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Abstract

The §-cxpansion is a n'onperturbativc approach for field theoretic models
which combines the techniques of perturbation theory and the variational
N principle. Different ways of implementing the principle of minimal sensitiv-
ity to the § expansion produce in general different results for observables.
For illustration we use the Nambu-Jona-Lasinio model for chiral symmetry

restoration at finite density and compare results with those obtained with the

Hartree-Fock approximation.

+  * Alexander von Humboldt research fellow.

The standard application of the linear §-expansion [1} to a theory with action S starts
with an interpolation defined by S(8) = (1 — 8)So(ps) + 05, where So(u) is the action of
a solvable theory. The action S(6) interpolates between the solvable Sy(p) (when & = 0)
and the original 5 {when § = 1). Since 5 is quadratic in the fields, arbitrary parameters
{¢) with mass dimensions are required for dimensional balance. At the end one sets § = 1
fixing p according to the principle of minimal sensitivity (PMS) [2] which requitres a physical
quantity ®{u) to satisfy

Sl =0 (1)

Within this method, the general procedure is to apply the PMS directly to each different
quantity of interest so as to adjust p to the different energy scales of the theory [2]. A
natural question which arises at this point is the uniqueness of the value of i since different
physical quantities might generate different values for the optimal p. Of course this would
not be catastrophic if the spread of the values of g determined from different observables
were not too large. .

Alternatively, one could select only one among those observables to optimize the theory.
This selection could be done by using some physical criterion or constraint (for example, in
the case were only one of the calculated quantities satisfies the PMS equation). However,
this strategy (referred as PMS1) does not completely specifies a unique procedure and, as we
shall see, can be misleading. One of our goals is to show that all these potential uncertanties
could be avoided by demanding that fundamental quantities, such as the energy density,
be used to fix u whose optimal values are then used to calculate other observables. Using
the energy momentum tensor of the original theory one can obtain the exact energy density
written in terms of full vertices and propagators. Next, one uses the interpolated theory
to evaluate self energies as well as vertex corrections perturbatively in powers of 4. These
u-dependent quantities are then plugged back into the energy density to which the PMS
is applied. This approach (referred as PMS2) has been succesfully applied to the Walecka
model for nuclear matter [3]. The fact that it is natural to demand stationarity of the energy
with respect to unknow parameters uniquely selects this quantity as the generator of f so
that all physical observables are determined from the same propagator.

In this paper we illustrate the problem with the PMS1 prescription by using the Nambu-~
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Jona-Lasinio (NJL) model [4] for chiral symmetry restoration in a medium of finite density.
Conventionally, the finite density chiral symmetry restoration problem within the NJL model
- has been tackled with the Hartree Fock (HF) approximation. For the SU(2) case, this
analytical approach shows that chiral symmetry is restored through a first order phase
transition at a critical density whose values depend on the parameters choice [5,6]. We then
_ fo‘l[ow the two alternatives PMS1 and PMS2 and compare results with the traditional HF
approach.

Some physical quantities of interest, whose values characterize the chiral symmetry
restoration, are the guark condensate (Gg), the pion decay constant f, and the constituent
quark mass M. We calculate these quantities both with PMSI and PMS2 and compare our
results with the ones obtained in Ref. [5] with the HF approximation, where vertex correc-
tions are neglected. Therefore, we shall also neglect vertex corrections. Of course, since the
NJL model is essentially phenomenological, we shall pay more atention to the qualitative
results (like the order of the phase transition) than to the quantitative ones (like the precise
value of the critical density for which the phase transition takes place).

In the limit of zero current quark masscs, the two-flavor Lagrangian density of the

‘Naml)UWJona—Lasinio model is given hy

Lan, = §(id)g+ G [(@q)g - (@’Yﬁ‘rq)Q] ; {2)

)
“where the quark field operators ¢ = g() represent the doublet of u and d quarks.

Let us start by deriving the energy density from the energy-moinentum tensor of the

original theory since this quantity will be necessary when using the PMS2. Using the

Lagrangian density, Eq. (2), we have {for the energy-momentum tensor:
T4, = 070" q — 9" L, = igy" g — g™ {g(i)g + G [(@)’ — (awra)’]} . (3)

i Note that we have not used the equation of motion for the quark field operator. Neglecting

vertex corrections, the encrgy density is given by
1 3 00
EniL = F fd r < TV >

d _ dlg diq 2.
= (2 ) Tr{ ( )] —I-?./ (271_)4"[‘1*[915{(;)] -G {— {f WTr [S(q)]]

+ [ L e niss k)]+{[(2 Tr[rSg )1]2

- / (d4) (g:;: TI'[’}‘5’T‘ S(Q)75T ( )]} ’ | (4)

where S(g) represents the dressed quark propagator.

The gquark condensate, which is taken to be the parameter of order of the phase transition,

is given by

(@)= =i | ol )

where the trace is taken over spinor and color indices. As in Refs. [5,6] we employ the

Pagels-Stokar formula [7] to evaluate the pion decay constant (fx):

igh 6% = f (g::)gi,tr [S(’p+tI)(g«q7 T“)S(p)( )| {6)

where the trace is now over spinor, flavor and color. The quark-pion coupling can be obtained
from the Golberger-Treiman relation. Of course, we could use other, perhaps more precise

formulas for f,, but for our purposes of comparing PMS1 and PMS2 results Eq. (6) is

sufficient.

To define the interpolated Lagrangian one needs to choose a solvable theory. Since we

are looking for solutions which break chiral symmetry, the natural choice for £ is:
= 6(36 - ”)q H (7)

where p is an arbitrary mass parameter. Therefore, the interpolated NJL Lagrangian density

can be written as

£nan(8) = (1 - 6) [a(id — p)a] + 9 {q(B)a + G [@a)* — (@w7a)’]}
= (i — g + 6 {G [(@0)" ~ (@vs7a)’] + nga} - (8)

Expressed in terms of self energy £9(p) the quark propagator reads S~'(p) = 55 '(p) —~
T%(p) where S;'(p) is the inverse of the quark propagator corresponding to Lo (S3'(p) =
#— 1) and the quark self-energy X4(p) is calculated as a power series in 4.

At zeroth order in &, one is treating the free Lagrangian and hence %(%(p) = 0. The

bare (zeroth order) in-medium quark propagator is then given by:
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SO) = Tt B (5~ Bp) 0P — o) )

: 1
where Ey(p) = (p*+ 4*)?, and Py is the Fermi momentum which, for N; = 2, relates to
the quark density p via Pr = (n%p/2)}/3,

At this order in &, no dynamical content from the model has been used. The dynamics

of the model starts to show up at order 8. To O(5) the self-energy (S1{p)) is given by

S (p) = —dn
+ 216G f

(2
where a sum over the isospin index a is implied. Substituting Eq. (9) into this equation, we

obtain for £ the following expression:
2 = b+ M, — 15, (11)

where
1 . 2, 0%
ﬂﬂrl:(ggzgt(N(:j\rf+_) {A(Az+‘!12) A+(A ‘|',L-'a)2L
T 2 PF + (P}% + MZ)E

¢ {12)

op—

- P (Pf -+ “2)% — 12

and
d%q
Ly = ~46GIW9(PF = lal)- (13)

"One should note that, at this order, direct and exchange terms are treated at equal footing
as implied by the factor { NNy ++1/2) in Eq. (12). Since the cffect of ¥y is just to shift the

, chemical potential {6] one may write the constituent quark mass to O(4) as
My=p—6u+M . (14)

Substituting Eq. (9) into Egs. {5) and (6), one gets for the order parameter per flavor
and for the pion decay constant the following lowest order expressions

A_ﬂuﬁ_)_” )

pr+ (Ph + )7

N, 1 1
(@a)o = —550 {AW + it = pr(ph - )E - i

and

dwf;d {TI‘ [S(U) (q)] _ 5‘(0)(q) _ ’Y5TGTI' [Tﬂs(ﬂ) (Q)FYS] + ’}’5Ta3(0) (Q)Tﬂ'Ys} (10)

NN A+ (A2 4+ o2)} 2\ % S 2N E
JLIREACL/ i S ELhAl ; ) —(1+”—2) +(1+“—2) , (16)
4 pr + (0h + 1)? A P

where the lowest order Goldberger-Treiman relation {g.q = gt/ f»(0)) has been used.

We now have the three quantites of interest (M,, {dg}, and f-} obtained at lowest order
in § and the next step is the optimization procedure. Let us start with the PMS1. Of the
three calculated guantities the only one which satisfies the PMS condition (the one which
has extremum points) is f,. Moreover, at zero density, this quantity has a well established
empirical value and can be chosen to fix p. A direct application of the PMS3 condition
to fr gives i = 0.97 x A. Using the zero density empirical value f; = 93 MeV one
gets the noncovariant cut-off A = 571 MeV. In principle, the fact that the cut-off can be
fixed (with a value which agrees with the ones used in the literature) without any previous
knowledge of the quark mass could be seen as an advantage of the method. However, one
must be careful with the interpretation of this result since it has been obtained without
any information about the model, because the coupling constant & does not appear at this
lowest order evaluation of f,. If one takes this value for A and proceeds blindly by applying
the PMS to f; for different values of Pp one obtains & as a function of the density as shown
by the continuous line of Fig. 1. We note that 7 obtained with the PMS1 has a very
peculiar behavior increasing with the density. This odd behavior is reflected in figure 2 were
one sees that fr goes smoothly to zero, indicating chiral symmetry restorvation, through a
second order phase transition, contrary to the HF predictions. The same values of & can
be used to evaluate the quark condensate and quark mass. The numerical zero density
resulis for these quantities, {(§g), = —(260 MeV)? and M, = 574 MeV ( where the value
G = 8.86 % 107% MeV~2 was used in Eq. {12) for M,) are not far from the ones predicted
in the literature when a noncovariant cut-off is used. However, the finite density behavior
of these two quantities again points out towards a smooth second order phase transition.

Let us now evaluate the same quantities using the PMS2 to generate the density depen-
dent optimal values for . Substituting the lowest order quark propagator given by Eq. (9)
into Eq.{4), we obtain:

3 2
ED) = 2NN, P’: %%;) — 2GN.N;(2N.N; + 1) [ Pi (—;‘%3 E[:?q)] .

The requirement that £ be stationary with respect to variations in y leads to
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S

_ Ny A dq R
—4C (N Nyt , 1
# eV 2) fpp (27)? Eolq) (18)

from where we immediately see that, even at zeroth order in 4, the value of ¢ depends on G,

in contrast to the result obtained with PMS1. Note that this is is the familiar Hartree-Fock
gap equation of the model, where 7 has the interpretation of the dynamically generated
m;ss as can also be seem from its behavior at finite densities displayed in figure 1 {dashed
line). As expected, when these optimal values are injected in fas (@), and M, one predicts
the restoration of chiral svmmetry through a first order phase transition in agreement with
the HF results as can be seen by the dotted Hne in figure 2.

Next, one could try to improve these results by using the O(8) quark propagator in the

evaluation of the energy density. Inversion of Dyson's equation leads to:

My - Pt M At Moo g 0 (P — 19
ST0) Pl = MP -+ ™ B ((1“1 El(il)) (Pr—Ipl) (19)
where
3
=0 p) = (4 Tap) L EA() =[PP+ (M) (20)

with ¥y given by Eq. (13). The superscript (1) in S50Y indicates that the propagator has
¢

been obtained with a self cnergy caleulated up to first order in 8 {note that the term p — dpe
_;a[)l)e'ftl'inlg in Eq. (14) has already been discarded in Bq. (19)). Using the first order quark

'propagator in the evaluation of the encrgy density one gets:

g : : 2
EQ, = 2NNy : (—%%ﬁ = 2GNN (2N N; +1) [[ft (‘;;;3 %] @
Application of the PMS to Eél,])[ﬂ
d-gr(dl.l)L _ d_’&é&g‘& =0, 2
dyi dMy  dp
leads-to
M, = 4G (N"N" * %) :/,\ %éi;) | "

Again, we have obtained the familiar Hartree-Fock gap equation for the dynamically gener-

ated mass.

B ]

Higher order corrections will in general introduce a momentum dependence for the dy-
namically generated mass. However, if one proceeds to higher orders in § but neglect those
graphs that correspond to vertex corrections, the higher order quark propagator will always
be of the form of Eq. (19), with M, replaced by another constant, say M, which is a function
of ir. However, because of the PMS condition on £, M at each order will always be given

by the same value. This value is the one that satisfies the usual gap equation:

_ 1\ A g M :
M=4G (NcNf+§) -/P.F‘W%’ (29)
where
E@q) = (o + Mz)% . (25)

Therefore, the PMS condition on the energy density (PMS2) is equivalent to the usual
Hartree-Fock solution for the dynamically generated mass, when vertex corrections are ne-
glected.

Concluding, in this paper we have utilized the NJ1. model to illustrate potential problems
with the application of the PMS in the & expansion. In order to specify a unique preseription
to fix arbitrary parameters introduced by the & expansion we have studied two ways of
introducing the PMS procedure. We have applied the PMS directly to fr following the
standard procedure (PMS1) [2]. We found that PMS1 leads to results for chiral symmetry
restoration that disagree with the HF results. Having a close look in the way the PMS1
trades u by the model parameters (the cut-off in this case) and its finite density behavior
we were able to identify the origin of this misleading result. We have also applied the PMS3
to the encrgy density (PMS2). We have shown that this prescription reproduces, alrcady at
Jowest order, the HF results for chiral symmetry restoration at finite density within the NJL
model. Moreover, this result can be reproduced at any order in & provided that one ignores
vertex contributions. This result should be compared with the one presented in Ref. [8]
where, in the context of the effective potential, it was found that the § expansion and the
1/N expansion are identical in the large N limit. Therefore, the PMS2 seems to be one
adequate way of fixing the arbitrary parameters to generate nonperturbative results, and
it is a promissing procedure since it allows the introduction of vertex corrections in a very

direct way. Work in this direction is in progress [9}.
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FIGURES

FIG. 1. Pp dependence of i obtained with the PMS applied to fr (solid line - PMS1) and to

(dashed line - PMS2)

FIG. 2. Pr dependence of fr. The solid and dotted lines give respectivelly the PMS1 and the

PﬁSQ solutions.
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