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Abstract

The modal and nonmodal linear properties of the Hasegawa-Wakatani system are
examined. This linear mode! for drift-waves in a plasma is nonnormal in the sense

of not having a complete set of orthogonal eigenvectors. Nonmodal time-dependent

‘behavior can be important in nonnormal linear systems. The degree of nonnormality

of the Hasegawa-Wakatani system depends strongly on the adiabatic parameter and

the time scale of interest. On a given time-scale, when the adiabatic parameter is less

. than a eritical value, the drift-waves are dominated by nonmodal effects while for values

of the adiabatic parameter greater than the critical value, the behavior is that given
by normal mode analysis. The critical adiabatic parameter decreases with time; modal
behavior eventually dominates. For small values of the adiabatic parameter and short
time scales, the nonmodal growth rates, wave nuinber and phase shifts (between the
density and potential fluctuations} are time dependent and differ from those obtained

by normal mode analysis.



1 Introduction

A fundamental issue in fluid dynamics is the question of how laminar flows become unstable
and eventually turbulent. A method of studying instabilities is to consider the time-evolution
of a perturbation of the laminar flow [1]. In general, the evolution of the perturbation is
described by a nonlinear system. For small perturbations, the nonlinear system can be
approximated by a linear system. When the background flow is time-independent, an eigen-
mode (“normal mode”) analysis of the linear system identifies exponentially growing and
decaying perturbations. The dependence of these exponential growth rates on the geometry,
the Reynolds mumber and other parameters allows the theory to make predictions concerning
the structure of observed waves of finite amplitude.

Normal mode analysis has been applied to many fluid dynamic stability problems with
great success. However, there are some notable cases where the results of normal mode
analysis fail to correspond with observed temporal variation and spatial structure of real
flows. In particular, normal mode analysis predicts a transition to turbulence for some flows
at a much higher Reynolds numbers than that seen in experiment. Attributing this failure to
the linearization of a nonlinear problem has led to the development of theories which modify
or just eliminate the need for linearization (see e.g. [2, 3]).

Recent studies have shown that for many problems of physical normal mode analysis only
gives a partial description of the properties of the linear perturbation equation [4, 5]. When
the eigenmodes of the linear system are not orthogonal, or equivalently when the system
is nonnormal, the solutions of the system may present behavior quite different from that
suggested by normal maode analysis. For example, perturbations can be amplified by factors
of thousands in nonnormal systems even when all the normal modes of the system are stable
[6]. The possibility of amplification of perturbations in nonnormal flows has beer known for
a long time, but only recently have computational resources made it possible to calculate
the magnitudes involved (see [7] and [4] and references therein). Recent applications of
nonmodal analysis applied to physical problems are nonmodal growth in in atmospheric
flows [8], atmospheric turbulence models [9], stability of the Orr-Sommerfeld {10], models

for the transition to turbulence [11], and methods of controling turbulence [12].

In this work, we apply the nonnormal analysis to study the linear properties of a drift-
wave turbulence model. The study of instabilities in plasmas is heavily based on normal
modes analysis [13] and variational methods such as the Energy Principle [14]. Nonlin-
ear stability bounds have been obtained for magnetohydrodynamic flows (see e.g. [15, 16]),
though the stahility bounds are in general very low. The importance of nonnormality in the
stability of plasmas has been studied in a few cases (see e.g. [17, 18]). .

Drift-wave turbulence is considered to be a possible cause of anomalous transport in the
cool plasma edge region of tokamaks [19]. The Iasegawa-Wakatani model consider here [20,
21] has been extensively studied in bi-dimensional [22, 23, 24] and tri-dimensional numerical
simulations [25, 26]. The role of nonlinearity in drft wave models has been examined by
comparing the linear behavior given by normal mode analysis with the nonlinear numerical
simulation. As a first step in understanding the full nonlinear system, we consider the
linearized bi-dimensional Hasegawa-Wakatani equations and study how the nonnormality

affects the linear properties of the system.

2 Nonlinear Model

The model of our studies is the Hasegawa-Wakatani system [20, 21). We consider two-
dimensions fluctuations, perpendicular to the static equilibrium magnetic field B = Bz;
magnetic fluctuations are neglected. A nonuniform equilibrium density ng with density
gradient dng/dz in the negative z direction is considered, such that the equilibrium density
scale Ly = ng/|dnp/dz| is constant. The ions are cold and the electrons are isothermal,
T; <« T, = T. Therefore, temperature gradients and fluctuations are neglected, as well
as finite Larmor effects. We assume that the fluctuation length scales satisfy the usual
drift ordering & < k). The equations for the time evolution of the density and potential

fluctuations are two coupled nonlinear equations given by [20, 21]:

%Viq&ﬂzxvm)-wvigs = C(p—n)+D? (1)
%n+(2xvm)-vin+% = C(¢p—n)+ D", @
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where the usual dimensionless variables are

z Y Cs : =
zT——, 4y —, t+t— 3
Ps v Ps Ly ( )

and the normalized potential and density fluctuations are

qSﬁé%é%,n—}%%; (4
ps is the drift-wave dispersion scale (o2 = c2M;T/(€2B?)); ¢, is the sound speed (c? = T/M;).
The adiabaticity parameter C, which couples the equations linearly and determines the
character of the system is defined as [22, 23]
.
nee?B? ¢y /Ly

(5)

In the limit C >> 1, the electron response is almost adiabatic, meaning that the fluctuations
of the density foIlow very nearly the fluctuations of the potential. In this limit, Eqs (1)
and (2) reduce to the Hasegawa-Mima equation [27]. In the opposite limit, ¢ < 1, Eq. (1)
reduces to the Navier-Stokes equation, by which density fluctuations are passively advected.

The viscous and diffusive dissipation terms D? and D", respectively, are chosen to have

the form
D = V8¢, D" =uvVin, (6)

in order to confine the dissipation to the smallest scales resolved in the system. The
Hasegawa-Wakatani system is a simple model! for drift-wave turbulence in a collisional plasma
with a magnetic field without shear. It is an autonomous system describing the excitation
and damping of modes in terms of a few collisional parameters, leading to a stationary level
of turbulence without need of external forcing [22].

We usually choose times in our study of the order ¢t = 10, ¢ = 50, ¢ = 100, as we want
to compare our work with previous numerical simulations of the bi-dimensional Hasegawa-
Wakatani system [22]. In these numerical simulations, there are two phases, a linear phase

followed by a nonlinear phase with a stationary turbulent regime.

3 Linear .Mogde'l

To study the linear properties of the system of equations (1) and (2), we neglect the nonlinear
terms and expand ¢ and n in a double Fourier series in z and y. For any wave number pair

k = (k,, k,) the time evolution of the Fourier components of ¢ and n have the form

Euk = Akuk s (7)
where
U = ( i: ) , (8)
_ —C/k? — pyk? C/%*
Ax = ( Liky +C —C— vkt ) )

B o= JE2+E2. (10)

There is no coupling between distinct pairs of wavenumbers. This property reduces greatly
the numerical cost of analyzing the problem.
Assuming that the time-dependence of the perturbations is exponential, e.g. ~ e%,

reduces Eq. 7 to the eigenvalue problem
(71— A)u=0, {11)

where u is the vector containing all the Fourier component u, and A is the block-diagonal
matrix with entries Ay; if the number of modes in &, and k, is V then u is a vector of length
aN?% and A is a 2N? x 2N? matrix. Equation (11} has a nonzero solution only if -y is an
eigenvalue of A. The normal mode growth rate G, is calculated by finding the eigenvalue of
A with the largest real part. The linearized Hasegawa-Wakatani equations have been studied
using such normal mode analysis (see e.g. [22]). However, an analysis of the linear system
including time-dependent, nonmodal behavior, or an analysis of the approzimate solutions
of (11) has not been done yet, as far as we know. Therefore, a distinguishing feature of this
analysis is that we do not take an exponential time-dependence.

The range of behavior possible in this model and the need to account for both modal

and nonmodal behavior can be seen by considering two extreme limiting values of C. First,
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for € > 1, neglecting all terms that do not contain C gives

d ng
and
d ni o 2C 'nk .
il B) =g (%) 9

the adiabatic limit with pure exponential growth. The other extreme € = 0 gives ¢y = const.
and ny = —ik,i¢y + const., nonmodal algebraic growth. For intermediate values of C we
expect to see a mixture of modal and nonmodal behavior.

The fundamental reason that (7) may present behavior different from that suggested by
the eigenvalue problem of {11) is that the matrix A is nonnormal. That is to say, it does not
have a complete set of orthogonal eigenvectors or equivalently it does not commute with its
adjoint. Since both the notion of orthogonality and adjoint depend on the choice of inner
product, it is necessary to use an inner product coming from a physically relevant norm. The
most obvious choice of norm || - || is that coming from the total energy of the fluctuations £

given by
B=g [ @2 (V6P +r) = 5 3 (6% +rd) (19
2 2 < ’

an invariant of the purely nonlinear Hasegawa-Wakatani system [22]. It is a direct calculation
to verify that the dynamical operator A, which describes the linear evolution of the Hasegawa-
Wakatani system is a nonnormal operator with respect to the energy norm.

The basic quantities used in our investigation of the linear Hasegawa-Wakatani system are
the ratio £ of the energy of the fluctuations at time ¢ to the initial energy of the fluctuations

defined by

_ @l

and the growth rate J(t) defined by 8 = ¢~ In¢. The ratio £(t) depends on the initial energy
of the fluctuations u(0) and time. We shall examine the energy growth ratio £ (t) for several

choices of initial conditions using subscripts to distinguish the various choices. We use the

notation &(#) to indicate that uy is taken to be the eigenvector of A whose real part is .

" Then

Eoft) = . (16)

Note that B = t~! In&(t) is the normal mode growth rate and is constant in time. We use

the notation £(t) for the case where u{0) is chosen such that £ is maximized, i.e.

L@l
SO =u Lol uo
The quantity & (z) is related to A by &(t) = |e™]|. Tf A is normal, £ (£) = &(¢) for all time.

More generally, £;(t) > £{t) though in the limit of large time [29]

lim Bult) =B (18)

It is important to note that when the growth is nonmodal, the initial value of the fluctuations
that produces the maximum growth at a particular time will not necessarily be the initial
value that produces the maximum growth at any other time. Therefore, to see the behavior
of a single choice of initial fluctuation value, we define the following energy growth ratios:
&3(t)—the initial condition is chosen to produce maximum growth in the limit of large time,
&3{f)-the initial condition is chosen to produce maximum growth at a specified finite time 7,
and £4(f)-the initial condition is chosen to produce maximum growth in the limit of small
time. Recall again that for normal systems all these growth ratios coincide. The final measure
of the energy growth &;(¢} is obtained by considering the expected time-evolution of random
initial conditions. Details of the calculation of these ratios are given in the Appendix.

In Section 4 we investigate the various energy growth ratios and examine how they depend
on C and on the time-scale. We performed some tests with our calculations and concluded
that our results are not dependent on the number of modes, when a reasonable number of
modes is considered. We choose in most of our calculations the number of modes N = 32,
as when this number is increased, there are not any further changes in our results. The
value taken for the dissipation is in most cases » = 10~5, which is the order of magnitude of

considered in numerical simulations [22].



4 Results
4.1 Spectra and Pseudospectra

In this section the transient growth properﬁes of the dynamics are shown to be connected
to the pseudospectrum of A. The set of eigenvalues or spectrum of a matrix A is the set
A(A) of complex numbers z such that (z] — A} is singular. In Fig. 1(b)-(d), we show the
spectra (in black), for C = 1075, C = 1073 and C = 1. The values of the modal growth rate
By can be simply read from these plots. The modal growth rate has a strong dependence
on C, as already noted in [22]; the values of the spectra and the form of the spectra change
with €. The pseudospectrum of a nonnormal matrix may provide more information than its
spectrum [10, 30]. The pseudospectrum is defined as follows. The complex number z is in
the e-pseudospectrum A (A) if z € A(A + E) for ||[E|| < ¢. Note that Ao{A) = A(A). If
z € A{A) then it is in some sense an approximate eigenvalue, in that, there is some vector
u such that ||Au — zufl <e.

Analysis of the pseudospectrum gives stronger conditions on energy growth than does the
spectrum. Roughly speaking, the encrgy growth depends on how far the pseudospectrum of
A extends into the right half-plane. This idea is made explicit by defining the extension a(e)
of the pseudospectrum into the right half-plane by

= Rez. 19
afe) = max Rez (19)

Note that a(0) = B is the growth rate given by the normal mode analysis. It can be shown

that [10]

— (0
max ”eAt” 2 max Meﬁot . (20)
>0 0 €

Hence, if (afe) — a(0)) /e > 1 there are fluctuations that grow more than predicted by normal
mode analysis.

The calculation of the e-pseudospectra is computationally expensive. An estimate of
Ac(A) can he obtained relatively inexpensively using a Monte Carlo approach. The eigen-
values of (A + E) are calculated where ||E|| = ¢ and E is a random complex matrix whose

entries are independently distributed Gaussian random variables with mean zero and unit
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Figure 1: (a) The quantity {a{c) — a(0))/¢ plotted as a function of € for € = 10~° (solid-
line), ¢ = 10~% (dotted-line) and C = 1 (dashed line). The spectrum A(A) (black) and -
pseudospectrum A (A) (gray) for (b)) C =10 and e = 107" {¢) C =102 and ¢ = 3.2 x 1073
and (d) C = 1 and e = 10~!. Panel {d) shows only the most unstable branch of the spectrum.
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variance. Repeating this procedure for many reéliz&tions of E gives an estimate of A(A).
Figures 1(b) - (d) show Monte Carlo estimates of the pseudospectrum (in gray) using 10
realizations for particular values of . In Fig. 1(a) the quantity {(a(e) — a(0))/¢ estimated by
the Monte Carlo method using 50 realizations is plotted. Figure 1(a) shows that the cases
C =107% and € = 1073 produce transient growth that is a factor of respectively 45 and 6.8
greater than the normal mode exponential growth {see (20)). For € =1, (a(e) —a(0)) /e = 1,
the same as for a normal matrix. This result combined with the previous remarks shows
that for the case € = 1, the pseudospectrum does not predict energy growth greater than
that given by normal mode analysis.

For the cases C = 1075 and € = 1073, the quantity (a(e) — «(0))/e = O (¢7F) for values
of € that are not too small (10~% < ¢ < 1) with p = 0.35 and p = 0.40 respectively. Such
non-analytic (fractional power) dependence of the eigem}alues on perturbation size is typical
of nonnormal matrices{31]. For very small values of €, the behavior is more complex. A
reason for there being two types of behavior is that the most sensitive eigenvalues (large
{ex{€) — a(0))/€) are not the most unstable eigenvalues (a(0) = f, large). For relatively
large €, perturbations to the most sensitive eigenvalues of A dominate the calculation of
afe). However, if the highly sensitive eigenvalues are not the most unstable ones, then for
small enough values of ¢, {o{e) — @(0))/e will reflect the properties of the most unstable
eigenvalues, i.e. those closest to a(0). Numerical calculations {not shown here) support this
explanation. The relevant consequence of this point is that enhanced nonmodal growth is
due to a different part of the spectrum (different wave numbers) than that which produces

maximum modal growth.

4.2 Energy growth ratios

We now examine in detail the various energy growth ratios. Figure 2 shows the time evolution
of the energy growth ratios £yo_gj{t) for ¢ = 107%,107%,0.1,1.0. First, we discuss some
features of the modal growth & () and maximum growth & (¢) curves. For large time the
relation B (f} = fo must hold, Le. &(t) and £ (¢) must be parallel. The time required for
Bi(t) to approximate fy depends on the adiabaticity parameter C; for large C (0.1 and 1.0),
&(t) and & (#) are virtually indistinguishable for all values of ¢t. Figs. 2(a) and 2(b) show

i1

' that for ¢ < 50 and small C, B1(t) and So(#) are quite :diﬁ'erent. For the case of C = 1075, &(t)

and &;(¢) are still not parallel at ¢ = 100; for ¢ = 1073, the energy ratio growth rate relaxes
to the modal one at about ¢t = 50. The increased nonmodal small-time growth causes the
difference between the curves & (¢} and £,(2) at £ = 100 to be @{100) and O(10) for £ = 1075
and C = 0.1 respectively. We note that the lower bounds obtained from the pseudospectra
and (20) are satisfied.

The energy growth ratio curve £,(t) shows the time evolution of the energy of fluctuations
whose initial values are chosen so that ¢ coincides with &, (¢} for large time. As shown in
the Appendix, the wave number k of these fluctuations is the same as that of the modal
instability. However, the partitioning of ¢y and ny is such that enhanced {compared to
modal} growth is achieved [32]. In general, the limit £(2) — £ (t) is satisfied only in the
limit of large time. However, for this system, only for the case ¢ = 1073 is there visible
difference between the &(t)} and & (¢) curves. An explanation for this behavior is that for
¢ = 10 the wave number of the modal instability presents relatively weak nonmodal
instability while in the other cases, the wave number of the modal instability also presents 2
strong nonmodal instability. In the next section we examine in more detail the wave number
dependence and confirm this explanation (see Fig. 3(b)). The energy growth ratio £(t)
shows the time evolutio.n of fluctuations whose initial value are chosen so that &(r) = & (r)
for 7 = 100/3. For the case € = 1072 and for ¢ > 50, &(¢) grows with a rate less than
the maximum modal growth rate, indicating in this case that the wavenumber leading to
maximal finite time growth is different from the wavenumber at which the maximal modal
growth occurs. Only for the case C = 1072 is there visible difference between the & (£} and
&s{t)curves for the same reasons mentioned above.

The curve £4(¢) shows the evolution of fluctuations with maximum initial growth, ie.,
£4(t) is tangent to &(¢) at £ = 0. Maximum initial growth does not lead to long time
maximum growth. In all the cases, £,(t) eventually grows at a rate less than the modal
growth rate . This behavior implies that for all the values of C considered, the normal
modal analysis does not identify the wave numbers which present maximum short-time
nonmodal growth. For the case C = 107° the growth of £4(2) is not 00 much less than &(z).

Later we show that this is due to the relatively weak dependence of the nonmodal growth

12



rate on the wévenumber.

A curve of special interest is that of £5(t), which to corresponds the time evolution of the
expected energy for random initial conditions. Intuitively, this would seem to be a reasonable
model of what happens in experiments; all the modes are excited, rather than one particular
mode. Looking at Fig. 2, we note that for small values of € and small time, &5 follows well
the & curve. This behavior suggests that for these values of C and time-scales, nonmodal
growth is not isolated to a few wavenumbers but is a broad-spectrum phenomena, as will be
confirmed later. Eventually, £5(¢) must be parallel to & as modal behavior dominates. In
general, & will be less than & since the ensemble average is over all wave numbers and modal
instability is found only at a few wave numbers. Fig. 2(b) shows quite clearly the transition
of & from nonmodal dominant to modal dominant behavior (not shown here but eventually
£5(t) is indeed parallel to &{¢)). Figures 2(c) and 2(d) for C = 0.1 and C = 1 respectively
show that without broad-spectrum initial nonmodal growth, the expected energy of the
random initial condition requires some time before the effects of the modal instability begin
to be seen. This phenomena of random initial conditions requiring time to “organize” before
growing is well-known in the meteorological community and has generated several techniques
to calculaté “optimal” random initial conditions for ensemble forecasting [33, 34]. Again in
this case as the modal instabilities are confined to a few wavenumbers and the average is
over all wave numbers &5 is less than &;.

In summary, the general features are that for small values of C the normal mode growth
rate and associated time-scale do not give a complete picture of the linear system; nonmodal
growth rates is larger than modal growth. Second, in all cases the normal mode analysis does
not identify the wave number at which maximum initial growth occurs. Third, examining
the response to random initial conditions shows that the nonmodal behavior is robust for
the small C case and that for large € the damped modes present lengthen the time it takes
for the system to produce modal growth.

An important point is that for C = 107°, the modal growth is small, suggesting a long
time scale, but the nonmodal growth is in reality much faster, as can be seen by the length
of the nonmodal phase (compare & and & in Fig. 2(a)). This was already observed when

we studied the turbulent system, while for small C a saturated turbulent state was reached
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Figure 2: Time evolution of the norms £1o_5y(t) (dotted, solid, dash-dat, dash-dot-dot-dot,
and dash) for (a} C =10"%, (b) C=10"3, (e} C =0.1,and (d) C = 1.
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rather fast, it took a long time to reach a saturated state for large values of C [22]. Therefore,

the nonnormality can have a strong influence in the linear phase of a turbulent system.

4.3 Growth rates

A number of the features seen in the energy growth ratio curves of the previous section can
only be explained by a more detailed examination of the wave number dependence of the
growth rates 4. In Figure 3 we show f;(f) (¢t = 10, ¢ = 50 and ¢ = 100) and f, as functions
of k, for k; = 0 and ¢ = 1075, € = 1073, € = 0.1 and € = 1. The magnitude of the
finite time growth rates for small ¢ and ¢ = 10 are slightly larger than those for ¢ = 0.1
(approximately the C that gives the maximum modal growth rate). This dependence on C is
exactly the opposite of that seen in the modal growth rate which is a decreasing function of
C. As the time ¢ increases, the limit 5;(t) — f, must hold. The rate of convergence of 5,(r)
to fy depends on €. For small C the convergence is slow; for C = 107 and € = 1079 the
Bt = 100} and /3 curves are quite distinct. As C increases, the time scale for convergence
becomes smailer. Also for large €, the convergence is nonuniform in ky; 1(t) — G first for
small values of k.

The fact that the modes corresponding to large k, are in reality growing (i.e. are not
damped} for small values of C even as larger times are considered (see Fig. 3(a)) may be
significant in nonlinear numerical simulations of drift-wave turbulence where there is coupling
between modes. If these modes were damped a certain spatial resolution would be enough
to study that case, however if these modes are in reality growing, the spatial resolution will
not be enough and this could influence the results of the numerical simulations.

In Figure 4 we compare f; and 5 as functions of time for two values of C, C = 10~°
and C = 0.1. The influence of the parameter ¢ on the modal growth rate f, is very strong.
However, for small time (¢ < 20) the nonmodal growth rates for the two cases are comparable;
in both cases there is enhanced nonmodal growth. We repeat this calculation in Fig. 5, to
compare the effect of two values of v on the growth rates ) and 3,. We notice that for
€ = 10~° (Fig. 5(a)) the difference of the growth rates 4 and 3, for v = 10~ and » = 0.1
is very small. By comparison, for C = 0.1 the difference of the growth rates for these two

different values of v is bigger, especially for smaller times. Therefore, we can conclude that

- 15

0.4 j 0.4
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0.15 0.10
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Figure 3: The growth rates $(t) (¢t = 10 (dotted); t = 20 {dashed); ¢ = 50(dashed-dot);
t = 100 (dash-dot-dot-dot)) and Gy (solid) as functions of &, for (a) € = 1073, (b) € = 1073,
{c)C=01land (d)C=1.
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Figure 4: Growth rate (t) and grow rate o, for € = 107° (dotted; solid) and C = 0.1 o.oo ‘ : : : 0.0
{dot-dash; dashed).

the influence of dissipation is more important in the adiabatic regime (bigger values of €) Figure 5: The growth rates §,(t) and f, plotted as functions of time for » = 105 (dotted;
and for smaller times. This role of viscosity is to be expected since for small € the the modal solid) and ¥ = 107! (dot-dashed; dashed) with (a) C = 10~ and {b) C = 0.1.
and nonmodaliy unstable wave lengths are long and while for for large C they are small (see
Fig. 3).
In Figure 6(a) we show the growth rates f, and $(¢) (# = 10, ¢ = 20, t = 50 and ¢ == 100)
as functions of €. For large values of C (C > 1) fy and 8 coincide for all values of {. For

small values of C, §; differs greatly from 3, (t). For small enough C, £{t} does not depend (a) (b)

on C and the € = 0 result of pure algebraic growth ~ k,t is recovered. Figure 6(b) shows the
wavenumbers corresponding to the growth rates in Fig. 6(a) as a function of . We denote
by k™ and &™*(t} the perpendicular wave number corresponding to the growth rates G,
and §,(t) (¢t = 10, ¢ = 20, ¢t = 50 and ¢ = 100). The behavior we see is the following.
At a particular time £, 57**{f)} = k" for values of the adiabatic parameter C above some

cub-off Coe(t). For € < Coe(8), kT**{t) ~ k"**(10). For values of € near the cut-off there

is transition conecting the modal and nonmodal behavior. The cut-off value C.y(t) is a

decreasing function of time.

Figure 6: (a) The growth rates £ (dot-dot-dot-dask} and £(f) for £ = 10 (solid), £ = 20
{dotted), ¢t = 50 {dashed) and ¢ = 100 {dot-dash} plotted as functions of C. (b) Values of
ke and k7°*(t) for the same values of ¢ (and line styles) plotted as a function of C.
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4.4 Phase shifts

A quantity of interest for transport studies is the the phase shift d. between ny and ¢y
defined by

b = Im log n} ¢ . (21)

In nonlinear numerical simulations, the phase-shift has been caleulated by averaging {21)
over realizations or in time. A normal mode linear phase-shift é9 is calculated by taking
7 and ¢y to be the components of the modal instability with wave number k. In analogy,
a nonmodal finite-time phase shift 61(t) can be calculated by using the components of the
nonmodal instability with wave number k. In Fig. 7, we compare the linear phase-shifts 8
and & (¢) for k, = 0 for various values of C and t. For all values of C considered (Figs.7{a)
- 7(d)) the nommodal phase-shift is initially larger than the modal one and for larger times
they tend to have the same values. The larger the value of C the faster this agreement is
reached; for € = 1 (Fig.7(d)) both phase-shifts already coincide for all values of &, at £ = 10.
In contrast, for ¢ = 107% (Fig.7(a)) the phase-shifts still differ at a time ¢ = 100. The
nonmodal phase-shift first agrees with the modal phase-shift for small values of ky and this
agreement reaches larger values of k, for longer times.

The linear phase-shift 6;(¢) found by calculating the expected value of Imlog nLgbk is
shown in Fig. 8; 82(¢) is calculated in the same fashion as &(t). In the limit of large time
05(t) also goes to the normal mode linear phase-shift as does x(t) (see Fig. 7). The finite
time values 43 (¢) are quite different from those calculated in Fig. 7 for small values of € and
small wave numbers ky. 6L(t) and &3(¢) only differ for C = 105 and € = 10~ and for wave
numbers k, < 0.1. In these cases d(z) is smaller than the normal mode linear phase-shift,
while d.(2) is larger than the later. For € = 0.1 time-dependence is seen only for short times
and large wave numbers. For C = 1 the phase shift is time-independent for the time-scales
shown.

The phase-shifts obtained here can be compared for ¢ = 0.1 and € = 1 with the nonlinear
phase-shifts calculated in nonlinear numerical simulation {22]. The linear and nonlinear
phase-shifts are very different for C = 0.1; in this case, the nonlinear phase-shift is strongest

at low k and drops towards zero elsewhere, a tendency that is thought to be due to the
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Figure 7: Normal mode linear phase shift 4} and nonmodal linear phase shift 6} (¢) (£ = 10,
t =20, 1 = 50, and ¢ = 100) as a functions of &, for (a) C =107% (b) C =107% {¢) C = 0.1
and (d) € = 1. Here p, = 0.005, N = 2000 and k, = 0.
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Figure 8: Ensemble averaged linear phase shift 63 (t) (¢ = 10, t = 20, £ = 50, and ¢ = 100) as
a functions of &, for (a) C =107%, (b} € =10"%(c) € = 0.1 and (d) € = 1. Here p, = 0.005,

N =2000 and &, = 0.
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turbulent advection, which tends to randomize the relationship between n and ¢. ForC =1

~ the nonlinear and linear phase-shifts have the same dependence on k, though the nonlinear

phase-shift is still lower than the lineay ones.

5 Conclusions

We have examined the modal and nonmodal behavior of the linear Hasegawa-Wakatani drift-
wave model. Nonmodal behavior can play a role in this system because it is nonnormal, i.e.
it does not have a complete set of orthogonal eigenvectors. The key parameter in the system
is the adiabatic paramter C. For ¢ > 1, the eigenvectors are complete and orthogonal with
respect to the energy inner product; normal mode analysis gives a complete discription of
the system. For C = 0, the system does not have a complete set of eigenvectors and the
growth is nonmodal. For intermediate values of C we have shown thaf relative importance of
the modal and nonmodal behavior is titne-scale dependent. Our main conclusion is that for
a given time-scale, there is a C,y;, such that for C < Ceit the behavior is nonmodal and for

C > Cuy; the behavior is modal. Detailed results supporting this conclusion are the following.

o The pseudospectrum of the Hasegawa-Wakatani system shows that for smail €, non-
modal growth is larger than the modal growth predicted by the specirum; this non-

modal growth occurs at different wavenumbers than the maxinmum modal growth,

s For C < 1, drift-waves with Bo = 0 have nonmodal growth rates comparable to the

modal growth rates of the most unstable drift-waves (C = 0.1).

* The nonmodal behavior is generally a broad-spectrum phenomena. A consequence of
this point is that ensemble averaged energy growth is greater for drift-waves with ¢ <1

than for drift-waves with ¢ ~ 1 where narrow-spectrum modal behavior is dominant.

» Fluctuations that grow fastest initially only maintain string growth for € = 10-%. Even
for € = 1, the linear behavior on very short time scales (¢ < 1) differs from the normal

mode analysis.
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Appendix

We introduce new variables ¥y defined by

wk = Ml/zuks (22)
where
1[k2 0
m=115 9 (23)
The advantage of these variables is that |ju|| = ||¢|l where )| - || is the energy norm and

{|  |l2 is the usual root mean square norm, allowing the use of standard MATLAB routines

to compute the various energy growth ratios. Equation (7) becomes
% hy = Bes (24)
at k = ks
where
B = M!/2ZAM /2, (25)

Note that A and B have the same eigenvalues and hence the same modal growth properties.

The energy growth ratios £ and growth rates 7 are computed as follows. First,

fo = max Rez, (26)
and 5[,(tj = efot. Then,
&) = [le™]l2- (27)
Then,
&ft) = le®yllz, (28)
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where y is'thé left eigenvector of B whose eigenvalue has real part J [5]. Then,

&(t) = fleP]z, | (29)
where v is the leading right singular vector of €87 [35]. Then,

&a(t) = lle®ulle, - (30)

where w is the leading eigenvector of (Bt + B) [4].
The growth rate ratio £(2) is computing by considering an ensemble of initial conditions

(0). In particular, suppose that the mean of the ensemble is zero

(¥(0)) =0, (31)

and that the covariance is given by

@O0 =Q, (32)

where @ is the covariance matrix; {-) denote average over initial conditions. Then, the

ensemble averaged initial energy is

(e (O)13) = (tr(0)p(0)) = tr @, (33)

and the expected energy at time £ is

&) = (OIF) = {trp@)H(O)")

34
= {tr BLp(0)p(0) ety = tr B QeBt . s

The simplest choice of @ and the one we use here is @ = 1/trl, ie. uncorrelated random

initial conditions with expected unit initial energy.
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