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Spinor field with conformal coupling ix Friedniann-Robertson-Walker
{FRW) Universe of special iype with constant electromagnetic field is dis-
cussed. Treating an exlernal gravitational-electromagnetic background exactly,
al firsl time the Fock-Schwinger proper-time representations for out-in, in-in,
and oul-out spinar Green [unctions are explicilly constructed as proper-lime
integrals over the corresponding (complex) contours.
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1. INTRODUCTION

It is quite well known fact that quantum field theory in an exterrnal background is, gen-
erally speaking, theory with unstable vacuum. The vacuum instability leads to many inter-
esting features, among which particles creation from vacuum is one of the most heautiful
non-perturbative phenomena in quantum field theory. Furthermore, in interacting theories
the vacuum instability may lead to quantum processes which are prohibited if the vacuum

is stable. One ought to say that ail the ahove mentioned peculiatities can not be reveal in
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frames of the perturbation theory with regards to the external baci{ground, one has to treat
it exactly. The latter has been realized long ago by Schwinger [1] on the example of quantum
electrodynamics in the constant elec-tric field. The particles creation in this case has been
calculated explicitly.

In guantum field theory with unstable vacuum it is necessary to construct different kinds

~ of Green functions (GF), e.g. besides the causal GF (out-in GF ) one has to use so called in-in

GF, out-out GF, and so on [2-4] {for a review and technical details see (51, see as well [21]).
General methods of such GF construction in electromagnetic (EM) background have been
developed in [3,4]. The possible generalization of the formalism to an external gravitational
background has been given in ref. [6]. Since the paper [1] it is known that causal (out-in) GF
may be presented as a proper-time integral over a real infinite contour. At the same time,
in the instable vacuum the in-in and out-out GF differ from the causal one. One can show
[7] that these functions may be presented by the same proper-time integral (with the same
integrand} but over another contours in the complex proper-time plane. The complete set of
GF mentioned is necessary for the construction of Furry picture in interacting theories, and
even in non-interacting cases one has to use them to define, for example, the back reaction
of particles created and to construct different kinds of effective actions.

It may be likely that early Universe (EU) is filled with some type of electromagnetic
fields. For example, recently (see [8,9] and references therein) the possibility of existence
and role of primordial magnetic fields in EU have been discussed. From another point the
possibility of existence of electromagnetic field in the EU has been discussed long ago in
[10,11]. It has been shown there that the preéence of the electrical field in the EU significally
increases the gravitational particle creation from the vacuum. In principle, this process may
be considered as a source for the dominant part of the Universe mass.

Having in mind the above cosmological motivations it is getting interesting to study the
quantum field theory in curved background with electromagnetic field (of special form to
be able to solve the problem analytically). In the present paper we are going to consider

a massive spinor field in the expanding FRW Universe with the scale factor Q) (in terms
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of the conformal time) Q(n) = by - e. Such a scale factor corresponds to the expanding

radiation dominated FRW Universe. In terms of physical time ¢ the corresponding metric

may he written as following:
da® = dpt Q) de® + dy? 4 dz?) (1

where £°(1) = 20]1] {see [12]). Morcover, such FRW Universe will be filled by the constant
eleciromagnetic field (the precise form of this field is given in the next, section). I‘ hus, we
start from the spinor theory in above background. Making conformal transformation of
spinor theory | we remain with the theory in flat background but with time-dependent mass.
The Maxwell theory is conformally invariant, and ove can start from the FRW Universe (1)
with constant EM Beld from ile very begiuning, before the conformal transformation. In
Sect. 11 we solve the Dirac equation for the theory in the constant EM field and with time-
dependent mass o get complete sets of solulions classified as patticles and antiparticles at
t — toc. Using them in the Sect. 111 we construct all necessary GI for the spinor field as the
Fock-Schwinger type proper-time integrals. All GF have the same integrand and differ by the
contours of integration in the complex proper-time plane. As far as we know that it is first
explicit example for proper time representation for complete set of spinor GF in gravitational
and gravitational-electromagnetic background (for pure electromagnetic background it was

calculated in [7]).

M. EXACT SOLUTIONS

In this section we will present exact solutions of the spinor feld in the external constant
uniform electromagnetic background. In addition, the former field will be considered in the
time-dependent mass-like potential, which effectively reproduces effects of mass-like potential

(QED-):
(Puy™ — M Q) (x) = 0, @)

where

P, =B, - qAu(z), o=y 2°=n+c/b
Wy, =2, g = disg(1,—~1,~1,-1);

: |e| (for electron); ¢(z) is the spinor field. The time-dependent potential term is
g = —l¢

I as (n) = bz°. The time-independent scalar product of the solutions of the Dirac
chosen = bx".

i i ventional form
equation may be chosen in the conve:

(0,9) = [ Bn¥(@)dx. ®)

As usual, it is convenient to present 1(z) in the form

(z) = (P + bM2°) §(z) - (1)

Then the functions ¢ have to obey the squared Dirac equation,
(P~ (oa)" — f B + ibM/y‘.)) Hz)=0, ()
Fu = 3,A(z) - 3, Au(2) , 0™ = %[w, +1.
‘The external electromagnetic field will be chosen as the following: paraliel constant uni-
form electric and magnetic fields |
Fop = E, FL =H (88— 84}). (6)

For such a field we select the following potentials:

Anﬁo, AD=E$O, A,‘=A1+=—H:E25;1, 2=1,2 (7)

ns q5 Q tv O at O € TEeLY (}S h 1Ce
I th case Solutv.io [ h qu 1011 (5) are T I ted Wlth ones Wlth some Othel' Cho
n 18

1 tien
Of the pOtEHtla.ls A’: fOl‘ the same electromagﬂetlc ﬁeid, by the refatio
T

i - 'ydat = A, — Al
where the integral is taken along the line: 8, [ (A,, - A”) dz# = A, |
H a—— a
Let us discuss first the physical motivations behind the Eq. (2). For b= 0 one has usu

flat ith mass m = cM. In this case solutions of the Dirac equations and number of
at case wi = ;
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Green functions were fou'mi in [IG,.T]. The case b # 0 s of special interest for us. In this case
oné can consider spinor field in the conformally-flat Universe (with scale factor §2(3) = by+e)
filled by the constant EM field. Making the standard conformal transformation of the
gravitational metric and spinor field, we come to the th.eory in flat space-time with time-
dependent mass. The corresponding field equation is given by (2) (EM field should not be
transformed under the eonformal transfornation). Note that such conformal transformation
may be used also for interacting theories [14,13]. Hence, Feq. (2) actually corresponds to
the quantum spinor field in the expanding FRW-Universe with constant EM  field.

To construct the ahove mentioned gencralized Furry picture in QED, and in QED-{), as
well, with an external field one has to find special sets of exact solutions of the equation
(2), namely, two complete and arthonormal sets of solution: {.hz,/){,,}(a:)} which describes
particles (+) and antiparticles (—) in the imitial time instant (2% — o0}, and {il,b{n}(m)}
which describes particles (+) and antiparticles (=) in the final time instant {(z° — 4o00).
According to the general approach [3] , whick can be light generalized to QED-Q, such

solutions obey the following asymptotic conditions

Hop (2%) gy (2) = g2 (b (a), 50 e = ¢, o° = —o0,

HD_P_{;z:U) qu.!{t}(.'{?) = ‘¢ ('{1')(1}(;2:), sgn ‘e = ¢, ¥ — +oo, (9)

where ¢,{n} and (,{I} are a complete sets of quantum numbers which characterize solu-
tions (1, () and Sy (x) respectively, H,, (a°) = 4°(MQ (5) —v'P;) is one-particle Dirac
Hamiltonian in convenient external field gange Aq(x) = 0; *e, Le are particle quasi-energies
and |"¢| and [_¢| are antiparticles quasi-energies. All the information about the processes
of particles scattering and creation by an external field (in zeroth order with respect to

the radiative corrections) can be exiracted from the decomposition coefficients (matrices)
G (),
ey = ()G (41) + ()@ () (10)

The matrices 7 (CFJ) obey the following relations,

5

(e +6() e () -1,
c(r)eCry +ear)er) o, (11)

where I is the identity matrix,

As was already said, when quantumn fields are considered in time-dependent backgrounds
{electromagnetic or gravitational ones) one has to construct different Green functions. To this
end one has to find the sets of exact solutions of the equation (2) {ﬂb{n}(m)} and {i’;b{n}(m)}.

Here we are going to describe such solutions. The functions ¢(x) can be presented in form:

ﬁbpsmner(“’) = ¢panér($lf) ¢pmr($i)'”£r 1 (12}

" _ 1 : . -
where nonzero zf = 2%, = 1,2, xﬁ' =z 1=0,3; {ps,pr,n,&,r} isa complete set of

quantum numbers. Among them ps and ™ are momenta of the continuous spectrum, # is
integer quantum umber, £=21and r = +1 are spin quantum numbers.
Here vy, are some constant orthonormal spinors, vg,,v&: = & The eq.(5) allows one to

subject these spinors to some supplementary conditions,
Ever = Logry E=1%(gBy° —bM)/p, p = [f(aB)? + (bM)%; (13)

Rvgr = rvge, R =sgn(qH)iy'y%. (14)

The function ¢,,,.(2,) obeys the following equations

('YPJ- )2 qsmﬁf‘(xl) = _wquﬂ"(:cl)a P_:. = Piv i= 112 ’ (15)
_ lqH[(2n+1~7), n=0,1,... , H#0
B+, H=0
Pl¢p1nr($-L) = P1®pnr(TL), {16)
/¢;1far-(mL)¢pin'r(mL)dxl = b8 (1 -p) - (17)

If I # 0, a solution of these equations is



C‘ﬁmnr(ﬂ:l} =

1/2 . '
[gH| lqH ty? "\
S| q | ‘ P ;
(ZE—ﬁ"‘“-;(%n! oaxp § il — - (.r,2 + q_ﬁ) }’Hﬂ [\/}qﬁf (:r:2 -+ qu_)J ,
where #,(z} are the Hermite polynomial wit}, integer n = 0, 1,.. ., r H = 0, the discrete

quantum: numbers n have to he replaced by the momenta P2, and the corresponding function

has the form

Bppor{w L) = (2m)~ exp{—?' (;mm’ + pg.‘L‘ZJ}.

Let us write

T
Draner (1)) = ey (18)

where

¢r’ﬂnfr(mu) = ‘f"]:nnfr(moa Pz”p,-.:o ,

and ¢, nen (29, P=) 1s a solution of eqlation

a\? )
[(Fa‘ﬁ) = (p. — PI) = pA— ""PfJ o (‘rOaPZ) =0, (19)

with

2
(M2
p

. r
fj=a%- P 9Epn,  pA=p}

One can form the two complete sets {4y, ner (% p.)} and {*bpgner (% p.)} of the solutions

of equation (19) by using functions

-{—-qspgn.fr- (ml)‘ P;) = Cf Dy_f/ﬂ[i(l - T)T],

t‘zspgnﬁr ("":07]’2) = OéD*J/_Hf/? [i(l + 7“)7—] ’ (20)
3 (ol — ps) A1
T {pi—m), v="2 2,
N 4 2 5
The same solutions were first studied iy (16]. Then, solutions of equation (5) #(z) can be

presented in the form:

-1

+Ppapingr(2) = ¥¢§ap1nfr($aﬁz)fpz=0, ' (21)

. 1 .
:I:q-l’pspmfr(x,pz) = - € frac® iQSpsnfr(xoa pz) qsp]nr(xi)vfr,

and in the same form with {£) indices above,

One can verify  the solutions of the Dirac  equation  with  dif-

ferent ¢, namely, (/PH'Y# +be0) i¢p3.p:.n,+1.r'(3) and (’Pu')'ﬂ“'meu) :i:¢ps.p1.n,—1,r($): or

(Pur + bM ") i‘lf’ps.m.nﬁl.r(m) and (P, y* 4- bM ="} igbpa,m,n.—l,r(z) are linearly dependent
for each sign *4+* or »—7, Thus, to construct the complete sets it is enough to use only the

following solutions:

Vnepine (2) = (Pur + BM=) sy g () (22)
id’namm(x) = ('P,,‘}'“ + beu) £¢Pa.p11ﬂ.+l,r($) (23)-

Chosing coefficients in (20) as follows:
: A A
Cin = (2)2 exp (—%) Ol = (oA exp (~%) , (24)

one gets the two complete sets { 4.%y,p,nr(z} and {£tnepinr ()} of orthonormalized solutions
of the equation (2). These solutions are classified as particles (+) and antiparticles (—) at
z° -+ +oo according to the asymptotic forms of the quasienergies of these solutions: ¢E =
Cplz®] and ‘e = (p]a® (see [15] for additional arguments advocating such a classification).
It is agree with classification [16] of the similary solutions in QED.

One can find decomposition coefficients 7 (,; IC') of the out-solutions in the in-solutions

defined by (10), and using (5) and (13) see that G (dc') are diagonal,

G (C!C')H, = 6”' g (CIC’) 3 {= (p3aplsna T) + l' = (PGIaPI” nrv ?") 2 (25)
where
g(dﬁ') = C¢;3,n,+1.r (3"0,%) i 30 (7'60 - pﬁ) ¢'¢p3.n,+1.r (x()’ Pz) . (26)
8



L GREEN FUNCTIONS

The perturbation theory with respect to the radiative interaction for the matrix elements
of the processes has the usutal Feynman structure also in an external field creating pairs [3-3].
The Feynman diagrams have to be calculated by means of the causal propagator

Sy} = i <, ot TY()ia)[0,in >, ¢, =< 0, out0,in >, (27)

where () is quantumn spinor field in the generalized Furry representation, satisfying the
Dirac equation (2}, [0,in > and [0, 0ul > are the initial and the final vacuum in this repres-
entation, and ¢, is the vacuum to vacuum transition amplitude. The propagator  §¢(z, 2)

obeys the equation

(Puy = MQUn)) S°(2,2") = ~ 8@ gy (28)
and is a Green function of the equation. Other important singular function is the commnutation
function

..f_-,l_.:“f .

Sla,a') = [u(w), i )L (29)
it obeys the homogeneous Dirac equation (2) and the initial condition
S, 2! Nagmsy = 17°6(x — x). (30)

The commutation function S(x,2') is at the same time the propagation function of the Dirac
equation, i.e. it connects solutions of the equation in two different time instants.

QED, and QED-} with unstable vacuum have a nmumber of peculiarities. Thus, for in-
stance, in the calculation of the expectation values and the total probabilities Green functions

of different types from (27} appear [3-5];
Sz =i < 0, in Ty ()"0, in >,
Solza) =i < 0, inlp(x)(x)]0, in >,

Sla, ey =i <, e yih(2) [0, in >,

in

Shea’y =i <, iraidv(;n)ajﬂ(x')'f'jﬁ, tn >,
c Sl ) =i <, out [Ty )i(x')|0, out >, (31)

g

aE e g e

where the symbol of the T-product acts on both sides: jt orders the field operators to the right
of its and antiorders them to the left. The function Sg,(z,2"), Szut{®,2') obey the equation

(28), 8¥(x, ') satisfy the equation (2) and S,i(a:, x') obeys the equation
(Pur* — M (n)) S5 (2,2") = 69z — o) | (32)

Besides, all these different kinds of the Green functions are used to represent various matrix
elements of operators of current and energy-momentum tensor, and effective action beginning
with zeroth order with respect to radiative interaction.

One can express the Green functions via the solutions (22) and (23} [3-5]:

5z, 2"} =0 (g —24) 5~ (z,2") — 0(xh — zo) S+ (=27, (33)

S{z,2") = 8 (2,2') + 8+ (=, 2), {(34)

5° (371 ;E') = i./;loo dmdpl Z +¢p3mnr(w)g (+’+) - +‘§Epsmnr (ml)’

Heo ) ’
$* @) =i [ dpadie T i () [0 ~rspume (29, (35)
5 (2,2) = 0(20 — 23) S5, (2,2) ~ 0 (a4, — o) 53 (s, 7). (36)
Sian (‘1’7 :r’) =4 (3':1 - 330) S::;; (x, m’) A "‘5'6) Sztz (3"1 .‘n’) s (37)

. +oo T I

SE@) =i [ " dpadpy S s (2 T (2, (38)
Sout (2,27) = 0 (w0 ~ 5) 5y, (w,2") = 8 (2} — 20) S, (2, &), (39)
S::m (‘7"’ 1:,) = if+o° dpzdp, Z id”psmﬂ" (‘I) i?;papmr (3:') . (49)

where the symbol T, means the summation over all discrete quantum numbers n,r (and the
integration over the continuous p2 if H = 0). Using the relations between the Green functions

and between the matrices (g[") one can present the functions S¥, 5T and S&s as follows
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i,s*?(m,.;,-'):.S'C(.a,?,:c")ﬂ:eﬁ(n:o—mg))S(m,z') : o (41)
B0 = S (2, 0) £ 0 F (w0 — a))S () | (42)
FEE 2 = Sl ) £ 07 (o ) S0 (43)
Sl al) = S, 2"y - 5%, at) (44
Sout(2:0') = 5, ') — S, ") | (45)
S =i [t S ) W 5y (46)
S”(;r:.;z:’) = [ 1: dpmdlmn Z e () [ (+15) g4 )" )J f;pgmm('"') ‘ (47)

To calculate alI kinds of the Green functions it is enough to take sums in 5%(z,2') and
Sz, 2') only. That will he doue helow,
The coefficients (26) do not depend on Pz, thus, one can present the functions SF and

5% in the conventent form

+ow +oe (/p% i a
R L L N . iR gF o — !
g (2 ) = [00 dz Lm )’i' ¢ d .SQ v Y=, — Ty s (48)
C':F ap

B - -1 -~
SQ =1 / dpsdp, Z +¢‘Psmnr(71! TL 3 g (+|+) L (7?"1 ‘7"11 z', PZ) )
J—oo

nr

.JJ
+
]

R ) * - ~
[ [ dp-3dp! Z —1/:‘7)3;1, nr (77- T, 2, Pz) [g (— '_)iTJ kybpaplnr (77'1 '7"1: 3’7 pz) 1
+ou . ~,
S = ﬁzf dpsidp Z Uy (T 21 2, z) [q(-i-, Jo(- )" ] +¢'p3p1 (7 xl,z’,sz
o nr
- Y Pl I
Sg =i /(x dpadp, Z Erapne (0L, 2, s ) [9(+| g(+]” )] "o (42, 2, p,), (49)
where
oo (.20, 200} = (110 + 9 (s ~ qBa) 1 4, (10— qA) + bM2")

iqsmmnr (77’ T, %, Pz) ’

i¢p3pmr (777 X, zy.'”z) = :'I:Q"pgm'(ﬁa Z, ?’z) ¢mnr(ﬁfl)v+l,rs

~ip,z

i‘bpam‘(ﬁ» Tp) = igﬁps,n'+1,,.($0, Ps)s _(50)

1
[+
27

11

and in the same form with (=) indices above.

One can write the functions SEP as follows:
S5 = (vi85 + v* (pg ~ 9E2%) + 91 (i — gA) + bM ) AFe, (51)
where the functions A3 obey equation

(P& — b3 (bM?) /? i — 9/2F0") AFP = g,
" (.8 :
2 _(; %) _{.2 . 2
Po = ("Bﬁ) (zaz pn) + P71,
The functions AZ™" have the form of the corresponding GF of the squared Dirac equation
in EM background [7], where # is the time, z is the coordinate along the electric field, the
mass mj) = pgib‘-gL, the potential of the electromagnetic field is A, = fi£, and spin term

qE7°+? is changed to PZ. Then, after the similary calculation [7] one gets the following

representation:
TAE = AL L 8(F)Ag (52)
8o= [ Jads , fo= o (s, stz — ) (59)
Ag = e(yo) f S fods , e(yo) = sgn(yo) (54)
Ny = [ fods+0(z - ) f o, fas (55)
Af= [ fods +0(z— ) Fam_rufods, (56)

where 8(0) = 1/2.

= 1
fQ (ﬁ? Tl.ﬁl,wl.z - Z’,P:;; 8) = e'"= €xp (—EqF:;O’m’S)

fcgu) (ﬁ? 7l.ﬁl,wl,z - z!’ Pa, 5), (57)
18 = exp{- ?qf Awde 3 [ (72— 2,50, 8) £ (y1,5) (58)

il )= (i) ? s e (= o eothtgPan, )

12



, R
! xp {—ig(ﬁ + 1)z —imps

f” f,?ﬂi’,z, 8 ==t
@ (7 Fa®Pp 6) sinh(ps} €

_g.;'f_; {32 —~ (7 ~ 1?)2} coth(ps)} )

whereas the fol lowing relations take place

. d r - u
zﬁfq = (mfé -H'Pé + zp:-Fq/QFj;a“ ) Jo

Jim Jo = 607 ~ ) 85 — 2)8(y.)

(60)

(61)

In accordance with (48) one can calculate the Gaussian integrals over pa and = for all the

points s on the contours Fig.1. As a rosult one gets

&) (#,2") = ('}f"‘P,, + bﬂf[;ro) Al {z.2"),

A%mﬂ:ﬁjhg%ﬂs,
mafpquLﬂ@ﬂ@@ ,

A%, 2) = =AWz 2"y — AB g, o
AP’y = ~ AU o) 4 APz, 2y
I

A('){J:7wr) = k_z‘ Ta by T f(:l:,:l,'f, .5')(13 "
atiadly,

AW@JU=/ Folz, o', 8)ds

FANTE T N

where
Folz, 2!, s) = i (1 ) f(x,2', 5)
_,-.'L’,.'l‘,b _2\/“??7 210 o "13'35 L)
: 1 2
. ,—m/2___4_ - ..I © 2 D
a=e As(bAM ) 2w [(IO * o) o(bM)" + g By ] ’
and ~y (%, (r) is the incomplete gamma-function. Here
fz 2 s) =exp (—bﬂﬁl”yﬁs - %(}Fw,a‘“’s) Sz, 2 5)

13

(62)

(63)
(64)

(65)
(66)
(67)

(68)

(69)

(70)

i B T s e - ek e

f(o)('t:'r,': 3) = eiQAfjl (xDr:”’Da yD: 3) f.l.(y.l.,s) i (71)

: AN pP_ .gF P
i (:ro,sc 0, Y, s) = We}(p {zT (zo + w’g)yD — ZZ (zo — $’0)2coth(ps)

3

- —i{aM)®s + 2;&—3;32, coth(ps) — ﬁ [(bM)Qs (zo + 2')* + 2qEy® (zo -+ .2:'0)]}

(bM)?
P

w

|

S AT
s coth(ps) + -(?ﬂ—z) . (72)
Here only A depends on the choice of the gauge for the constant field, via the integral
A=- [ Ao (73)

which is taken along the line. To get the function f in an arbitrary gange A’, one has only
to replace A by A’ in the A.

One can see that

z% flz,2',8) = ((bﬂfa:o)z - Py -g-a“”F#,, - ibM'yO) flz,2,8) (74)
: ¢ N C S PO
slfar:-]u Hz 2’ s) =16z — o) . (75)

Thus, f(z,2',s) is Fock-Schwinger function [1,18]. The contour I, — Ty — [y in (64) was
transformed into T after the integration over pp and z. Then the results are consistent with
the general expression for the commutation function obtained in [19].

If & # 0, then the function f (z,2',s) has three singular points on the complex region
between contours I, — I'y and I', — [ which are distributed at the imaginary axis: psg = 0,
ps1 = —iw and psy = —icy. The latter point is connected with zero value of the function .
We get an equation for ¢, from the condition w == g,

4EY?

= 76
M 0, (76)

catan{c; — 7 /2) — (

where 7/2 < ¢; < 7. The position of this point depends on the ratio gE[(bM), eg. at
bM/(gE) — 0 onc has ¢ — x and at gE/(bM) — 0 one has c; — /2. Notice, in the case
E =0 it is convenient to put ¢; = m/2 + 0 because of the contour I'; must be passed above

the singular point s, in the case as well.
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b =0, then w =1 apd the function J2, 27, 5) has only two singular points &y and 84 on
. the above mentioned complex region. In this case the gauge invariant function /i) does not

depend on on , -+ *y. In this degenerate case it follows from (48), (55) and {56),

Af(x 2" = a, ' 8)ds + -0 e &) 7
(,27) ‘Ll fl, 2’ s)ds 4 W~y )/l".1+l‘2—r,. Fz, 2, 8)ds (77)
AMr ') = 2 8)ds + (P 2,2 8\
(e, 2" /[ (2", 8)ds Gy )./l;a+l“z—rﬂ Sz, 27, s)ds (78)

Let us return to more interesting case b # 0. Our aim is 1o demonstrate that function
A (g ) from (68) can also he presented via a proper-time integral with the kernei Sz, 2, 5)
as it was done for alf other A-functions. To this end let ug transform the contour Lot -1,
in (68} into two ones: I (see FIG.2) and Ui+ 1T, (see FIG.3).

The radius of the contour [} tends to zero. The contour I't+ 1, is a infinitesimal radius
clockwise circle around the singular point s2. However, it is convenient to present it as a
combination of two semicircles Iy and I, placed on the Jeft and the right sides of the imaginary
axis respectively, The argument arg s’ of the 1 radius is in the interval w/2 < arg s’ < 3n /2

and of the I, radius is in the lterval —7 /9 < args’ < w/2, Then (68) can be rewritten in

the form
AP (g ) = e,z s)ds -2’ (
(z, ') l/n_‘-n-f(z,r,s)ds—lrr(m,a) , (79)
rie,x') = ‘/r"’ Sl 2! s)ds {80)

Taking into account [20]
Y(/2,0) = a2 [2 4 (4/3)0 49 (a*)]
one gely

LT 7
I (:r, '8 — 7;}-) S,—_:G const; - exp{—4—g—; (g — m'ﬂ)z}

Hence, one can see that rlz,z") =0, For(x,2) = 0 at any z — g Moreover, using (74), it
1s easy to see that the distribution r(z, ') obeys the equation (5). Thus, r(z, #') is equal to
zero identically. The function oz, 2's) is 25 periodic function of the argument arg s’ of the

I'; and I, radjuses,-One needs to take into account the asymptotic decomposition [20)

15

7(1/2,0) = /7 — e=2p-1/2 [1+ Ofa™)], z>0. (81)
which is valid in the region —37/2 < argax < 37/2. Then, using (81) one gets from (79)

= fovr, flz,2's)ds , —5a/1 < 8 < ~3r /4,
—Jrer, Sz 2's)ds , ~3nja< g < —/4,
har, flea's)ds,  —xpa<p< ©/4,
Jor, J(z,a's)ds ,  w/a< 8 < 3up,

AB (g, o) = .21. (82)

where 3 = arg {(a:o + 25)e(bM)2(~i) 4- pqu“] .
One can verify that expression (82) is continuous in the boundaries of the f intervals,
Then, using (74), one can demonstrate that the representation (82) obeys the equation (5).

One can also verify that the representation At (z, 5 (67) obeys the equation (5). ‘Fhus, all

(L%} ]

the A-Green functions considered here, excluding those marked by the index “c » are solutions

of the equation (5). The important difference between basic Green functions A(z, z'),

ANz, ') and A(z, z'), A(:")(z,x') is that the first ones are symmetric under simultaneous

change of sign in To, Ty, Tp, )y and the seconds ones change sign in this case,

Note finally that using proper-time kernel f(z,2,5) (70) one can easily construct

Schwinger out-in effective action

Foutmin = %{f a':t:j.;oo s7! flz,z, 3) ds} .
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