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Abstract

We derive a Pauli-Schrédinger type equation in configuration space, from
the classical Liouville equation for a neutral particle wi.th arbitrary spin
and magnetic dipole. Our derivation does not apply to a general classical
phase space distribution. However, in certain particular cases, discussed in
the paper, there is a correspondence between the classical equations and the
Pauli-Schrédinger equation. Consequently, the results of the Stern-Gerlach,
and also the Rabi type molecular beam experiments, can be interpreted
classically, that is, in such a way that the particles have well-defined and
continuous trajectories, and also continuous .orienta,tion angles of the spin
vector and magnetic dipole. Theoretical and experimental implications of

this conclusion are briefly commented.

I. INRCDUCTION

The central idea of this work is based on the fact that the classical and the quantum
theories, together, explain an enormous quantity of physical phenomena. Therefore, both

are correct and it is possible that, in the future, classical and quantum physics can. be
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put in a form that does not exhibit conflicting concepts, thus revealing a more complete *
phy#ical theory of the microscopic and macroscopic worlds.

The first papers along this line appeared many years ago and are due to Planck (1911),
Einstein and Stern (1913) and Nernst (1916). In these works, the authors use the sta-
tistical properties of the classical zero-point eletromagnetic radiation [1,2], in order to
show the equivalence between some classical and quantum theoretical explanations of the
experimental observations. Another very important contribution with the same goal was
made by Wigner [3], in 1932. Wigner’s proposal, allowed the formulation of Quantum
Mechanics in phase space, and disclosed the similarity between the Liouville and the
Schl"éclinger equations. The two equations are dynamically equivalent for particles sub-
Jjected to various forces [4-6). In 1963, Marshall (see [1]} developed even more the same
idea, giving a detailed phase space study of a spinless charged harmonic oscillator im-
mersed in the thermal and zero-point radiations. Further improvements were introduced
later on mainly by E. Santos, A. M.Cetto, L. de la Pefia and T. H. Boyer (see [I}). These
more recent theoretical atternpts are known as Stochastic Electrodynamics (SED) in the
current literature [1,7].

In our paper we shall apply Wigner’s idea to study the classical motion of a neutral
particle, with spin and magnetic dipole, in an external magnetic field. In this regard, it
should be mentioned the work of Bohm, Schiller and Tiomno [8], and the more recent ap-
proach by Dewdney, Holland, Kyprianidis and Vigier [9). These papers give an objective
account of the Stern-Gerlach experiment in which the particles have continuous trajecto-
ries and continuous orientation of the spin vector. The concept of quantum potential is
used and it is not necessary to introduce any wave packet collapse hypothesis.

Our paper is organized as follows. We first introduce the equations which govern the
classical dynamics of the system, namely, Newton’s equations and the Larmor equations

for the precession. We show (section 2} that the same equations can be obtained from
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the Heisenberg formalism [10,11], that is, the quantum dynamical equations of motion
are independent of the Planck’s constant £. Section 3 is devoted to the introduction of
the spinorial notation {12] in order to describe the Larn;or precession. Within section 4
we obtain a Pauli-Schrédinger type equation, from the Liouville equation, using a new
approximate method [6] which is inspired in the Wigner original work [3]. However,
since the method is entirely classical, Planck’s constant does not appear in the Pauli-
Schrédinger type equation. Section 5 is devoted to the application of our method to
the analysis of the Stern-Gerlach type experiments [13]. TFinally, our conclusions are

summarized in section 6.

1I. CLASSICAL EQUATIONS OF MOTION ACCORDING TO THE

HEISENBERG FORMULATION

We shall denote the magnetic moment of the neutral particle (a silver atom for in-
stance) by the vector Z. The spin vector is denoted by § and these quantities will be

related by

f=-9 2
= 2mcS 3 (1)

where g is the gyromagnetic factor, —e is the electron charge, m is the electron mass
and ¢ is the velocity of light. The magnitude § = |§ | is supposed known but its value is

arbitrary. We shall also assume that the particle (rest mass M) is moving with velocity

v P
F=a7 > (2)

{ IF [ € ¢} in a non uniform magnetic field B. Therefore, the rate of variation of § is

Fo (3)

T

1]

F=V(@5)

The orientation of the spin vector § also varies with time and is governed by the

Larmor equation § =@ x B or

I

o
5
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f=dxig , @

(4)
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The above equations (2), (3) and (4) are the well known classical dynamical equations.
We shall show in the following that these equations are the physical basis for our pro-
posed classical interpretation of the Pauli-Schrodinger equation. In order to give a more -
clear explanation of our proposition, we shall present first the corresponding Heisenberg *
equations of motion for the spinning particle.

According to the Quantum Mechanics, the vectors ji and § are operators related by

the equation (1), and the components of § satisfy the commutation relation
’tﬁ Sl = [52153] . . (5)

The dynamical evolution of the system is derived from the Hamiltonian operator H

A2 .
Hz—ﬁﬁﬂ—ﬁB , (6)

and according to the Heisenberg formulation the rate of variation of 7 is given by

M

F=—[H7] =

=t

whereas the rate of variation of the momentum operator is

[H,5]=V(i-B) . (8)

;‘1‘[ TR

p=
Moreover, it is also possible to show that
E=glH@=xj )

where &7, was defined in (4).

The equations (7), (8) and (9) are independent of % and are formally identical to

_ the corresponding classical equations (2}, (3) and (4). Therefore, the physical content of



both descriptions naturally allows the construction of a unified (classical and guantum)
interpretation of the experiments. Moreover, the recent [14] recognition of the similar-
ity of both approaches, for the description of the Stern-Gerlach experiment, will help
us to understand better the physical content of the Pauli-Schrédinger equation and the

corresponding spinorial notation.

IIT. THE LARMOR PRECESSION IN SPINORIAL NOTATION

Let us consider first the simple case of a uniform magnetic field B = (0,0, By). The
more general case will be discussed afterwards., We shall also assume that the magnetic
particle is precessing at rest in the laboratory frame. The orientation of the vector £is

such that (see Fig. 1)
A= p(sinfcos ¢,sin Osing,cos8) (10)

where 0 is the angle between B and fi, and p = |f|. The azimutal angle ¢ is a linear
function of the time and is given by
B
#(t) = % t+do (11)
in accordance with the equation (4). The angle ¢y is an arbitrary phase. These angles
vary continuously within the range 9 < 8 < 7 and 0 < ¢ < 2,

The classical equation (4) can be cast in a spinorial notation as was shown by many
withors in the past (see refs, [8,9,12]). We shall give below an explanation based on the
raper by Ralph Schiller [12]. Tt should be remarked that in ref. [12] 8 is the angle between
7 and B whereas here 8 is the angle between [ and B (see Fig. 1).

Let us introduce the spinor x(4, ¢} defined by

1 0
ig

? ¢ .
x{0,8) = Xu + x4 = cos 7 + sin Ee“? . (12),

and also the Pauli [15] matrices

—1 10
01 0 —2 B ‘ (13)

gy = 1 Gy = 1 03 =

10 i 0 0 -1
These definitions are very convenient because one can write any component of the

vector f as (§ =1,2,3)
i=u X(0,4) o5 x(6,4) . (14)

If the magnetic field B varies in space, the magnetic force F (see (3) or (8)} is such

that
P N . 51 JB
F; = .é-a.:.j. [ﬂ x'(8,¢) 7 x(9, ¢).B] = ,ucosﬁ'w-—amj ' (15)

where B = | B| is the magnitude of the non uniform magnetic field (see Fig. 2).

Notice that, according to the spinorial notation, F=F, + F, because
" ; - , 0=
Fu= i (xlooxs) VB = +pcos® 5VB (16)
and
i t Y, L2 fs
Fa=p (Xdﬂa)(d) VB = —ysin -Q—VB . (17)

It should be remarked that F, (and also Fy) varies continuously (0 < {F,) < VB
because 0 < 8 < «, Another observation is that F‘; and Fy are always anti-parallel.
The factors cos®#/2 and sin®§/2 are interpreted [15], respectively, as the “orientation
probabilities”, up and dewn, of the vector [ with respect tp the vector B {see Fig. 1 and
Fig. 2). Here, however, such interpretation is not required.

The classical precession (see eq.(4)) can be written as

i = % [x1(6,8) oy x(0,9)] = [ < (xt 3 x)]. (18)
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or equivalently
Dx(0.) =52 3x(0.9) . (19
where we have used our equation (11), and the definitions (12) and (13). Notice that
= uB/S.
This classical equation is very intereéting. It can be cast in a form which is identical
to the Pauli-Schrédinger equation for a magnetic dipole precessing at rest in a magnetic

field 5. Multiplying both sides of (19) by % and using equation (1) we get

s X08) _ eo5 - 5 ) (i)

at 2me 25
- (A 5
=5 (2 a') Bx(0,4) . (20)

It is remarkable that this occurs for an arbditrary magnitude of the spin vector 3.
Moreover, (20) is clearly seen to be independent of %. It is also possible to show that (20)

is valid if /3 is time dependent (see section II of ref. [12]).

IV. DERIVATION OF THE PAULI-SCHRODINGER TYPE EQUATION FROM

THE LIOUVILLE EQUATION

According to the classical dynamical equations, the phase space evolution of an en-

semble of particles is described by the instantaneous phase space distribution which will

he denoted by
W =WI{Fgt) . {21)

This function is associated with a particle with momentum 7 = (py, pz, p3), located at

the point ¥ = (21,22, 23} and with a given magnetic dipole moment orientation 8y with

respect to the local magnetic field B (see Fig. 2). The instantaneous variation of ¥ and 7o

is governed by the equations (2) and (3} or (7) and (8).

7

The associated Liouville equation will be written as

Y B
b = g — = 22

and its evolution can be obtained from the solutions of equations (2) and (3) for 7 and A
The equation (22), however, does not describe the precession (see (4) or (9)). Nevertheless,
we shall see that eq. {22) is sgfﬁciently accurate for our purposes.

We shall present a method for studying the mathematical problem of finding some
solutions of (22}, which was proposed recently by Dechoum and Franga [6] for the case
of spinless particles. This method is based on an appropriate modification of the original
proposal introduced by Wigner [3] in 1932.

Let us define a Fourier transform Q(F,#,t)}, which is associated with W(7,7,¢), by
QFE G = [ EpWERY I (23)

Here §f is another point in configuration space, and &' is a free parameter with dimension
of action. It is assumed that /' is very small (&’ < % for instance), and the limit &’ — 0 ’
will be taken in the end of the calculation. Therefore, one can conclude that Q(7,7,1) # 0
only for very small values of |§]. It is important to remark that the initial orientation
angles 0y and ¢ (see Fig. 1 and Fig. 2} are being considered as independent variables.
The evolution equation for Q(F,%,t) can be obtained easily. After substituting {23)

into (22), we get

o (W)} & .0
3t " oM 5y oF

—ik' =+ +2 5 |- E(F)]} Q=0 , (24)

where we have used (2) and (3).

Since (HF,#,1) # 0 only for || small, it is possible to write

2 g lB() = B+ ) - Bt~ ) (29



Therefore,

97 - 827“ [ﬁ : E(f)] =pu [?(1(90,450) & x(fo, 4’0)} : [é(’:"f' 7) - B(F - g)] ’ (26)

when [§f] = 0. In the last equality we have used our previous equation (14).

We shall study only those Fourier transforms Q(7, #,t) which can be written as
QE,§,1) = N7+ §, 1100, o) U (7 - 1|60, d0) (27}

where (see (12))

U(7, 2|86, do) = x(o, 60)B(7,8) = Uy + Ty (28)

and ®(7,1) is a scalar function.

A more general expression for Q(7, ¢, t) is

Q(Fa :Js t) - ZZAM(f)GM(F»ST) Pl (29)
ko

where {Gu}is a complefe set of orthogonal functions (or states) indicated by the indices k
and £. A differential equation for the coefficients Ay can be obtained from (22). Therefore,
there is no loss of generality in using the hypothesis (27}, provided the complete set of
(Fourier transformed) “phase space” states {Gu} is introduced in a later stage of the
calculation (see ref. [16] for a similar procedure applied to the case of spinless pa,rticles).r

Using (26), (27), (28) and the fact that X0, $)x(0,¢) = 1, it is straightforward to

show that (24) leads to

L8 () N
[ma'l'%vz—pa-ﬁ’(r) U(F, ¢[00, o) =0 . (30)

It is interesting to notice that there is a direct correspondence between each term of
122) and (30). For instance, the Schrédinger type operator [(A')?/2M]V? has its origin

. P
1 the convective operator 7"+ — of the classical Liouville equation, For &' = A, the

ar

above equation is known as the Pauli-Schrédinger equation. It is clear from the above
derivation that the equation (30) gives an approzimate description of the classical motion
of the spinning particle.

The statistical interpretation of the function W(7, %0, ¢h) is also obtained from the

phase space distribution W(7,7,t) and the normalization condition
[ & [ Epwsn=[ Erlu o gl =
= [&r(lwf+1wp) =1 , (31)

as it is easy to verify (see also the original paper by Pauli {15]).

A Schrodinger type equation, similar to (30), but for a spinless charged particle,
bounded by a harmonic force (frequency wp), was obtained by Dechoum and Franca
[6] within the realm of SED [1]. The zero-point electric field associated with the vacuum
fluctuations was included in their approach. Therefore, it was possible to show that, in the
limit A" — 0, the oscillator has an average energy of hwe/2. The presence of the Planck’s
constant in this result is due to the effects of the zero-point background radiation field.
The mathematical interpretation of the harmonic oscillator excited states (solutions of the
time independent Schrddinger type equation) was also discussed by Dechoum and Franca
(6] and by Franca and Marshall [16].

The equation (30) is valid for a general 5 (), provided that in the end of the calculation
the limit 4’ — 0 is considered. Notice that the thermal and zero-point electromagnetic

fields are not included in (30).

V. CLASSICAL DESCRIPTION OF A STERN-GERLACH TYPE
EXPERIMENT

We shall obtain here an approximate solution of the classical {Pauli-Schridinger type)

equation (30) in the particular case in which the magnetic field B is such that (see Fig. 2)
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= (—0z,0, By + B2) (32)

for @ € y < {. The parameters § and By are constants, characteristic of each experiment.
The field is assumed to be zero for | < y < D, where D is the distance from the magnet
to the screen (or detector) with { << 2D.

This non uniform magnetic field gives an approximate description of the experimental
situation encountered in the Stern-Gerlach type devices [17-19]. Moreover, it is easy to
see from (3) that the non uniform field (32) generates different forces on the particles of
the beam, depending on their position at the entrance of the Stern-Gerlach magnet, and
the orientation of the vector [i (see Fig. 2).

According to (15) and (32) the acceleration at the entrance of the magnet is such that

2
MZ-—}.LCOSHoa —,G,uz()B +ﬂ#I(G)BB ) (33)

and

ME = pcos GOBB -3 ,ux({}) — 8 ) (34)

where £2:(0) = psin’ cos ¢/, and p.(0) = prcos & are the components of the vector ji at
the entrance of the magnet (time ¢ = 0). The angles &' and ¢ are the polar and the
azimutal angles relative to the #,y, z coordinate system (see Fig. 2 and ref. [20]). Notice
that, due to the last term in (33), £ 5 0 if 4,(0) = 0. In this case # can take positive or
negative values depending on the sign of (0} = pcos &',

The solutions of the above non-linear equations, with the appropriate initial conditions
characterizing the beam [17-19], will not be discussed here. We shall see in the following
that an approximate solution of the Pauli-Schrédinger type equation {(30) can be more
easily constructed (in comparison with (22)). One reason for this fact is that (30) depends
on the energy (—fi- E), whereas the original Liouville equation (22) depends on the non-
linear force with components given by (33) and (34). Another reason is that the phase

space distribution W has.more dynamical variables than the auxiliary function ¥,
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A. Motion inside the magnet (¥ = ¥y}

We shall assume that the magnetic particle is heavy (a cesium or a silver atom for
instance), and spend a short time {/v, inside the magnet {vy is the velocity of the particles
in the y direction, that is, ¥ = wet ). Thereiore, one can neglect the transversal convective.

contribution in (30), that is, we shall take (see also ref [10])

C2 (2., 2) nmo . -

dz? 0z
According to (30) one can write

ﬁf% = }LO’3B\I’1(5) ¥ (36) .
where Wy(t) is a short notation for ¥;(x,z,t), B = B(z,2)} = |B| and o3 is the Pauli
matrix (13). Considering the definition (28), and assuming that ¥;(0) = x(6o, ¢o}®(z, 2),

the equation (36) can be easily integrated giving

T {t} = O(z,2) { cos 5 exp [—2 (q&o + S . +
2uBt\] [ 0
+ sin Z—Oexp [ ((;50 ,u, )] . (37
1

The function ®(z, z) is related to the cross section of the beam of spinning atoms, con-
veniently prepared by the experimentalist [13,1718], and the angles 6 and ¢y define
the polarization of the particles at the entrance of the magnet. Here 0 < ¢t < ¢, = I/v,.

Notice that

bt i s 9t) (38)

defined in (11}, so that the classical precession is not described by equation (37). For
an unpolarized beam of particles the angles 8y and ¢y are random variables such that

0§90$7T&]1d0$¢0£2ﬂ.
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B. Free motion from the magnet to the screen (¥ = )

The screen is situated far enough from the Stern-Gerlach type magnet in order to
allow the physical splitting of the beam. Notice that, in practice, a small splitting already
occurs inside the magnet, and it is due to two factors: 1) the initial beam is such that

(p:) = 0 but there are particles, in the ensemble , with positive and negative values of the

momentum p;; 2) the space variation of B(7) generates different forces on the particles .

of the beam, depending on its position and orientation inside the magnet (sce (33), (34)
and also Fig. 2).
As before, the motion in the y direction is simply y = vo and the equation for ¥, is

such that (see ref. [4])

i 00(t) (B (8_ . i) () (39)

ot 2M \d2 922
where U»(t) is a simplified notation for Wa(z, 2, ¢).
We shall take W3(0) = W,(¢;) where ¥,(¢) is given by (37). We shall assume that

By >» Blz| and By >» x|, that is, B ~ By + 32, and we shall take

2 -1/4 i z?
Oz, 2) ~ (dn°a10z) exp (_Q) exp (_W) (40)

2
in expression (37). The parameters o; are related to the width of the beam (usually
ar K az ). Typical values are described in references [13), [17] and [18].

Under the above hypotheses, the integration of (39) is lengthy but straightforward .

. 1 0
The result can be written as Ty(t) = cos{fo/2) f1{2) + sin(dy/2) f_ (2) with
0 1

drlg2a2)-1/4
falty o Uroere 2 [~

{= F z(1))? +i (#Botl ¢n)] N

4l IS

2

X exp (4_5:2) , _. o (41)
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wherea,,zaz(l—]-m ~ a1y , oy = oy 1+W ~ ay , and

pBt
ol (42)

For the sake of simplicity we have dropped from equation (41) some factors that tend to ,

z.(t) =

1 in the limit 8" — 0.

1D
Taking ¢ = o = Dfvg > & = [/vy in equation (42) we obtain z. = %%2—, to be
0

compared with Az = z, (1 + L) given in equation (10-5) of ref [13]. The additional

2D

term 2—15 is the effect of the acceleration inside the magnet which kas been neglected by
l . . .

us because we have assumed — << 1. In the case of the experiment with unpolarized

2D

l
beam of cesium atoms by Zacharias {see [13]) 5= 0.125.
One can calculate the normalized distribution of particles on the screen, generated by

a beam of unpolarized atoms. In the limit &' — 0 it is given by

1 g " :
Ie,2)= o= [ deo ["sinto doo lim {|Wa(t2)} =

1 (2 — z)* (z+ 2)° z?
T Braya; {exp [_ 2o } +exp [_ 2ad xp T 2] (43)

corresponding to two peaks separated by the distance 2z..

As expected on physical grounds, our result is in good agreement with the experiment
described by J.R. Zacharias {see [13] and Fig. 3 A), despite the various approximations
used to obtain it. For comparison see also the experimental results of Esterman et al. [19]
and Fig. 3 B.

An interesting observation is that I{x,z) does not depend on the Planck’s constant %
used in the derivation of the Heisenberg equations presented within section 2. Moreover
we can conclude that the results of the Stern-Gerlach type experiments do not allow us to
infer the “directional quantization” in a magnetic field [17]. It should be stressed that the
results of the sections 3, 4 and 5 are valid for an arbitrary magnitude of the spin vector
s
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VI. DISCUSSION

We Lave shown that it is possible to give a physical interpretation to the Pauli-
Schrédinger equation for a neutral spinning particle based on classical trajectories and

continuous orientation angles of the spin. This classical interpretation is valid for any

magnitude of the spin | g | and magnetic dipole | 7 |. The Pauli-Schrédinger type equa-

tion obtained in section 4 does not depend on the Planck’s constant %, and was derived
from the classical Liouville equation in phase space. The spin vector § and the magnetic
dipole i are not quantized, and exhibit orientation angles # and ¢ which vary continuously
(see section 3). An adequate physical description of a Stern-Gerlach typ;-: experiment was
provided hy ﬁhe equations {30) and (43) derived from the classical Liouville equation (22).
It should be mentioned that the concept of classical trajectory has also been recently used
to describe the Stern-Gerlach effect for electron beams [21]. _

The classical equation (4), which has the spinorial form (20), is independent of £, both
being valid for a time dependent magnetic field also. Let us consider that this magnetic

field is given by
B = (Bycoswt, Bysinwt, Bo) (44)

where w, By and By are constants. Therefore, using (4) or (20) and defining v = eg/2me,

and wg = By, it is possible to show that the angle 0(¢) between 7 and z axis is given by

I

This result was firstly derived by Rabi [22], and Schwinger [23] using the Pauli equation

(20). It was soon recognized, by Rabi, Ramsey and Schwinger [24], that these Rabi

resonant oscillations are equally obtained from the classical or the quantum mechanical

approaches. A good explanation of this equivalence is also provided by Bloembergen

15 -

0] =cosb{t) =1~ [(w—%iz—m—f] sin? (%\/(w — w2 + 72312) . (45)

[25]). The conclusion is that the magnetic dipole vector (and also the spin vector} have
orientation angles which vary continuously with respect to the applied magnetic field. The
beautiful experiments by Stern (Nobel prize 1943 for the discovery of the proton magnetic
moment (se¢ Fig. 3 B)), by Rabi (Nobel prize 1944 for the discovery of the resonance
method t(-) record the magnetic properties of the atomic nuclei), and collaborators, z;,re
the most striking confirmation of our statement (see refs. [17-19] and [22-25]).

The small forces generated by the radiation reaction, and the zero-point {(and thermal}
fluctuations of the eletromagnetic field, were neglected in our paper. Their effects oniy
appear in the equilibrium (stationary) regimen. This was shown previously by Boyer [26]
and by Barranco et al. [27]. According to these authors the equation of motion (4) is
modified to

§=fixBotix Brelty= it ¥ i (46)
where éo is a constant magnetic field in the z direction, and I-}Vp is the random magnetic
field characteristic of SED [1]. The last term in (46) is the self reaction torque. Equation
(46) is known as the stochastic Bhabha equation. For the sake of simplicity in references

[26,27] the authors have considered only the case of 7 and g parallel.

The random magnetic field Byr has an average value such that (évp) ={ and
L{Byr(t)- BreO)) = [ dw;r—‘;’;coth (%) cos(wt) (47)
where £ is the Planck’s constant and T is the temperature.
According to Boyer [26], and Barranco et al. [27}, the orientation angles £ and ¢ of
the vector j(t) vary continuously. Therefore, the paramagnetic behaviour of the particle
can be ca,lc.ula;ted according to the classical SED approach. The average value of p.(t) is

_egf

(we) = 2= [ " 4 cos 9P(0) =

2me
_geh (S (a5 \ 1 (e
=5 {ﬁ, coth (coth (ZT”%) 3 coth 55T , {48)

16



where wy = 1 Bo/S, and P(f) is the orientation probability calculated by Boyer [26] based
on a Foldeer-Planck equation involving the variable 8. Notice that this result depends
crucially on the Planck’s constant #. Its origin can he traced back to the thermal and

zero-point electromagnetic noise, whose spectral distribution is given by (47).

The approach of Boyer {26], and Barranco et al. [27], shows that the quantization of g )

is not necessary to give a very good account of the experimentally observed paramagnetic
behavicour of the magnetic particles (see figure 2 in ref. [27]). Therefore, the SED proposal,
gives a simple picture of the spinning particle, where the classical and the quantum
approaches merge into very similar equations and results (see [1] and [28]). We think,
however, that in certain special cases the classical approach, based on SED, presents some
technical advantages when compared with the quantum approach. One example is the
predicted (not observed yet) “anomalous” paramagnetic behaviour, which is generated
when the paramagnetic sample is influenced by the zero-point current fluctuations of a
simple RLC circuit [29]. In this particular case, the continuous variation of the orientation

angle of the magnetic dipole is an essential calculation tool that leads to a Fokker-Planck

equation [26,27,29}. Another interesting example is the detailed SED description of the .

Casimir interaction hbetween the inductor of the RLC circuit and a polarizable molecule

that is close to its coils [30]
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FIGURES
FIG. 1. The orientation angles of the vector /i{t) which precesses around the magnetic field B.

FIG. 2. Schematic picture of the precession in a non uniform magnetic field B. The spinorial
notation for the force components acting on the neutral particle are presented in equations (15),
(16}, (17), and the classical Larmor precession is described by equation (20). The particles in

the beam (shaded area) move with velocity wp in the y direction.

FIG. 3. A: Beam profiles obtained by J. R. Zacharias [13]. Curve (a) shows the spreading of

the beam with a low magnetic field. The gradient field  is not great enough to cause separation |

of the beam. Curve (b} shows separation in the high field gradient. See our expression (43)
for comparison. Notice the continuous variation from curve (&) to curve (b) as a function
of § = @B./8z. B: Beam profiles (intensity in arbitrary units) showing the magnetic field
deflection of a beam of HD molecules. The experimental data was used to measure the magnetic

moment of the proton (see ref.[19]).
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