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Abstract

We discuss and compare the performance of three popular methods (cluster sum
cut, likelihood ratio and artificial neural network) for et /e~ identification using a
transition radiation detector in the environment of a hadroproduction experiment.

We evaluate each method with respect to its efficiency, background suppression
and robustness. Our goal was to find the best method for lepton identification in a
wide range of lepton momenta, from 10 to 300 GeV/ec.

1 Introduction

In this work we compare the performance of three different methods that pro-
vide e*/e” identification using the Transition Radiation Detector (TRD) of
E781 experiment at Fermilab [1]. In our experiment we measure the momen-
tum of the particle tracks that enter the TR region and this will be exploited
in our classification schemes.

The track classification using transition radiation detectors has to meet two
requiremnents: good efficiency in selecting the signal and good background re-
Jjection. The first requirement is crucial to ensure good acceptance for leptonic
events, the second one is vital specially when working in the presence of big
electromagnetic background.
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The TRD we are working with is made of 6 blocks each one composed by a
radiator (210 foils of CH;) and a Xe-CH, filled proportional chamber. It is
practically the same detector as described in Ref. [3], except that the size of
the strips was reduced to 4 mm.

The momentum region of the e* /e~ tracks under investigation is from 10 to
300 GeV/e, which corresponds to the growing part of the Transition Radiation
(TR) yield curve for pions [2]. Above this momentum it is more difficult to
distinguish pions from electrons using this detector.

To achieve appropriate background suppression as well as good signal effi-
ciency we have studied three different approaches. The fixst approach, known
as cluster sum cut, exploits the difference in the detector response for radiative
and non-radiative particles; the second approach is the likelihood ratio which
explicitly takes into account the v = F/m factor dependence of the detector
response function and finally we have investigated a Feed Forward Error Back
Propagation artificial neural network algorithm.

All these methods are simple enough to be suitable for use in the on-line/off-
line software of the experiment but as we will see in the following one of them
is more robust with respect to changes in the experimental conditions.

In Sec. 2 we describe the cluster sum cut method, in Sec. 3 we discuss the like-
lihood ratio technique and in Sec. 4 we present the neural network approach,
In Sec. 5 we compare the performance of each one of the methods with real
experimental data. Finally the last section is devoted to our conclusions.

Although we have studied these identification techniques with a certain de-
tector configuration in mind, our conclusions are valid for virtually any TRD
in the cluster counting operating mode, specially when operating under heavy
background conditions and used for identification of particles in a wide mo-
mentum range.

2 Cluster sum cut method

QOur TRD works in the cluster counting mode [2] in which there is a natural
way to distinguish et /e~ from other particles - the cluster sum cut method.
This is a statistical method based on the fact that charged particles with
high ~ factor (> 4000), the so called radiative particles, will produce sig-
nificantly more ionization clusters due to photoelectrons than non-radiative
ones. The production of clusters for non-radiative particles will be dominated
by d—electrons. Due to the heavy background conditions in hadroproduction
experiments the cluster counting has to be performed in a narrow corridor
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Fig. 1. Distribution of the sum of the number of cluster in TRD.

along the track direction [3]. The distribution of the sum of the number of
clusters produced by a track in all TRD planes wiil obey in either case a Pois-
son distribution with a different mean. Usnally a simple cut in the sum of the
number of clusters is enough to identify et /e~ from other particles if these
means are well separated, sce Fig. 1. This is possible beeanse the clectrons
in our momentum region are on the detector response function plateau while
other particles, with momentum less than =~ 60 GeV/c, are still non-radiative
particles.

"This method has an intrinsic limitation due to the fact that pions with high
momentum begin to produce transition radiation which will reduce the rejec-
tion power of the method. Furthermore the fact that the cut to be optimized
is an integer value makes it rather difficult to establish an optimal signal to
background ratio.

3  Description of TRD likelihood method

This method was proposed for TRD detectors by M. L. Cherry et al. [4] and
was demonstrated to give better performance than traditional methods in
Ref. [5-7].

Because we would like the method to work in a wide momentum range we have
explicitly put the y dependence in the definition of the likelihood function and
redefined the method in the following way.

The likelihood function is built in a way to classify particles into two cate-
gories : et /e~ (type 1) and others {type 2)}. So if a particle of type ¢ = 1,2
with Lorentz factor v; generates a sample X={=, 2, ...,2¢} of TR clusters
along its track we can define the probability P(X|4,+;)} of this event as

P(Xi,7) = H Pl M

The probability density function P{z|v;} can be calculated using the detf:ctor
response function. The response function is defined as a modified Poisson

distribution function with mean depending on the - factor, that is,

P(zgly) = [C(Cﬂk)ak(%)% :;I,) (%) + feor(z)] - e, (2)

where az{7:) is the mean of the cluster multiplicity distribution for the TRD
block & which depends on the v factor of particle type i, C(x;) are correc-
tion constants taken from experimental data, feor(z) is the probahbility of a
non-radiative particle to produce z clusters by ionization, also taken from
experimental data, and ¢ - is the & chamber efficiency, which permits us to
take into consideration the possible variations in the experimental conditions.

We can define P(0|y;) which is the probability of a particle i to produce zero
number of clusters in the block & from the probability normalization condition

&5

POly) =1~ 3 Plzsln). (3)

Tr=14

We consider the maximum number of clusters produced by a track in a TRD
chamber to be four, the probability to make more than four clusters, even for
radiative particles, is negligible and included in P(4|vy;).

The mean a(y;) was defined for each TRD block k as

Yi
3.52In(—-——)
5 + 1200 }
w120, (4)

Y2
1+ (1500)

ar (1) = Ny exp(

where Ny is the mean number of clusters for block & at the plateau of the
detector response function [3].
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Fig. 2. Distribution of (a) £, and (b) £, for all particle tracks.
We define the likelihood ratio for particle of type 4 as

Li(X ) = Y5, PX[j, %)

(5)

which is restricted to the interval 0 < £; < 1, and use this ratio as an indicator
of the particle type. For each track one can calculate the above ration in two
possible hypothesis. We expect that this ratio will be close to 1 whenever (he
hypothesis is correct and closer to zero whenever it is wrong. This can be seen
in Fig. 2.

Of course there will be some region where the method will not be able to
distinguish one hypothesis from the other. We will exclude this region, which
will be the main contribution to the inefficiency of this method.

4 Description of TRD neural network

As another attempt to improve the background suppression in the electron -

identification in TRD we have developed an algorithm using a Feed Forward

Error Back Propagation artificial neural network [8]. A similar application

was developed in Ref. [9] for 10 modules of TRD used for cosmic ray lepton
identification. In this work it was proposed a network structure with 10 + 21
+ 2 nodes. The network was feed with a normalized vector containing cluster
counts from each of the TRD blocks. The authors have demonstrated that the
network solution was preferable in comparison with the likelihood method for
several fixed energies from 1 to 4 GeV.

In our experimental conditions we have to, as explained before, count the
clusters along the predicted track direction and provide solution on the track
by track bases in a large momentum region. As we have 6 modules of TRD
we will use 6 input nodes that will receive the cluster sum along the track
in each TRD block normalized to unity. To explicitly take into account the v
dependence of the detector response and consequently increase the momentum
region in which the algorithm can provide an efficient classification of tracks,
an extra node was introduced. This node was fed with a normalized to one -y
factor calculated in the pion hypothesis,i.e.

(6)

node 7 activation = ,
mﬂ"ﬂ:ut

where E is the energy of the particle, m, the mass of the pion and v,,, was
chosen to be 3000, which corresponds to pions of about 400 GeV/c. For
greater than .. the node 7 activation is equal to one.

We start with 7 input nodes and would like to have a similar classification
for particles here as in the previous method, that is, two output nodes. So
according to Kolmogorov theorem [10] we can approximate our classification
function with 15 nodes in the hidden layer. This defines the structure of the
network as 7--15+2 nodes, as presented in Fig. 3.

The first layer of nodes are fully connected to the second layer of 15 nodes
with a sigmoid response function which is followed by the output layer of 2
nodes (res 1 and res 2). Each neuron of one layer receives as input the outputs
of all neurons from the previous layer with weights defined by the synaptic
matrix W. The activation level of the cutput nodes will provide the track

classification.

The sigmoid function we have used is defined as following:

1
T i+ exp(—2.(z — b))’

F(z,b)

where b is the neuron threshold.

The training process was performed with a standard back-propagation tech-
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Fig. 3. The TRD neural network structure.

nique during which the corrections to the synaptic matrix elements Wi were
calculated according to the rule :

SE[W]
Wy

AWy (i) = S + MAW,(i - 1),

where AW, (i) is the correction to the synaptic matrix elements W, after
2 steps, E[W] is the summed square error function, S is the learning rate
parameter and MAW), (i — 1) is the momentum term used to aveid sudden
oscillations. We have used in our implementation $ = 0.1 and M = 0.3.

To train our network we have used data simulated by GE781 [11], the E781
GEANT [12] based Monte Carlo. It is in principle also possible to use experi-
mental data for this purpose, but for this we need some independent tagging
of electrons.

In Fig. 4 we display the general behavior of the two output nodes, after the
training process, for the classification of particles in the TRD.

5 Comparison of methods

To compare the performance of these three methods we have used data from
a special calibration run in which the beam composition was about 50% e,
50% 7~ with momentum around 25 GeV/c; Monte Carlo generated data, here
we know exactly the particle type and hadronic interaction data.

To choose a suitable efficiency to contamination ratio working point we can
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Fig. 4. Network response of the output nodes {(a} res 1 and (b} res 2 for all particle
tracks.

apply correlated cuts in the feature space of £, (in the e /e~ hypothesis) and
Ly (in the other particles hypothesis) for the likelihood method and in the
feature space of res 1 and res 2 for the artificial neural network, This can be

done in the following way:

Ly>cut and £, < 1. —cut, {7

for the likelihood ratio case and

res1>cut and res2< 1. — cut, (8)

for the network, where cut is any real value from zero to one. Changing the
value of the cut we can build plots of the hadronic contamination as a function
of electron detection efficiency for these two methods.

To make a similar curve for the cluster sum method we have to change the

cluster sum cut by an integer value which gives only a few points on the plot.
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Fig. 5. Electron identification efficiency (e,) versus pion contamination (ex): a com-
parison of the three methods with calibration run data.

8.1 Calibration run dota

For the detector calibration purpose a special beam was prepared with com-
position about 50% e~, 50% 7~ at about 25 GeV/c. The particle type of this
beam was tagged with the help of another TRD), the beam TRD, a similar
detector to the one deseribed in Ref. [2].

We have built a plot of electron identification efficiency {e) versus the pion
contamination (e,} for each cne of the three methods as well as the ratio be-
tween €, and €, versus ¢,. This is presented in Fig. 5 and in Fig. 6 respectively.

In the conditions of fixed beam momentum, one should not expect to find
differences among the three techniques. Nevertheless one can see that the
likelihood ratio method gives the best performance.

8.2 Monte Carlo generated data

The calibration data were taken in a fixed narrow momentum bite, so we
cannot use these data to investigate the acceptance and contamination of
the methods for a wide range of particle momenta. We can use Monte Carlo
generated data, which is in good agreement (up to a few %) with experimental
results, to study this.
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Fig. 6. Ratio between electron identification efficiency (e;) and pion contamination
(ex) versus ¢, for the three methods under study.

As one can see in Fig. 7 the efficiency for radiative particles is rather indepen-
dent of the particle momentum for the artificial neural network algorithm. The
efficiency decreases slightly after about 130 GeV /¢ which partly compensates
the growth of the contamination. For this classification scheme the contami-
nation remains low up to momentum around 130 GeV/c and than starts to
rise up to 35% at 280 GeV/c. In the case of the likelihood ratic one observes
that the efficiency decreases with almost constant slope reaching about 50%
at 280 GeV/c. This gives rather good compensation of the contamination

growth. The contamination remains very low regardless of the momentum re-

gion. This feature of the method is a crucial advantage, as we need to keep
the contamination as low as possible. The cluster cut method’s efficiency is
obviously momentum independent but as expected contamination rises very
fast for particles with momentum greater than 60 GeV/c.

We also can simulate the momentum distribution of particles in our exper-
iment to estimate the integrated efficiency and contamination. This will be
used to compare our contamination calculations with experimental data in
the next section. To emphasize the difference among methods we have plotted
the electron efficiency over the hadronic contamination ratio as a function of
the electron efliciency.

The likelihood method achieves acceptable background level at higher elec-
tron efficiency and the neural network gives very close result for e, > 80%.
‘The cluster sum method looses efficiency very rapidly as we change the in-
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Fig. 7. Efficiency and contamination for the three algorithms as a function of particle
momenta.

teger value of the cut which makes it difficult to select an optimal signal to
background ratio.

5.2 Hadronic interaction date

This is a sample of data with the real background conditions, which permits
us to estimate the background suppression achieved by each algorithm. This
is clearly not possible to calculate with calibration data ~ which were taken
in special conditions (very low particle multiplicity, low momenta and narrow
momentum bite); nor with Monte Carlo simulated data which mimics real
data general features but are not expected to reproduce the exact background
conditions of the experiment.

In the case of hadronic interaction data we have no independent way to tag

electrons, but we can estimate the number of et /e™ in this sample to be of
order of 2%. Keeping this in mind we can use this data to calculate the real
contamination level for each method.

To build the same distributions as for Monte Carlo data we have used the
efficiencies obtained by the Monte Carlo simulation, which is quite reliable for
electrons and get the contamination levels from the interaction data.
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Fig. 9. Electron identification efficiency (e}, taken from Monte Carlo simulation
versus hadronic contamination (e,), taken from hadroproduction data for the three
methods under study.
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We can see in Fig. 9 that our conclusions made from Monte Carlo data are
confirmed by real hadroproduction data, so we can be confident that the mo-
mentum dependence of the three methods displayed in Fig. 7 is well under-
stood.

6 Conclusions

We have studied three different methods to classify particles usihg TRD. Two
of these methods directly uses momentum information of the track.

Our study shows that all three methods give almost the same performance
in the case of low momentum particles, ~ 66 GeV/c. For higher momentum
the likelihood method looks preferable from the signal to contamination ratio
point of view,

Although the cluster sum method is the simplest method for implementation
it should not be used in wide momentum rage situation where contamination
was shown to rise rapidly with momentum growth.

The comparison between the neural network method and the likelihood ratio
has demonstrated the better performance of the last one. We should point
out that the likelihood method permits to take into account changes in ex-
perimental conditions as the detector efficiencies are part of the algorithm.
In the case of the artificial neural network to take into account big changes
in the experimental conditions one would need to repeat the training process
each time. The network performance depends on the training data and so de-
pends on the quality of the Monte Carlo simulation. This robustness give an
additional reason to choose the likelihood method as the preferable one.
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