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Abstract

This paper discusses some aspects of deconvolution of one-dimensional spec-
tra in the framework of the Least Squares Method. Covariance matrices are
taken into account in every step. Fluctuation and artifacts, bath in the de-
convolved and regularized spectra, can be interpreted from the structure of

the eovariance matrices. The method is applied to a simulated spectrum.

L. INTRODUCTION

Deconvolution of one dimensional spectra has been extensively used in experimental sci-
ences in connection to gamma-ray spectroscopy [1], neutron 2,3}, mass [4], and beta [5]
spectra study, cross-section measurements [7], energy distribution of annihilation radiation
{6,8], microprobe scans {9], among others. The basic goal of deconvolution procedures is to
obtain the intrinsic distribution of a signal blurred by the response function of a detector
system and affected by statistical fluctuation. The main source of troubles in deconvolution
algorithms is that even small statistical fluctuations in the original data are strongly ampli-
fied [10] and, frequently, produce an oscillatory behavior of the data, and negative counts.
In order to reduce fluctuations of the deconvolved spectra many regularization procedures
have been developed [13]. Usually, such regularization procedures have been studied from
ad hoc observations of the obtained results in some practical and simulated cases. However,
regularization methods give rise to biased estimates and artifacts, and the choice of the
regularization parameter depends on the compromise between the bias of the estimate and
its noise component [12].

In the study of deconvolution procedure, not enough attempt has been paid to the
covariance matrices. As pointed out in this paper, information obtained from the structure of
the covariance matrices can be useful in understanding the behavior of deconvolved spectra:
the large fluctuations are related to the large elements on the diagonal of the covariance
matrices; and the oscillatory behavior of the deconvolved spectrum is consequence of the
negative elements on both sides of the main diagonal of the covariance matrices. This paper
discusses some aspects of the deconvolution procedure within the Least Squares Method
(LSM), and takes into account, in every step, the covariance matrices. If the covariance
matrices are taken into account, the obtained results are unbiased, the artifacts can be
understood, functions can be fitted to the data, and the goodness-of-fit can be tested by the

usual chi-square fest.




I1. LEAST SQUARES METHOD AND REGULARIZATION PROCEDURES

The relationship between an unknown spectrum § (z') and the measured spectrum ¥;

can be described by
Y= /Ri(m')S(m')dzv' + &, ()

where B;(2') is the detector response function, and ¢ is a measurement error. Eq.(1} can

| be expressed approximately as

Y= ZRijS(Ij} +¢; (2)
7
where
Ry =j“l Ri(2')da 3)

1 Eq. (2) can be written in a more suitable form as
Y=R-S+¢ (4)

i where Y is the known column vector with elements Y;, R is the response matrix, S the
unknown (column) vector with elements S(z;) and € is the error vector. Although ¢ is
unknown we have < € »>= 0 and < &. & >= V, where V is the covariance matrix of
Y, and <> stands for expectation value. Due to the linear relation between the vector of
observations, Y, and the vector of parameters, S, the optimum estimate § is given by the

LSM,

S=(R'VIR)'R'VY. - (5)

S is consistent, unbiased and the minimum variance estimator of 8. No other linear estimator

can be better than 8 [13]. The covariance matrix of § is given by

Vg = (R'VR)™? {6)

Egs. 5 and 6 can be fruitfully uéed both in the deconvolution procedure, and in the

interpretation of the deconvolved spectra, both related to the large fluctuation of the results,

-and the source artifacts.

Regularization procedures can be put into the above framework. For instance, smoothing
procedures can be represented by the multiplication of S by some suitable matrix. In this

case, the regularized spectrum is given by
Sr=T-85, (7)
and the covariance matrix of Sy given by
Ve=T- Vg- T (8)

Eqgs. 7 and 8 must be used in order to understand both the reduction of the very large

fluctuations of g, and the source of artifacts.

I11. SIMULATION

The convolution of two Gaussians is a Gaussian with variance equal to the sum of the
variances of the partial Gaussians. Thus, the deconvolution of a Gaussian peak using as
response function a Gaussian, results in a Gaussian peak. So, in order to study some
practical aspects of the deconvolution procedure using the LSM and taking into account the
covariance matrices, a spectrum containing a Gaussian peak with a standard deviation of
5.00 channels and an area of 100,000 counts, superimposed to an uniform background of
200 counts per channel was simulated. A Poisson random fluctuation was added to every
channel in order to simulate the typical statistical fluctuation of real spectra. Fig 1 shows

the simulated peak. Results of the fitting of a Gaussian peak are shown in Table L

A. Deconvolution

The simulated peak was deconvolved using eq. 5 with
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with &, = 1.2 channel. Fig. 2 shows the obtained spectrum with enormous fluctuation,
typical of deconvolution procedures. The peak structure was apparently lost and non phys-
ical (yet statistically necessary) negative counts appear. The structure of the spectrum in
fig. 2 can be understood inspeeting the covariance matrix calcnlated from eq.6 (assuming
V a diagonal matrix with V;; = ¥i). Table 11 shows the central part of Vg, The variances
of 5 are about 10%, corresponding to standard deviation of about 3 - 10%, greater than the
typical values of Y in the peak region (about 109), and many times greater than VY;. Those
standard deviations explain the enormous fluctuations of §. The typical oscillation pattern
of § can also be understood from the inspection of Vg or, better, the correlation between
counts in adjacent channels, defined as

Vgl (10)

(Va)i(Valii

As can be seen from Table 11, the correlations between counts in adjacent channels are

Pis =

about -0.98. A negative correlation between two data means that if a datum is underesti-
mated (overestimated) the other is probably overestimated (underestimated). As a conse-
guence, the empirical value of the correlation between counts in adjacent channels explain
the strong oscillatory shape of the deconvolved spectrum S of Figure 2.

In spite of the strange pattern of the spectrum in Fig 2, the LSM can be used in order
to fit the peak and background. Table I shows the result of the fitting of a Gaussian peak
to S, taking into account the covariance matrix of S. The obtained standard deviation,
o = 4.863(14), agrees with expected value (VB2 — 1.22 = 4.854). Likewise, the area, position
and background agree with the expected values. The obtained reduced chi-square value, 1.04
witl; 247 degrees of freedom, correspends to 39% confidence level and shows that both the

fit is acceptable and no more hypothesis are needed to explain the structure of the spectrum.

B. Regularization -

Fig. (3) shows the same data regularized by applying T (Eq. 7) on § with

1ii0 000...
Tzoigiooo... an
003 5 1 00...

Table III shows the covariance/correlation matrix of the central part of Sp =T - S. As
can be seen by comparing the diagonal elements of V1 (table ITT) with the diagonal elements
of Vg (table II), variances were reduced by a factor of about 10%. Such reduction can be
understood by inspecting the regularization procedure. ¥ oy, o and o3 are the standard
deviations of the counts in three adjacent channels and py; - o;-; (7=1,2,3) their covariances,

the variance of the number of counts in a regularized channel is

2 zaf 0F  OF  p12-0102 | P13- 0103 | Py 0203
16 4 18 4 8 4 (12)

Since pro = paz = —pi3, pr1z = —1 and 6 ¥ 0y ¥ 03 = o we have erg << g?. Asa
conclusion, it is the strong and negative feature of the covariance between adjacent counts
in the deconvolved spectrum that makes the regularization procedures useful. Table I shows
the results of fitting a Gaussian peak superimposed to an uniform background to data in
figure 3 using the LSM and taking into account the whole covariance matrix of S¢. The
reduced x? is 0.9855 with 245 degrees of freedom and corresponds to a 55% confidence
level. Small differences between the fitted values of the area, position, and background in
the simulated, deconvolved, and regularized spectra in Table 1 are due fo the fact that the
widths of the peaks in the three spectra are different. (‘The deconvolved spectra is narrower
than the original spectrum, and the regularized spectrum is wider than the deconvolved one

due to smoothing).




IV. CONCLUSION

The basic equation of the cbnvolution problem is the discrete case is given by Eq. 4. Due
zto the linear relation between experimental data. Y, and unknown parameters, 8, the best
‘solution is given by the LSM. The LSM gives the minimum variance unbiased estimator of 8
‘and it can be shown [13] that any other lincar estimator of S has variances greater than the

variances of S. So, no other method can be better than the LSM. However, deconvolution
| procedures give rise to covariant data. Thus, in order to preserve the statistical properties
of the results, it is necessary to consider the covariance matrix Vs.

If regularization methods are to be employed in erder to recover the lost visual profile of
the deconvolved spectra, the covariance matrix must be calculated by using Eg. 8. However,
as shown in the example, the regularized spectrum do not have more information than the
deconvolved spectrum.

By inspecting the covariance matriccs we can understand the large fluctuations, the
oscillatory pattern, and the artifacts existing in the deconvolved and regularized spectra.

Finally, it must be taken into account that, although regularized spectra are better than
the deconvolved spectra under a visual aspects, both usually have artifacts and can induce

misinterpretation of the data.
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TABLES

Siimtlated Deconvolved Regularized
Area (counts) 100,007(327) 100,305(327) 100,022(327)
Position (channels) 124.978(17) 124.980(17) 124.979(17)
o (channels) 5.007(14) 4.863(14) 4.896(14)
Background 198.06{95) 197.95(95) 198.21(96)
(counts per channel)
Reduced ¥? P(x?) 0.99 (55 %) 1.04(32 %) 0.99 (55 %)

TABLE I. Result of the fit of a Gaussian peak plus a background to the original (second

column), the deconvolved (third column), and the regularized spectra (fourth column).

(121)  (122)  (123)  (124)  (125) (126) (127) (128) (120
(121) 0.730E9 -0.76RE9 (.772E9 -0.744E9 0.689E¢ -0.616E9 0.534E9 -0.450E9 0.371E9
(122) -0.984 0.834E9 -0.865E9 0.857E9 -0.812E9 0.740E9 -0.651E9 O0.556E0 -0.463E9
(123) 0.940 0.984 0027E9 -0.07E9 0.923E9 .0.861E9 0.773E9 -0.670E9 0.563E9
(124) -0.871 0938  -0.984 0.999E9 -0.101E10 0.966E9 -0.887E9 0.784E9 -0.670E9
(125) 0.789 -0.869 0937  -0.983 0.105EI0 -0.104E10 0.980E9 -0.887E9 0.772E9
(126) -0.700 ©0.786  -0.868  0.937  -0.983 0.106E10 -0.104E10 0.965E9 -0.861E9
(127) 0.612 0697 0784 -0.867  0.937  -0.983 0.104E10 -0.10E10 0.922E9
(128) -0.528 0.609 -0.696 0.784  -0.867  0.037  -0.983  0.999F9 -0.046E9
(129) 0.452 -0.526  0.608 -0.696 0784  -0.868  0.937  -0.983 0.926E9

TABLE II. Covariance (upper triangle, including the main diagonal) and correlation (lower
triangle) matrix of the central part of de deconvelved spectrum by using the LSM method. The

numbers into parenthesis refer to the channel number of the spectrum.

(121)  (122)  (123)  (124)  (125)  (126)  (127)  (128)  (129)
{121) 0.364E6 -0.286E6 0.100E6 0670E5 -0.155E6 0.171E6 -0.144E6 0.102E6 -0.620E5
(122) -0.744 0.408E6 -0.315E6 O0.108E6 0.719E5 -0.163E6 0.176E6 -0.146E6 0.102E6
(123) 0.249 -0.741 0.443E6 -0.339E6 0.114E6 0.748E5 -0.166E6 0.177E6 -0.144E6
(124) 0.162 0.246 0.742 0472E6 -0.351E6 0.115E6 O0.757E5 -0.164E6 0.172E6

(125) -0.373 0.163 0.247 -0.741  0.477TE6 -0.349E6 0.112E6 0.728E5 -0.155E6 .
(126) 0415 -0.373 0.164 0.244 -0.740 0.468E6 -0.338E6 0.108E6 0.663E5
(127) -0.359 0.414 -0.374 0.165 0.244 -0.741 0.444E6 -0.317E6 0.101E6
(128) 0.265 -0.358 0.415 -0.373 0.1656 0.246 -0.742  0.410E6 -0.280E6
(129) -0.170 0.265 -0.359 0.414 -0.372 0.160 0.252 -0.746  0.366E6
TABLE III. Covariance (upper triangle, including the main diagonal) and correlation (lower

triangle) matrix of the central part of regularized spectrum.
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‘FI(%UR,IES —_ . FIG. 3. Regularized si)ectrum and the fitted curve.
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FIG. 1. Simulated spectrum and the fitted peak plus background.
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FIC. 2. Deconvolved spectrum by using the LSM method and the fitted peak and background.
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