyer also found thatY

(A8 4n?

T 33

(E‘S_,)z n? H2(n,T) (2.10)

Using (2.9) and (2.10) it is possible to find the exact solution of the Fokker-Planck

equation (2.8) which is

P(#) = Asenfl exp {-— (2.11)

77
g T) 9} !
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where the constant A is determined by the normalization condition. Thes the average
component of the magnetic dipole @ along the direction of the magnetic field ED,
namely g, can be calculated using the above probability distribution function, as

[ollows:

() = -2 (8,)

2me
= g/
= +Ls fu d0 P(8) cos(8) . (2.12)
Using (2.11) and (2.12) we get
(s} _ S Sn
an ~EN\RTOT)] (21

where £(z) is the Langevin function given by

L(z) = coth(z) - % (2.14)

and py is the Bohr magneton, pp = eh/2me. Explicitly, equation (2.13) can be written

as

{na) _ 8 ' 25 1 Ay
g coth mﬂ_ ~3 coth 97 (2.15)
O\ T

Although the Boyer prediction given by equation (2.15) differs in form from the

ustal Quantum Mechanics prediction, that is,

{12 ( 1) [ , #030] 1 (#OBU)
(g,ug o J+ 5 coth (27 + 1) o7 5 co T \

(2.16)

where j(j + 1) = <§2>QM/h2, it was shown by Barranco et al.l that, taking into
account the experimental data, it is almost impossible to distinguish between (2.15)

and (2.16).

~ 3. Interaction between the magnetic dipole and the inductor

_ In this section we consider the modification of the paramagnetic behaviour of a
spinning magnetic dipole 7 caused by the interaction with a solenoid which is part of
a RLC circuit without batteries or any other source of power. Therso[enoid has radius
a and N turns of wire uniformly distributed along its length £(£ > a). It is in the

zy plane, in the y < 0 region, with its axis pointing parallelly to the = axis and at a

_distance [y| from this (see Figure 1) .

The equation that governs the fluctuating current I(¢) in the RLC circuit is such

that®
Li(t) + RI(f) + f dtI(t) = En(t)+ Eanlt) (3.1)

where En() is the Nyquist electromotive force. The spectral distribution associated
with En(?) has thermal and zeropoint contributions which are experimentally ob-
served [9]. We are denoting by Euip(t) the electromotive force generated in the circuit
by the oscillating magnetic dipole which produces a time varying magnetic field through
each coil of the solenoid. The calculation of this electromotive force is straightforward
and the result is(*
Eaplt) = i';i Qcyz f(t) (3.2)
While discussing the modifications in the paramagnetic behaviour of the magnetic
dipolé we can safely neglect E4p, for # is very small when compared with £y under

the conditions we employ in this paper. For our purposes it is then legitimate to rewrite

cquation {3.1) approximately as
Lin(t) + RIn(t) + / dt In(t) = En(t) (3.3)

In{t) being the part of the current associated with the Nyquist ffuctuations.

A




The varizble electric current flowing along the coils of the solenoid will generate a
magnetic field at the position of the dipole. This field is oriented along the z direction

and it is given byl

~ N Zna?
Bsol - é:z: ik
£ cy?

In(t) . (3.4)

To account for any modification in the paramagnetic behaviour of the magnetic
dipole we must include a new torque term, caused by the field of the solenoid at the

position of the dipole, in the Bhabha equation (2.6), which now must read as
5 _~_ 3 4.8 -7 2 ey
S:,uXBO+/4',XBVF+,U.XBSQ]+F#X,u, , (3.5)

where B is given by (3.4). The extra term in equation (3.5) alters the alignment
probability distribution discussed in the previous section. As the new tot;que is very
small, when compared with the deterministic torque, we are allowed to use the pertur-
bative quasi-Markovian approach again in order to evaluate the first moment {Af)/r
and the second moment ((A0)%)/r which appear in equation {2.8).

“To achieve this goal it is convenient to use for the Nyquist current a Fourier decom-
position that is similar in form to that used by Boyer' for describing the statistical

properties of E’vp(t) . We shall denote
T (t) = [ " o J (w0, T) cos(wt + C(w)) (3.6)
1o

where ((w) is an element of a set of random phases, uniformly distributed over the
range [0, 2n], and statistically independent of the set of random phases associated with
the magnetic field évp(t). The function J{w,T) depends on the frequency w and

the circuit temperature T and will be given below.

|

Performing calculations similar to those of Boyer we find that

(A8Yy 2 u 2% un?

=t g (5) P )l 4
LI (N 2maty? “)2J2 T,) cot 0

8 \7 o (§ (nTe) cot 0, G0

and that

(A2 dn? ru\? 7 (N 2ma®\* 7u\?
=5 (5) e+ 5 (7755) (5) e

(3.8)

In these equations we have explicitly indicated the possibility that the dipole be in

a thermal bath al temperature Ty while the circuit is in another thermal bath at a
temperature T, different from Ty.

To these new results corresponds a stationary Fokker-Planck equation (in the form

(2.8)) the exact solution of which is

~57 cos 0
3 23 2 :

3nc® (N Zma (.7

1692 \ 2 oy? {3.9)

The average values of the component of the magnetic moment & along the z axis

P({#) = const. sin @ exp
7 H2(n, Ta) +

is then given by a Langevin function of a different argument, namely

egS r Sn
{ps} = Yme Py N2 & P
=2 B2(n, Ta) + 3zc® (N 2ma (En(m, T
PTG\ o EOIE (3.10)

Here we used the relation®® that J%(n,T.) bears with the spectral density of the mean

squared current, i.e.

|Ew(w, T)I*)

JHw, T) = 4( Z , (3.11)




where En(w,T) is the Fourier transform of the Nyquist electromotive force and Z/(w)

is the impedance of the RLC circuit,
) 1
Z(w) = R—i (WL - —) . (3.12)

In order to fully appreciate the result given in equation (3.10) it is important to

notice that &
5 . Rhw Fuw
= —— cot : 3.13
(En)F) = S22 conh (22 ) (8.3
Thus equation (3.10) can be put in the form
‘ 25/h
{pre) = —}5—1 coth ; S/‘l 3
gHuo B ] a i
coth (Qde) + (y) €(n) coth (Qch)

- % {coth (QZ—%) + (5)4 €(n) coth (2222)} , (3.14)

where

) = ITENR
€0 = EEzmE

2p2. /P22
_ (3m2N2c/Pn* R) - (3.15)

4, Presentation of the results and discussion

Comparing equations {2.15) and (3.14) we see that the effect of the presence of the
solenoid in the neighborhood of the dipole amounts to a correction in the abserved
paramagnetic behaviour of the dipole that depends on the parameters characterizing
the RLC circuit, and especiaily the solenoid with which the dipole interacts, as well as

on the angular frequency 1 characteristic of the precession of the dipqle. The presence

g .

of the solenoid is capable of altering sensitively the statistical behaviour of the magnetic

- dipole as we will see in a moment.

To illustrate the effects of the inductor on the magnetic dipole we shall present a

plot of equation (3.14) illustrating the variation of (u.)/po, as a function of By, for

an jon like G'd®* that bas a ratio S/B (the SED quantity equivalent® to V{52 /12

in Q.M.) equal to 4. The solenoid employed in the calculation is similar to those used

i

by Mbllenstedt and Bayh!'!) to observe the Aharonov-Bohm effect. To be more specific |

[yl = 1.4 x 107%em, R =10""%ec/cm, L = 5 x 107® sec?/cm, and ¢ = 10%m. The
same parameters were used recently by Blanco et al® and Dechoum and Francal® in
their study of the interaction between the solenoid and an electric dipole.

Figure 2 shows the magnetization (in units of the Bohr magneton g ) as a function
of the applied magnetic field B, for a dipole at Ty == 2K . The upper curve represents
the free-space paramagnetic behaviour of the dipole as predicted by equation (2.15) and
experimentally confirmedPl. The two lower curves were calculated from equation {3.14})
in the cases T; = 2K and T, = 300K . We see that in both cases the magnetization is
strongly affected by the solenoid. Observe also that the higher the temperature of the
circuit the lower the magnetization for each value of By. This is expected on physical

grounds.

To stress the importance of the zeropoint fluctuating field to the result (3.14) we
made another plot of the magnetization. This time we compare the free-space mag-

netization with the magnetization we would obtain in the presence of a solenoid at - -

10

‘we have chosen the following set of parameters: N/f =2 x 10%em™!, a =7 x 10~%em,




1. = 0K . According to (3.14), we get

gt B © th(an)+(a)4
S -] €
coth | Zpm y (n} |

% {coth (2’;_;) + (;) e(n)} , (4.1)

: k
for coth (%;) tends to unity when 7, approaches zero. TFigure 2 shows all the

resuiting curves for different temperatures of the circuit (T. = 0,2 and 300K) when

all the other parameters remain unchanged. The important role played by zeropoint
fluctuations, existing in the RLC circuit and generating the modification of the para-

magnetic behaviour of the dipole, may be viewed by noting that at By = 10K the
(,ﬂz)[rccuspace - (,U'z>

[z )free—space

are responsibie for 87% of the modification in {tz) in the case T, = 2K .

ratio is 0.67. We also note that the zeropoint current fluctuations

These results may be interpreted as follows. The RLC circuit picks up thermal
and zeropoint energy from the environment and then the solenoid radiates part of
this energy to the dipole. Thus the dipole wins its tendency to alignment along the
direction of the applied field B,. In turn, the dipole also radiates back to the RLC
circuit a part of the energy that it picks up from the environment, as we shall show in
a forthcoming paper. The net result is an increase in the energy of the dipole which

affects its average orientation angle.
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Figure Captions

Figure 1
Schematic picture showing the magnetic dipole 7 and the solenoid orientation with
respect to the applied magnetic field B, and the coordinate system. The fluctuating

current f(¢) is also indicated.

Figure 2

Magnetization per ion as predicted by our equations (3.14) and (4.1}. The ratio
lylfa =2 Emlcl the values of the parameters of the RLC circuit are given in section 4.
The  doited curve is  associated  with  the  normal paramagnetic
hehavior (eq. (2.15) with 7 = 2K'), and the experimental points are indicated by
the small triangles. The other curves show the anomalous magnetization due to pres-
ence of the solenoid. The absolute temperature of the circuit is indicated by T.. The

paramagnetic sample is maintained at T, = 2K .
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