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ABSTRACT

We derive a Pauli-Schrodinger type equation in configuration space, from the classical
Liouville equation for a neutral particle with arbitrary spin and magnetic dipole. We
show that the derivation does not apply to an arbitrary classical phase space distribution.
However, in certain particular cases, discussed in the paper, there is an equivalence be-
tween the classical and the Pauli-Schrédinger descriptions. Consequently, the results of
the Stern-Gerlach, and also the Rabi type molecular beam experiments, can be interpreted
classically, that is, in such a way that the particles have well-defined and continuous tra-

jectories, and also continuous orientations angles of the spin vector and magnetic dipole.

1. INTRODUCTION

The central idea of this work is based on the fact that the classical and the quantum

 theories, together, explain an enormous quanti.ty of physical phenomena. Therefo.re, both

are correct and it is possible that, in the future, classical and quantum physics can be put
in a form that does not exhibit conflicting concepts.

The first papers along this direction appeared many years ago and are due to Planck

(1911), Einstein and Stern (1913) and Nernst (1916). In these works, the authors uses .

the statistical properties of the classical zero-point eletromagnetic radiation(1, 2], in order

to show the equivalence between some classical and quanturn theoretical explanations

of the experimental observations. Another very important contribution with the same
goal was made by Wigner[3], in 1932. Wigner’s proposal, allowed the formulation of
quantum mechanics in phase space, and disclosed the similarity between the Liouville and
the S;hrédinger equations. The two equations are dynamically equivalent for particles
subjected to various forces [4-6). In 1963, Marshall (see[l]) developed even more the
same idea, giving a detailed phase space stu(‘iy of a spinless charged ha.rmoﬁic oscillator
immersed in the thermal and zero-point radiations.

In our paper we shall apply Wigner’s idea to study the classical motion of a neutral
particle, with spin and magnetic dipole, in an external magnetic field. In this regard, it
should be mentioned the work of Bohm et al.[7], and the more recent approach-by Dewdney
et al.[8]. These papers gives an objective account of the Stern-Gerlach experiment in which
the particle have continuous trajectories and continuous orientation of the spin vector.
The concept of quantum potential is used and it is not necessary to introduce any wave
packet collapse hypothesis.

QOur paper is organized as follows. We first introduce the equations which govern the
classical dynamics of the system, namely, Newton’s equations and the I;armor equatioﬁs
for the precession. We show (section 2) that the same equations can be obtained from
the Heisenberg formalism [9, 10], that is, the quantum dynamical equations of motion

are independent of the Planck’s constant . Section 3 is devoted to the intreduction of

. the spinorial notation{l1] in order to describe the Larmor precession. Within section 4

we obtain a Paull-Schrodinger type equation, from the Liouville equation, using a new
method[5] which is inspired in the Wigner original work[3]. However, since the method
is entirely classical, Planck’s constant does not appears in the Pauli-Schrodinger type
equation. Section 5 is devoted to the application of our method to the analysis of the

Stern-Gerlach type experiments[12]. Finally, our conclusions are summarized in section 6.



2. CLASSICAL EQUATIONS OF MOTION ACCORDING TO THE
HEISENBERG NOTATION

We shall denote the magnetic moment of the neutral particle (a silver atom for in-
stance) by the vector @ The spin vector is denoted by § and these quantities will be
related by

- e 5
“_chs ’ (l)

where g is the gyromagnetc factor, e is the elementary charge, m is the electron mass
and ¢ is the velocity of light. The magnitude § = |3 is supposed known but its value is

arbitrary. We shall also assume that the particle (rest mass M) is moving with velocity

i B
P= 2 @)

in a non upiform magnetic field B. Therefore, the rate of variation of j is:

F=V({@B =F . (3)

]

The orientation the spin vector § also varies with time and is governed by the Larmor
equation § =% Bor
f=dLxg , Gp=—f— . (4)
The above equations {2), (3) and (4) are the well known classical dynamical equations.
We shall show in the following that these equations are the physical basis for our proposed
classical interpretation of the Pauli-Schrodinger equation. In order to give a more clear
explanation of the our proposition, we shall present firstly the corresponding Hetsenberg
equations of motion for the spinning particle. We can easily show that these equations
are independent of the Planck’s constant A and are identical to the classical equations

introduced above.

According to the Heisenberg notation, the vectors 7 and S are operators related by

the equation {1). However, the compenents of § are such that the commutation relation
ih Sy =[8,8)] | (5)

is postulated in accordance to the quantum theory.
The dynamical evolution of the system is derived from the Hamiltonian operator H
such that

H=— V-8B . (6)

Therefore, one can show that the rate of variation of 7 is given by the commutator
wr=Z ™
whereas the rate of variation of the momentum opera,to;' is
. i T -
F=z [#,~i#V] =V(z-B) . (8)
Moreover, it is also possible to show that

w1 o
y:g[H,ii}zwLx,u ) (9)

where & was defined in (4).

The equations (7), (8) and (9) are independent of /& and are identical to the corre-

. sponding classical equations (2), (3) and (4). Therefore, the physical content of both

descriptions naturally allows the construction of a unified (classical and quantum) in-
terpretation of the experiments. Moreover, the recent{13] recognition of the similarity
between both &pproa.ches, for the df_:s_cription of the Stern-Cerlach experiment, will help
us to understand better the physical content of the Pa,uli»SchrEidinger‘ equation and the

corresponding spinorial notation.



3. LARMOR PRECESSION AND NEWTON’S EQUATIONS IN THE
SPINORIAL NOTATION :
Let us consider firstly the simple case of an uniform magnetic field B= (0,0, By). The
more general case will be discussed afterward. We shall also assume that the magnetic

particle is precessing at the rest in laboratory frame. The orientation of the vectors i and

§ is such that (see FIG.1)
i =p(sinfcos ¢,sin #sing,cosd) (10)

where 8 is the angle between B and 7. The azimutal angle ¢ is a linear function of the

time and is given by

#(t) = &?2 t+do (11)

in accordance with the equation (4). The angle ¢ is an arbitrary phase. These angles

vary continuousty whitin the range 0 < 8 < 7 and 0 < ¢o < 27,

The classical equation (4) can be cast in an spinorial notation as was shown by Pauli{14]

and many authors in the past (see refs.[7, 8, 11]). We shall give below an exposition based

on the paper by Ralph Schiller [11].

Let us to introduce the spinor x{f, ¢} defined by

0 of Y. .. 8 usf?
x(0, @) = Xu+ xa = co8 Ee‘g ( ) +isin Ee”'g ( ) \ (12)
0 _ 1

and also the Pauli[14] matrices

01 0 — 1 0

= = = . 1
Ul—(io)a T2 (z 0)1 03 (G"'l) (3)
These definitions are very convenient because one can write any component of the

vector f as (j =1,2,3)
pi=p X'(0,4) o5 x(6, 4} (14)

If the magnetic field B varies in space, the magnetic force F (see (3) or (8)) is such

that

8 - o 8B
By = gy [0 X100 300, 9) B} = peont= (15)

where B = |B] is the magnitude of the non uniform magnetic field.

Notice that, according to the spinorial notation, F= F,+ Fy; because
. . 0 -
Fo=u (Xlﬂ'gxu) VB = +ptcos’ EVB , (16)

and

—

- [ i
Fi = p (xbosxa) VB = —psin? ;9B . (17)

It should be remarked that F, (and also ) varies continuously (0 < || < 1|V B})

because 0 < < 7. Another important observation is that F, and F are always opposite

in sign. According to Pauli[14] the factors cos® /2 and sin® 8/2 are interpreted, respec-
tively, as the “orientation probabilities”, up and down, with respect to the vector VB (see
FIG.2).

The classical precession (see eq.(4)) can be written as

. d |
i = = [x10,8) wo; x(0,4)] = [0 x (T w5 %)), (18)

i

or equivalently

=

B

.0 i

where we have used well known properties of the Pauli matricesfi1].
This classica.l equation is very interesting. It can be cast in a form which is identical

to the Pauli-Schrodinger equation for a magnetic dipole precessing at rest in a magnetic

field B. Multiplying both sides of (19) by % and using equation (1) we get

. aX(eaq&) _ egs _ = h
th=—9— = ~5=0.B x(0,4) (E)
EF.Y =
—% (5 o) Bx(89) - (20)
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It is remarkable that this oceurs for an erlbitrary magnitude of the spin vector 5. More-
over, (20) is independent of / since it was obtained from the classical Larmor precession.

It is also possible to show that (20) is valid if B is time dependent (sce[l1]).

4. DERIVATION OF THE PAULI-SCHRODINGER EQUATION FROM
THE LIOUVILLE EQUATION

According to the classical dynamical equations, the phase space evolution of an en-
semble of particles is described by the instantaneous phase space distribution which will
be denoted by

W = WI(7, 5t . (21)

This function is associated with a particle with momentum 7 = (p. 22, ), locatec
at the point 7 = (z1, %3, 73) and with a given spin orientation fy with respect to the
local magnetic field B (see FIG.2). This magnetic field varies in space and, therefore
the particle describes a classical trajectory. The instantaneous variation of # and 7 i
governed by the equations (2) and (3) or (7} and (8).

The associated Liouville equation will be written as

8 . 8 . 8 .
L lyp o w= 22
at TP 5 0, {

and its evolution can be obtained from the solutions of equations {2} and {3) for 7 and F
The equation (22) does not describes the precession (see (4) or (9)).

We shall present a method, for studying the mathematical problem of finding som
solutions of (22), which was proposed recently b; Dechoumn and Francaf3] for the stud;

of spinless particles, This method is based on a convenient modification of the origine

proposal introduced by Wigner [3] in 1932.

Let us define a Fourier transform Q(7, ), which is associated with W (7,7, t}, by
QFGY = [ LpW(Ep L WY (23)

Here ¢ is another point in configuration space, and £’ is a free parameter with dimension
of action. It is assumed that £ is very small (A < & for instaﬁce), and the limit A" — 0
can be taken in the end the calculation, if necessary. Therefore, one can conclude that
@ (7, 7,t) # 0 only for very sm.all values of |]. We shall see that in some simple cases the
calculation leads to results which are independent of &’. It is also important to remark
that the initial orientation angles fy and ¢y (see FIG.1 and FIG.2) are being considered
as independent variables.

The evolution equation for Q(,,t} can be obtained easily. After substituting (23)

into (22), we get

N A T

where we have used (2) and (3).

Since in this equation [§] has to be considered very small, due to the function @, it is

possible to write

.
%+ = Bi(7) = BiF + ) - Bi(F —3) - (23)
Therefore,
8. & 3
25 5= [ B = 1 [x'(6o, o) & x(00,80)] - [BF+9) - BF-9)] . (26)

when |§] — 0. In the last equality we have used our previous equation (14).
For what follows it is convenient to introduce complex spinorial functions U(F, £|6q, ¢o),
and an additional hypothesis. We shall consider only phase space distributions W(r,pt)

such that its Fourier transform (23) can be written as

Q7 §,t) = W + F, 1|60, ¢o) ¥ (F — 7, |00, do) (27

8



where (see (12))
U(7, {60, do) = x(Bo, o) B(F, ) =0, + T, | (28)

and ${7,t) is a scalar function.

A more general expression for Q(F,#,1) is
QU §,t) =33 Cut)Gui(Ty) (29}
PR

where {Gx} is a complete set of orthogonal functions (or states) indicated by the indices &
and [. A differential equation for the coefficients C can be obtained from (22). Therefore,
there is no loss of generality iz using the hypothesis (27), provided the complete set of
“phase space” states {Gy} is introduced in a latter stage of the calculation (see refs. [5]
and [15]}.

* Using (26), {27), (28) and the fact that x(0,¢)x'(0,4) = I, it is straightforward to

show that (24) leads to

.0 (A
Zha"{' oM

V24 - B(7)| U(7,t00,40) =0 (30)

It is interesting to notice that there is a direct correspondence between each term of (22)
and (30). For instance, the Schrédinger type operator [(A')?/2M]V? has its origin in
the convective operator 7 - 8—8?_-, of the classical Liouville equation. For A’ = §, the above
equation is known as the Pauli-Schrédinger equation.

The statistical interpretation of the function W(,t|0q, o) is also obtained from the

phase space distribution W{(7, f,t) and the normalization condition

[ar [ @ewng = [ arvi sl =

il

[ar () =1 (31)

a3 it is easy to verify (see also the original paper by Pauli [14]).
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A Schrédinger type equation, similar to (30), but for a spinless charged particle,
bounded by a harmenic force (frequency wp), was obtained by Dechoum and Franca[5]
within the realm of classical stochastic electrodynamics (SED)[1]. The zero-point efectric
field associated with the vacuum fluctuations was included in their approach. Therefore,
it was possible to show that, in the limit &' — 0, the oscillator has an average energy of
fiwg/2. The presence of the Planck’s constant in this result is due to the effects of the
zero—po%nt background radiation field. The mathematical interpretation of the harmonic
oscillator excited states (solutions of the time independent Schrédinger type equation)
was also provided by Dechoum and Franca[5] and by Franca and Marshall[15].

The equation (30} is valid for a general é(f-’), provided that the limit A" — 0 is
considered. However, we shall see below that, in some simple cases, the physical results .
obtained from (30) are independent of A'. Notice that the thermal and zero-point fields

are not included in (30).

5. CLASSICAL DESCRIPTION OF THE STERN-GERLACH
EXPERIMENT

We shall obtain here an aproximate solution of the classical (Pauli-Schrodinger type)

equation (30) in the particular case in which the magnetic field B is such that (see F 1G.2)
B = (—fz,0, By + fz) (32)

for 0 < y < I. The field is assumed to be zero for [ < y < [, where D is the distance
from the magnet to the screen (or detector).

This non uniform magnetic field gives an approximate descriﬁtion of the experimental
situation encountered in the Stern-Gerlach type devices [16-18]. Moreover, it is easy to

see from (3) that the non uniform field (32) generates different forces on the particles of

10
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the beam, depending on their position at the entrance of the Stern-Gerlach magnet, and

the orientation of the vector i (see FIG.2).

According to (15) and (32} the acceleration at the entrance of the magnet is such that

B By + '
Mz= ,ucosl?u?—f—- = peos fy ( 2 ﬁz) g, (33)
dz B
and
2
Mz = pcos Goﬁ ) (34)
B
where B = |B]| (see also [19]). The solutions of these non-linear equations, with the

appropriate initial conditions characterizing the beam [16-18], will be discussed eisewhere.
We shall see in the following that an approximate solution of the Pauli-Schrédinger type
equation (30) can be more easely constructed (in comparison with (22}). The main reason
for this advantage is that (30) depends on the energy (—i - B), whereas the original

Liouville equation (22) depends on the non-linear force with components given by {33)

and (34).

5.1 . MOTION INSIDE THE MAGNET (¥ = )

We shall assume that the magnetic particle is heavy (a cesium or a silver atom for
instance), and spend a short time /vy inside the magnet (vo is the velocity of the particles
in the y direction). Therefore, one can neglect the transversal convective contribution in
(30), that is, we shall take (see also ref [9])

(h)

According to {30) one can write

6t = —,U,O‘;;B‘I'l(t) y (36)

where B = Bz, z) = |B| and o3 is the Pauli matriz (13).

11

The above equation can be easely integrated giving

w0 = oo ;{22 ()
¥ iﬁ“%fﬂﬁ‘%(@**ggﬁ)](?)} ' (37

The function ®{z, z) is related to the cross section of the beam of spinning atoms, con-
veniently prepared by the experimentalist (12, 16, 17]. Here 0 < t < #; = Ifvp. Notice
that

ot B0 4 000) (38)

defined in (11). Both expressions coincides only if ' = 25,

5.2. FREE MOTION FROM THE MAGNET TO THE SCREEN (¥ = ¥,)

The screen is situated far enough from the Stern-Gerlach type magnet in order to
allow the physical spliting of the beam. Notice that, in practice, the spliting already
occurs inside the magnet, and it is due to two factors: 1) the initial beam is such that
{p:) = 0 but there are particles, in the ensemble , with positive and negative values of the
momentum p,; 2) the space vatiation of E(f") generates different forces on the particles of
the ensemble, depending on the sign of F; and F; (see (33), (34) and also {15}).

The equation for ¥, is such that

() (WY (8 & o (B 270a(1)
P T \3 e ) PO o e (39)

where we have neglected the convective motion in the z direction because, in a typical
experiment, the beam is very narrow (see refs, [16] and [17]}.
We shall take W,(0) = ¥y({;) where Uy(t) is given by (37). We shall also assume

that By » Slz| and By > f|zf, that is, B ~ By + fz. Therefore, it is possible to fake



®(z,z) ~ (2ma?) 1/ exp(-22/4a?) in expression (37). The parameter o is related with
the width of the beam. Typical values are described in references [12],[16] and [17].

Using these approximations, the integration of (39) is straightforward. The result is

L . oy
Ualt) = (1—21‘%‘21 {cos @emp B (qbu + 2’;?0151) _ 452(1)) ] ( (l) )

+ isin Z—”ewp [—% (450 + 2’?%) G +4?2(t))2] ( (1) )} (40)

A\’
where £.(1) = HEA%E and €2 = o? [l + (2M02) ] . We shall take t = #; = Dfvg > £ =

l/'U[).

According to the experiment by J.R. Zacharias, which uses a beam of cesium atoms

(seef12]), we have: p ~ 87 x 107% erg/Gauss , Mvi = 11 x 107 erg ,

_ 2uplD
B = 10! Gaussfem , {=125em, D=350em, a=~01 cmand 2z = o
i

0.37 ¢m. Therefore, taking into account these values, we see that £2 ~ o?. Consequently,
(40) depends on A’ only through the phase factors +ipBot,/A’, and [@o(8)|* is indepen-

dent of the parameter A’ .

One can calculate the distribution of particles on the screen, generate by an unpolar-

ized, beam of cesium atoms. It is given by

12

1 gr .
> fo dfysin 0, | Ua(ts) |°

P(z)

This resuits, despite the various approximations used to obtain it, is in good agreement
with the experiment described by French and Taylor (see [12] and FIG.3A}.
An interesting observation is that P(z) does not depend on the parameter &' (intro-

duced in {23)), and also does not depend on the Planck’s constant 4 used in the derivation
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of the Heisenberg equations presented within section 2. Therefore, in our opinion the re-
sults of the Stern-Gerlach type experiments does not allow us to infer the “directional
quantization” in a magnetic field[16]. Moreover, the result (41) is valid for an arbitrary

magnitud of the spin vector 3.

6. DISCUSSION

We have shown that it is possible to give a classical interpretation to the Pauli-
Schrodinger equation for a neutral, spinning particle. This classical interpretation is
valid for any magnitude of the spin | § | and magnetic dipole | 7 |. The Pauli-Schrédinger
type equation obtained in section 4, was derived from the classical Liouville equation in.
phase space. The spin vector § and the magnetic dipole # are not quantized, and exhibit
orientation aﬁgles ¢ and ¢ wich vary continously (see section 3). An adequate classical
interpretation of the Stern-Gerlach experiment was provided by the equations (30) and
(41) derived from the Liouville equation (22).

The classical equation (4}, which has the spinofia.l form (20), is independent of &, being
both valid for a time dependent magnetic field also. Let us consider that this magnetic
field is given by

B = (B, coswt, Bysinwt, By) - (42)

- where B and By are constants. Therefore, using (4) or (20) and defining v = eg/2me,

and wy = 7By, it is possible to show that the angle #(t) between /i and z axis is given by

#ZT(i)=cos9(i)=1—[“’t‘*"“M—“] sin” (ém) -

(@~ wo)? + 2B}
This result was firstly derived by Rabi[20], and Schwinger{21] using the Pauli equa-

tion (20). It was soon recognized, by Rabi, Ramsey and Schwinger[22], that these Rabi

14



resonant oscillations are equally obtained from the classical or the quantum mechanical
approaches. A good exposition of this equivalence is also provided by Bloembergen[23].
The conclusion is that the magnetic dipole vect(;r {(and also the spin vector) have ori-
entation angles which vary continuously with respect to the applied magnetic field. The
beautiful experiments by Stern (Nobel prize 1943 for the discovery of the proton magnetic
moment ), by Rabi (Nobel prize 1944 for the discovery of the resonance method to record
the magnetic properties of the atomic nuclei), and collaborators are the most stiiking
confirmation of our statement (see refs.{16-18] and [20-23)). |

The forces generated by the radiation reaction, and the zero-point (a.ﬂd thermal)
fluctuations of the eletromagnetic fleld, were neglected in our the paper. Their effects only
appear in the equilibrium (stationary) regimen. This was shown previously by Boyer[24]
and by Barranco et al.{25]. According t6 these authors the equation of motion (4) is
modified to

§=ﬁx§0+ﬁx§vp(t)+§gc§ﬁxﬁ , (44)

where By is a constant magnetic field and By is the random magnetic field characteristic
of SED [1}. The last term in (44) is the self reaction torque. Equation (44} is known as
the stochastic Babha equation.

The random magnetic field Byr is such that

1

471-(B‘VF(t) - Byp(0)) = Om . coth (h_w) cos{wt) (45)

2r2ct 28T

where A is the Planck’s constant and T is the temperature.
According to Boyer[24], and Barranco et al.[25], the orientation angles of the vector
ji(t) vary continuously. Therefore, the paramagnetic behaviour of the particle can be

calculated according to the classical SED approaéh. The average value of p,(t) is

15

g 7
() = _-2579; j{: df cos GR(6) =
&[5 257k B
Ime {ﬁ °° (coth (;%a)) coth (2kT)} : (46)

where wo = pBa/S, and R(f) is the orientation probability calculated by Boyer[24]. Notice
that this result depends crucially on the Planck’s constant %. Its origin can be traced
back fo the thermal and zero-point electromagnetic noise, whose spectral distribution is
given by (45).

The approach of Boyer[24], and Barranco et al.[25], shows that the quantization of §
is not necessary to give a good account for the paramagnetic behaviour of the magnetic
particles. Therefore, the SED proposal, gives a simple (unified) picture of the spinning
particle, were the classical and the quantum approaches merge into the same equations
and results (see[1] and [26]). We think, however, that in certain special cases the classical
approach based on SED may present some technical advantages [24,25]. One example
is the predicted[27] “anomalous” paramagnetic behaviour, which is generated when the
paramagnetic sample is influenced by the zero-point current fluctuations of a simple cir-

cutit.
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FIGURE CAPTIONS

FIG.1 — The orientation angles of the vector ji{t) which precesses around the magnetic Pb( t )
field 5.
FIG.2 — Schematic picture of the precession in a non uniform magnetic field 5. The

spinorial notation for the force components acting on the neutral particle are
presented in equations (15), (16) and (17). The particles in the beam (shaded

area), move with velocity vy in the y direction.

FIG.3A — Beam profiles obtained by J.R. Zacharias {12]. Cuzve (a) shows the spreading

Y
N

of the beam with a low magnetic field. The gradient fleld 5 is not great enough
to cause separation of the beam, Curve (b) shows separation in the high field

iD
gradient (z, = lﬁ—-——@

Notice the range of deflections, due principally to spread of velocities of cesium

~ 0.2em). See our expression (41) for comparison.

atoms from oven,

FIG.3B — Beam profiles (intensity in arbitrary units) showing the magnetic deflection FIG. 1

of a beam of HD. The experimental data was used to measure the magnetic

moment of the proton (see ref.[18]).
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