b

.
]
C’&

LS

UNIVERSIDADE DE SAO PAULO " PUBLIC ACOES

INSTITUTO DE FiSICA
CAIXA POSTAL 66318

.05315-970 SAO PAULO - SP IFUSP/P-1288

BRASIL

GENERALIZED CORRELATION FUN CTIONS
FOR THE 7\.¢ "MODEL

Fabio L. Braghin
Institute de Fisica, Umversudade de Sio Paulo

No_vembro/ 1997



Generalized correlation functions for the A¢! model

Fibio L. Braghin*
Tnstituto de Fisica da Universidade de Sio Paulo

C.P. 66.318, C.E.P. 05389-970, Sio Paulo, Brasil

November 20, 1997

Abstract

N-point correlation functions for the A¢? model are built over a gaussian approximation at zero
and finite temperature, This is done by introducing different small amplitude external sources
corresponding to perturbations to different parameters of the model like, for example, the mass,
“ecurrent” and condensate ¢(x,t). It is then possible to calculate the response of the system. This
calculation is performed on both phases of the potential taking into account corrections to the
“mean field” approximation for the quantum fluctuations. Final expressions, mainly for the two
and four point Green’s functions, are caleulated analytically or semi-analytically. These functions
correspond to response functions of classical and quantum parts of the field to the corresponding

_external perturbations. Renormalization is performed on both phases of the potential.
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1 Introduction

The calculation of n- point correlation functions is the aim of many theoretical efforts since they are
directly related to important observables, specially the 2 and 4 point ones. In functional quanium
field theory, they can be calculated from the functional generator with the introduction of an external
source in terms of which the effective action is obtained and with relation to which the generator
is derived resulting the wanted Green's function, see, for composite operators in the static case, [1].
This is not exactly the general idea which will be develop, but rather a RPA type approximation. In
fact, Green’s functions can be obtained by calculating the response function of a sy-stem to external
probes. This is directly related to the fundamental idea of quantum physics that the measurernent of
observables is performed in such a way to perturb the system externally. The physical response of a
system to external perturbations O is characterized by correlation functions at different (or equal )
times, #;, of the form < 1|O2(22)01 (81 )| > [2].

The A¢? model has been extensively studied since “it seems to be” a simple model and, in principle,
it can be used as a probe to theoretical approachs. However, there are renormalization problems which
make it intriguing [3]. We are particularly interested on the time dependent gaussian approach to the
A¢* which is non perturbative and has been well developped. It has allowed a large range of interesting
results 4, 5, 6, 7, 8, 9, 10].

The aim of this article is to exhibit a method for the calculation of generalized correlation functions
going beyond the Hatree Bogoliubov {gaussian) approach at zero and non zero temperatures. This
approximation can also be thougth as variational and it keeps more non-linearities than perturbative
methods corresponding to an infinite sum of “cactus type” diagrams. It is exact in the free field limit
as well as in the limits of ¥ — co and N = I of an O(N) invariant model [4]. We explore both
the symmetric{¢ =< ¢ >= 0) and asymmetric phases (¢ # 0) calculating general response functions
at zero and finite temperature to several general external sources corresponding to perturbations to
the parameters of the model like mass, “current” and condensate. One of the four- point correlation
functions is directly related to the T- matrix, whick has been calculated in the symmetric phase in
[10]. It is even possible to define “ three- point correlation functions * for this model in the asymmetric
phase; their meaning will be clarified in the text. The coupling constant renormalization is performed
on both phases and the bare coupling constant has to go to zero while the cut- off is sent to infinity

in order to keep the renormalized coupling constant finite in agreement with [3, 10]. In section 2 we



present the basis of the time dependent variational method for zero and non zero temperature case.
In section 3 the calculation of the generalized correlation functions is performed and in the following
section the renormalization as well as some properties are shown. The conclusions are discussed in

section 5.

2 Time dependent Hartree Bogoliubov approach at finite temper-

ature

The lagrangian for a scalar field ¢ with bare mass mj and quartic coupling constant b is given by

1
£x) = 3 {:6(x)0#80x) — mi(? — 160" (1)
Thus the corresponding hamiltonian reads
1
= 5 (7200 + (V87 + i) + 156" (0) )

where the action of the canonical momentum operator, , in the functional Schrodinger representation
is —id/8p(x).
The functional state is the density matrix, p, which trial fom'is given by
1
plorda) = Neap{~; [ dxdy (541(x) Al )36 () + 562(00A° (3, 3)50(y) +

®
2661 (0B, ¥)60a(v)) + i [ () (1) - dalo) ~

Where 6 (%, 1) = ¢;{x)—&(x, t), the normalization is NV, the variational parameters are the condensate
A(x) =< ¢ > and its conjugated variable 7(x,t} =< 7 >; quantum flluctuations are represented by
he other parameters, being A symmetric and B hermitian ( considered to be real} because the density
matrix itself is hermitian. B is the amount of mixing of states in p, its non zero value means that the
system is not at zero temperature, it can be thermalized or not.

In the gaussian approximation at zero temperature the density matrix is composed by pure states

and it can be written in terms of the wavefunctionals U so that:

plor, da] = T [dn] ¥ [2] (4}

The mean value of an operator () was taken to he
<0>= [Dg) Oplpn. )
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The density matrix obbeys the Liouville equation which, for non explicit time dependence, reads
)
?,Ep ={H,p|. (6)
In the following we use some mean values, for instance:

<RI >= s gy o) + 500

< w(xerl)y >= 5 (A ~ Brkigle,x) + A0 (x) + (A,.m.A;) %) o
H 1%

1
< {bi(x)ﬂj(x) + m(x)qﬁj(x) = —Af.mi,j(x,x) - m-AI:,;(X,x)'F
=) (%) — Ti(x)d5(x)
In order to keep the Liouville equation, we deduce the equa.tioné for the real and imaginary parts

of the variational parameters. They read (repeated index mean integration in that variable)

BAr(x,y) = (A1(x,2)Ar(2,¥) + Ar(x, 2)As(2,¥))

BArx,y) = — (~A3(x,y) — BROx,Y) + AR(x,y) —T'(x,¥))

& Br(x,y) = 2(ArBgr + BrAr) {8)
Buf(x) = —7(x)

87(x) = T(x,1)3() - 3760

Where &, means time derivative and [(x,y) = —A -+ (mg +4G(x,x) + %é(x)ﬂ 3(x —y). In this
approximation the interaction term b¢* becomes quadratic, le., it contributes to a self consistent
mass. This procedure yields the same equations of mouvement as those obtained in [8] using the
Balian Vénéroni method [11} where one has to consider also a prescription for the observable itself
and then to perform variations with relations to the parameter of this new variational functional.

In order to keep contact to usual gaussian approach at zero temperature or not [8, 9], we identify

the following variables:
Ap =G~ ! /2

Ar=2% 9
Bp=G7PeleT

For a translational invariant system, we perform a Fourier transformation like

Dlx,y) = i%)i" f dk D(k, ') exp(ik.x — iK'.y) (10)




Now we can rewrite the equations in the following form in which the variables are simultaneously

diagonalized
G = 2G D + 2Gp T .
- 1-& o 1pm 2, 2, b b2
£ = 20Ty + G167 - 2 (k rmit ) H(z,0) + 25 (1)
. b- .
By =— (k2 +mg + g¢2 + gH(T'::E)) the
Where
Hx,x) = fd?’plg(_-‘% (12)

With the above considerations we get £ = 0 for the third equation of (8), concernig Bg. This means
that given a thermal state at an initial time, it keeps its thermal characteristics. These equations, at
the limit £ = T == 0, correspond to the exact equations of motion of the O{N) model in the limit of
large N and when N =1 with a scale transformaion [4].

There is no exact analytical solution but several numerical approachs have been worked out for
zero and non zero temperature case {5, 12, 6, 7, 8, 9.

Taking the static limit G =¥ = B we pget the GAP equations for non zero temperature cases,
where the departure of this last state is done by the { parameter. We will adopt the pfescription
¢ = (coshBuwi)™! and Ap = wreoth(fwy), where 3 is the inverse of the temperature, remembering
that we are using natural units such that the Boltzmann constant is 1 (kp=1)and wg = VEE+ 2
with the physical mass g2, Then we arrive at an equilibrium finite temperature configuration. Still in

this case the Green’s function < ¢? >, in the symmetric phase, can be written as

fu
< P o= 1__4;6_()?(_2) - wik G + f(k)) (13)

where f(k) is the Bose- Einstein occupation number. To make contact with zero temperature case,
{¢ =0), we have 2wy = G;l. The above expression diverges and the renormalization will be done in

section 4 for the zero temperature limit.

3 External sources and response functions

N-point Green's functions may be related to the quantum response functions of the system to external
sources. We will introduce, in a general way, several sources as supplementary terms in the equation of

motion. This corresponds to consider the same terms in the action which yields the Liouville equation

given in [11, 8]. The small amplitude external source terms are given by

88eqe = [ dt f dxdy {${x}K(x,¥)d(y) + ($(x) L(x,¥)7(y) + 7(x)L{x, y)b(y})+

()M (x, y)n(y)} + [ dt [ dx {${x)J(x) + 7(x) T (x)} oo

The sources K, L, M, J; and J correspond to perturbations in the mass, current and condensate. They
cause dynamical deviations from their values on the minimum of the potential for the va.ria.tionai
parameters G, E, 7 and ¢, but not on the £ parameter which remains constant in the preseription we
have adopted. The L term comes from a Bogoliubov transformation and its issues will be analysed
bellow.

For very small amplitude perturbations the system goes away from the state of minimum of the
potential which is characterized by Gy, £ and ¢. Then, we consider the equations of motion {11)
around the state of minimum with G(x, t) = Go(x) + §G(t, x), B(x, ) = §2(x), ¢(f) = do + d(t) and
£ constant . We obtain, in momentum space, (to the first order in deviations and/ or sources ) the

following equations

. b1 - |
Wrp = BGkplen+ o)1~ €) 42 (6_ + é) (6G +2¢0dg) — K (é + ei) + (ex e ) M(1—£)
/ 1% I
+L((1+£) + (1+£))
= b < ¥ )
b= —3900G ~ (¢*+u")6d — T — 2B + Ju + 2L

(15)
With e = /A7 + 12 ( being &' = k +¢) and p? = m} + LH + £¢2.
For an adiabatic branchement of these local sources of small amplitudes ¢; we will suppose the

general plane wave form (for infinite medium)

< x, 1| K|y, t’ >= ege iy giloint
< x, | L|y, ¢ >= epe iax-yNeilutin)t
< x, My, £ >= epreia by gilwtinit )
J(x, 1) = ggeiaxgiwtin)t
Jn(X,t) = €g,€” X HwHimE

With momentum and energy transfer equal to q and w. Some of these sources may produce similar

effects to the interaction with other particles at a time £ = 0, this will be discussed elsewhere.

The induced responses of the field and fluctuations G are parametrized in such a way to have the




same time dependence of the sources

6G{x,y, t) = qe M=y g=ilwHin)t

dp(x, t) = Feriakgilwtint (17)

where o = 3, < ki§G /(1 —£)|k' > and, for an homogencous configuration, of the condensate 8 = 3.
With these plane waves prescriptions one can rewrite the equations of motion. They yield two coupled
quations for o and 5
g —$doa — e — 2exdo — ilw + in)les, + 20er)

g +mj + S(H(z,z) + #) — (w+ in)?

1 1 1 b = , .
G = (w-i-w)z (1= £8)(er + epq)? {(E;+ @) (&a-}- E%ﬁ—er{ —%EL(U)-FW)) 1o

€M
+—-2—(1 — E)eg + ek_,.q)}

ntegrating the second expression in k for éG' ,» we can solve the system of the two equations.

Next, we define the “mean field” propagator

i

Jy= —

VTP {win)? (19)

nd the mean field general polarizabilities {or transition amplitude for the I1y case)

1-¢)! 1
H‘s(w, q)=-2 f { : —
0 (2m)? (w4 i) — (1~ E2){ep + exaq)? \ &k Erigq
1 1 i

-2 f —+— (20)

(2“’)3 w + ”7)2 (1 - EZ)(Ck + E‘H—r])g 43 fktg

d*k €k F Chag

(.U
9 2 (27)3 {w +im)2 — (1 — €2) (e + £r1q)?

n the zero temperature case £ = 0 these integrals simplify a lot and will be analysed in the next section
nd in appendix B. At finite temperature these functions can be written in terms of fwy through the
ubstitution for ¢ indicated in the previous section.

We can note that the mean feld propagator differs from the bare one by the physical mass u?,
shich in the latter case would be the bare mass m3. In appendix A we show that the ITp polarizability
t zero temperature has the same form as the real part of the covariant Feynman polarizability for
he first order in perturbation theory over the tree level approximation and an imaginary part with
n opposite sign. This means that if one changes the bare mass by the gaussian rencrmalized mass
2 on the one loop polarizability we get the above integral for I1g{¢ = 0) different by a factor 2,

y definition. This is completely in agreement with the underlying ideas of the mean field approach

described in section 2 for the quantum fluctuations, where the mass p? plays the role of a mean field.

- This g function, as expected, has a logarithmic divergence while IT3 diverges quadratically. This

second function comes from a perturbation on the “kinetic term” ( 72}, but it cannot be necessarily
associated to time dependent behavior or divergences as we can see from the mean value < a2 >, In
both cases a cut off will be introduced in order to regularize the divergences, for which the expressions
are written in appendix B.

The final expressions for the generalized one particle correlation functions in the asymmetric phase
are obtained by the derivation of the induced fluctuation of the classical field with relation to the one

point- sources

= ﬂ i+ Hﬁ(w: q)
Slg.w) = 5~ 1+ b (w, ) (- bdZJa) -
Salg,w) = 98 _ 1+ §1l(w, q)

- [3]
deg, 1+ 811(w, q) (1 — b3 Ja)
Where this last correlation function, at zero temperature, reduces to Sy(g, w) = iwS(g,w).
For the dynamical polarizabilities ( two particle functions) one considers the variation of the

flzctuation with relation to its (two point) perturbation, for which one obtains

T{w,q) = do _  Hlw,g) (146 )
V=% 1+ 4115 (w, q)( 1 3 bJyg?)
505 H3 W, q
a(w,q) = 7~ = 7 + 201w, ¢) (1 - bJgd?) (22)
Mpr(w,q) = — = iw H’['(w’q) (1 + b¢2Jﬂ)
g 1+ $105(w, g) (1 — bJod?)

Where this last function at zero temperature reduces to s, = iwli.

Since classical and gquantum parts are “coupled”, we notice that in the asymmetric phase it is

possible to define “three point correlation functions”, such as for example:
2Jodo

éa
So(gw) = 5— =~ - 23
o(a.) dex 1+ 115w, q) {1 — bJog}) (23)
And also -
_ b 2¢0H9(wa¢1)Je
H¢(w, Q) = b >
de; 1+ LG, 9 (1 - 8Jp8%) ey
1 (LnJ ) = "Ji_ —iw 2¢0H0(U Q)Jﬂ
AU Fe, 1+ 2T (w, @) (1 — 6J0@?)
Where this last function af zero temperature reduces to Mz (w, q) = —iwlly(w, q).

These “three point functions” are zero in the symmetric phase and directly proportional to éo (it

is interesting to remember that in the mean field approximation in the asymmetric vacuum one has

7




2 = 3u2/b). In fact, they represent the fact that both parts of the field, quantum and classical, are
coupled” and “interact” between each other.

The zero temperature symmetric phase case for the polarizability II{w, ¢) has been studied in [10].

1 this case we obtain: q
Saw)=-h= 553
I v (25)
0("‘)) Q)
14 %Hn(w,q)

1 this case S{w, g) reduces to the mean field propagator.

H(waQ) =

Expressions {21,22) show correciions to the gaussian case for the 2 and 4 points correlation func-
ons. This is clear if we look at the resulting un-renormalized mass, as the inverse of the propagator
1 the static and homogeneous case, following {21)

2 o1+ %ﬁg(q,m -3 0) (26)

ree = M Y bE (g, — 0)
Vhere TI is defined as
To(wr ) = Taf,q) (1 - b¢*Jo) (@)
h the next section we will perform the renormalization for the zero temperature case (€ = 0) and
hen we will see that the divergence in Il present in the above expression is absorbed in the coupling
onstant redefinition like &1Tg — ARIIE.
The curves corresponding to the functions IIy and 3 at zero temperature are showed in figures
, 2 and 3 for the values m = 100MeV, ¢ = 1fm~l, b==6and A = 10fm~! in function of w. As
xpected, the imaginary parts of these functions become non zero at the threshold, for which point
he real parts also show a change of the behavior. It js important to note that there are divergences
1 the numerator of some expressions, like for II,. This means that these expressions are not (re)
ormalized. For some of then, this “normalization” just coincides with the renormalization of the
oupling constant, for others we have to consider a more general expression, as for example that of

he T-matrix (done in [10]) to make it finite. This problem is addressed in the next section.

i  Renormalization

n the asymmetric phase, TI at zero temperature may be written as
2452 2
Mo (w, ) Srtrs
Mw,q) = ey (28)
g me + 5Tlg(w, q)

. ¢?+a —w

8

Where one has defiried 4% = 42 — b@Z, that, with the relationship ( #2 = 3u2/b) from the asymmetric
phase, becomes i® = —~2u% and also in this phase i = 4p2. At the symmetric phase we have
A% = g% = p?. Logarithmic divergence of function Ig{w, ¢} may be eliminated with coupling constant
renormalization. Thus we rewrite the denominator (28) as

2,2 2 f %
g+ —w X 4442 1——;‘“—5_ +1 2
‘ = { 1- % Loy( =1 )—Log(z'u )} (29)

Py T o W - o
wé—g

Where m? is a scale factor. One has defined the renormalized coupling constant in asymmetric phase

in the limit

r..2 1., 4A2

e B 16n2 U ImE (30)
In the symmetric phase the flot of Ap has been already calculated in [10] and is given by

12 2
N W

e b 16x7 (31}

em?
It corresponds to the limit ¢ = 0 in equation {29), ie., i = p. We note that when the cut off goes
to infinite the bare coupling constant must go to zero in order to keep a finite renormalized coupling
constant. In the symmetric (asymmetric ) phase it goes to zero from the negative (positive ) value.
This agrees with Kerman and Lin’s calculations [10] and also with that of [3].

After these remarks, we can note that the numerator renormalization of ITg{w, g) comes directly
because the reintroduction of & in equation (18) results b.0Iy(t, ¢} which has been made finite.

It is worth to emphasize the agreement with the results of [10] by establishing the relationship of our
function Il(w, g) in the symmetric phase and the T- matrix from that cited paper. The denominator is
clearly the same ( Kerman and Lin call it A*), and the difference comes from a normalization factor
which is not present in our caleulation but which can be obtained if we replace the expression for « in
equation (18) as stated above. We also consider a factor v, so that §G{w) = v(k' —k— q) + G (w).
The above substitution results the T matrix without the factor h{g, k+k') given in [10]. Tt is interesting
to remember that the two particle correlation function IT was obtained by considering a mass (mean

field) perturbation.




4.1 Pr{jpertiés
All the n- point correlation functions at zero temperature have similar properties since the denomina-
tors which give the analytical structure are equal to '
1/ Jo =w?— ¢® — p?
Iy=1+ Eﬁu{wa q) (1 - b@’“)gjo) e
4
At finite temperature these analytical properties are medified because the presence of the factor
(1- £)?, but no analytical solution were obtained, remaining this study for a future publication.

Here we use the unrenormalized expression. This causes no problem since, due the behavior of
the renormalized coupling constant, this model can be regarded as an effective theory where the cut-
f is fixed according to the physical content and scale of the system. Otherwise we could appeal
o the “precarious renormalization” suggested by [3]. Besides that, expressions (30) and (31) relate
renormalized and bare coupling constants to each other in both phases of the potential. As peinted out
sefore, the complete renormalization with the cutoff sent to infinity induces a trivial model, although
won trivial effects may be present [3].

The imaginary part of a Green's function come from unitarity requirements and it is associated to
eal transitions. The value of the frequency above which they become non zero is the threshold given
wy wi = 4u® 4 g% According to the above formula ITg and I3 (at zero temperature) tend to a non
ero constant value for large w values.

The poles of polarizabilities correspond to bound states. In order to study their existence, we

:onsider the renormalized dispersion relation which reads

2
1 g% +p?—w? 1 452 ‘flfu%iq +1 2u2
MNP TP et 1677 lfwz-w alog 437 ~Log em? (33)
g+ R g J1- e -1

The right hand side function is always positive and small and this expression may have a solution for

ome values of Ag [3, 10]. In the asymmetric phase (@ = —24) it is possible to have bound states for
ome values of Az > 0 although for this phase the potential would not be stable [3, 10}. However we
\ave to keep in mind the fact that its non zero value (of b or Ag) is directly related to the cut- off and
he last fixes the former.

In the limit of ¢ — oo, the renormalized denominator of the polarizability Tl{g,«) in expression
29) goes to infinity and thus the dynamical scattering amplitude goes to zero. This also happens

when the frequency tends to infinity (e — oo).

10

In the asymietric phase one can rewrite the expressions of §(¢,w) and I¥{g,w) as

1+ Bl (e,
S(g,w) = Jo W)
I+ ZHO(W’ q) (34)
_ HU (W: Q)
Mw,q) =
1+ §p(er,q)
Where we have defined
Ilo{w, q) = Ho(w, q) (1 + be'SQJo) (35)

We see that the presence of the condensate “re-normalizes” the bare polarizability ITp{w, ¢} through
T, and ﬂo . This causes important effects as we have noticed in the renormalization.
It is also possible to establish several relationships among the non renormalized generalized corre-

lation functions. For example:

_ 6 _ oG | by
s=2%- Jg(l b56K+1+kﬁJ) (36)

At the threshold of the imaginary part {when w? = 4%+ ¢?) the polarizability in symmetric phase

is exactly equal to IIl{w = w,) = 4/

4.2 Time evolution and Bogoliubov transformation

Response functions to perturbations L and J; are proportional to iw and may diverge for large
frequencies. This proportionality at zero temperature reduces to a more general result which is a

consequence of the following property:

Hgr{g,w) = =G (g, w)
Sxlg,w) = —8i5¢(g,w)

(37)

Thus, to find IL;4 and S, means to explicite the temporal evolution respectively of the 4- point and
2- point correlation functions. It clearly corresponds to a Bogoliubov transformation of the following

form {and correspondent transformations for the field $ and #):

b = fro:+ f-a] (38)
b = fta; + f1al

11




where fyn are complex numbers which values are respectively given by (for the case of the first

-expression of (37) )
1 1 fywL L
Tw 7t 4y + Vaw
1 1 (JwL L

= o0 5 +1 4“2 ,__...4w

We have considered again that the source amplitude (¢;) is infinitesimal and also neglected terms

(39)

which would come from the quartic interaction of the model in the transformation of the order of
@*mer. These other terms would introduce another contribution to the 14, function. Conjugated with
this, one would introduce other sources which would allow us to study particle production through,
for example, six- point correlation functions. This remarks are valid for the S, result which alse
correspond to a time varying correlation function. We note that this time dependence of the one and
two particle correlation function do not show additional ultra violet divergences, although they may

exist [9].

53 Conclusion

The calculation of generalized n- point correlation functions for the A¢? model taking into account
corrections to the gaussian variational approach has been performed. These functions were obtained as
response functions to different external sources corresponding to several parameters which determine
the static and dynamical configurations. The calculation has been performed in a self consistent way in
both phases of the potential. We have noticed the possibility of defining 3- point correlation functions
in the asymmetric phase. Logarithmic ultra violet divergences were eliminated with coupling constant
renormalization. In the symmetric phase the bare coupling constant tend to zero from the negative
side while in the agymmetric phase it goes to zero from the positive side, keeping at this level of
approximation, in 143 dimensions, the triviality of the model. A perturbation to < 7w > term in
the action introduces quadratic ultra- violet divergences. However, this quadratic divergence does not
come necessarily from temporal evolution.

. “Current” perturbations, which corresponds to perform a Bogoliubov transformation produces
imaginaryA responses, and they vield the time dependence respectivelly of the one and two particle

Green’s functions.

The dynamical polarizability II(w, ¢) indicates that there may be bound states in the asymmetric

12

phase of the potential depending on the renormalized coupling constant value whicﬁ, in fact, depends
on the choice of the cut off or mass parameter scale 1, since this model is an effective one and the
cut- off has to be chosen to fix a scale if one does not adopt the precarious renormalization [3, 10].
The definition of sum rules at finite temperaiure for these bosonic systems would be very usefull to
the application of this formalism to phenomenological examples, either in ultrarelativistic heavy ion

Physies, condensed Helium-4, etc.
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Appendix A: “Free” and mean field polarizabilities

We have calculated the retarded response functions, i.e., backward in time propagation. In partic-
ular the polarizability in the gaussian approximation, IIg{w,¢), in this non covariant formalism, can
be directly related to the covariant one at the one loop level pertarbation theory, It {w, g) {13], unless
for the fact that in the first we have the renormalized mass while in the second we use the bare mass.

This has been discussed in section 3.

In this work we have used the non covariant form of the “free” polarizability given by:

dk 1 1 1
Tho(w, q) = — f : LA Al
ol ) (2713 (w + )2 — (ek + €ktq)? (ek ek.;.q) (A-1)
The covariant form, corresponding to the one loop two particle scattering amplitude, in terms of
the four- vectors (p = (w0, k), @ = (w, q)) is given by:

[ dip 1 1
Q=i o= T 0 -+ 2

By performing the dwp integral in the above expression we found that these two expressions are

related by:
%nF = RelL — iSmIIE (A.3)
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Being only the sign of imaginary part different. This can be verified simply by integrating out.the

time variable in the expression of [If' and substituting the bare mass by the renormalized one.

Appendix B: Analytical integrations of the functions II; and I3

The I, integral in function of a cut-off A results

2 2 1—5‘5:-—{-1
Rellg(q,w,A) = 78T'lr2 (1 —In (%2—) —4f1 - %—n +
t-gr -1 (B.1)
2 _ 4,2
- Smllo(q,w) = *'8171_ i@é& (w? > ¢* + 447

Where Q¢ = w® — ¢%

In the IT3 case we obtain semi analytical formulae for the general expression

A
Rella(g,,4) = —oss [ ki {flh+ 907 + 2 = k= 07 + w2

we , ju? = (wp + k= )"+ p?f
—L
T2 YA ot BT ) -
Bl P VA R | LT | O et S VA L | ) (B-2)
2 w+we+/(k+ g2 +p? w—wp —/(k+g)* + 4
1l w fw?
SmH;;(qzl),w):A;ruiIa me'cﬁ

For some limits we get analytical expressions for the real part of II3 like whenw —+ 0 and ¢ = 0

. 1 (A 2 A+ AT+ 2
limy, 4Tl = TARE (EVAz + p? - %ln ——;‘——MD
w? —4A2 )

w2
f1] 1.M. Cornwall, R. Jackiw and E. Tomboulis, Phys. Rev. D 10 (1974) 242.

(B.3)

. 1 A? WP
lzm,,..,oﬂg = ;2' (—'—8— + ?3‘2‘1?1
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Figure Captions

Figure 1: Real (solid line) and imaginary (dotted line) parts of function Ty(w, ¢} in function of

Figure 2: Real part of function Il3(w, g), in function of w.

Figure 3: Imaginary part of function Ila(w, ¢), in function of w.
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