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Abstract

We present a technique for automatic detection of epileptic spikes in electro-
encephalogram (EEG) recordings. We use a nonlinear modeling method based
on Information Theory (IT) that enables us to detect rapidly and accurately
epileptic behaviour in the EEG signal. An optimal embedding dimension of
the model is determined by the minimum in the mean square relative error
between EEG sigﬁals and the corresponding model prediction. Qur approach
is illustrated by an application to two EEG time series: (1) interictal activitity
from focal epileptic patient, and (ii) a petit male from generalized epilepsy

patient.
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I. INTRODUCTION

During recent years several neurophysiological studies have shown that electroencephalo-
gram (EEG) signals have high degree of complexity resulting from either random processes
or chaotic behavior generated by nonlinear .dynamica.l systems [1,2].

One of the most important uses of the traditional visual interpretation of the EEG is the
identification of transient events associated with epilepsy, where the background activity is
interrupted by sharp waves or spikes [3,4]. Sharp waves and spikes recorded in the periods
between seizures (interictal activity) are of great importance for diagnosis purpose. The
morphology and topography of these sharp transients have been correlated with diﬂ'efent
types of seizure [5]. Epileptic seizures can be focal or generalized. In focal epilepsy the seizure
begins in a restricted brain region and either remains localized or spreads to adjacent cortex;
while in generalized eéilepsy the seizure involves all the brain. The interictal activity (IA)
of focal epilepsy is also localized, while in generalized epilepsy this activity is recorded in
the whole cortex [3].

The commurity of nenrophysiological researchers has concluded that EEG signals stem
from a highly nonlinear system [1,2,6]. In this context, several methods based in linear
(spectral analysis) and nonlinear measures have been applied to quantitative EEG analysis
[6-12]. Distances between points in appropiate embedding space of the data are used to
compute a set of metric parameters of nonlinear dynamics analysis, such as: correlation
dimension, Lyapunov exponents, Kolmogorov entropy [13-15]. For a reliable estimation of
these parameters, large quantities of data (about 10¢ where d is the embedding dimension
[16]} are necessary to achieve accurate approximations for the density of points in different
regions of the attractor. Thus, long (between 1000 to 10000 points) stationary time series
[17] of EEG signals are required by those methods. In most of the cases, the stationarity of
the signal is usually taken for granted, although this condition may not be satisfied when
we deal with EEQ signals [9], since stationary intervals are of the order of ten seconds (1000

points of standard clinical EEG), depending on the behavioral state [18]. Moreover, these



methodologies are not useful for an accurate ﬂempora.l localization of transient events in EEG
recording. In contrast, the approach presented here is able to characterize the dynamics of
short portions of signals.

In this communication, we assume that different behavioral states are characterized by
different dynamics in the EEG. In Fact, EEG signals from vigilia state can be described
as linearly filtered noise [7]; while many authors have reported evidence that epileptiform
EEG signals may exhibit low dimensional delerministic chaos {12,19,20]. We assume that
. epileptic EEG signals are basically deterministic chaos with some level of additive random
noise. This means that the dynamical evolution of the system conld be described, basically,
by few variables and one can construct a madel able to predict the short future behavior of
the system in terms of its previous stales [21,22].

In the present effort, we examine the possibility of applying a nonlinear prediction ap-
proach for automatically detecting the interictal activity (IA) spikes in EEG. We compare
the ability of prediction of a model constructed from segments without IA, when applied
to an inferval containing IA spikes. As the dynamics with IA differs from the dynamics
without IA, we expect a poor prediction power. In this way, we can use some estimator of
the performance, in order to detect TA spikes. The models one is interested in must be able
to predict on the basis of adequately selected working hypothesis. This hypothesis is repre-
sented by a set of parameters of the model. We apply Information Theory (IT) techniques,
within the framework of Maximum Entropy Principle (MEP) [23-25], in order to select the
working hypothesis of the model. Some preliminary considerations in this direction have
been advanced in [26].

The automatic detection of epileptic spikes can be particularly valuable in dealing with
focal epilepsy, specially when surgical treatment is indicated [27]. The methodology pre-
sented here has advantages over the calculation parameters based on distances becanse it
presents an effective temporal localization, and it uses a short stationary interval (3 to 4
seconds of standard-clinical EEG). The computational burden is significantly lower and can

be implemented on-line with the acquisition of the signal. An effective temporal localization
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is useful for the spatial estimation of epileptogenic focus [27,28).

We organize our presentation as follows: in Sec. II we review some ideas concerning
both reconstruction of the system’s state, and IT based parameters estimation procedure.
We describe also the procedure used to record the EEG signals. In Sec. II we present our
results regarding the EEGs of patients with [A and petit male. Finally some conclusions are

drawn in Sec. IV.

Ii. METHOD AND DATA
A. Nonlinear prediction approach

We shall present briefly the I'T-based method for building a deterministic model.
We assume that the EEG signal is a stroboscopic sequence of N measurement
{v{te),v(ta+ 7),...,v(to + N7.)} made at intervals 7;, and reconstruct the state space

using time delay embedding {29,30], which uses a collection of coordinates with time lag to

create a vector in d dimensions,

V(ta) = (v({ta),v{tn — A),..v(ta —(d - 1) A)), (1)

where A = nr, , {n €N), is the time lag or delay. Takens has shown [29] that, for flows

evolving to compact attracting manifolds of dimension d,, if d > 2d,, we can write
v(t+T)=F(v(t)), (2)

where T' > 0 is the forecasting time. This theorem provides no information regarding either
the choice of A, or the form of F.

Now, we introduce the IT ideas for building a deterministic model depending on parame-
ters. The implementation of this idea is to build parametrized functions F* (v (¢),a), where
a is the set of parameters of the model. Then, we use MEP criteria, i.e., the minimum num-

ber of assumptions compatible with the available data, to determine the set of parameters



a that CO[lStitl.ltCS. the working hypothesis. The motivation for this criteria is to reduce the

length of time series necessary for building a model with good predictive ability.
We consider a representation of the mapping function F* (v) as an expansion in the form

d p

F*(v}= JZ} ;a,-j exp [mg (v; — :c,-)z] (3)
where v; are the components of the d-vector (1), and =; are the coordinates of p equidistant
points (we take z; € [—1.5,1.5] in a signal normalized to unity). Of course, a;; constitute
our working hypothesis. Thus, the number of parameters of the model V., is determined by
the number of Gaussian functions p in {3}, and by the embedding dimension d, N, = d x p.
The idea is now to introduce the MEP [26] in order to determine the parameters a =

{a11,a12,: . ., @pa} using the information contained in M points of EEG

{{"01 {tn).v2 (tn):---1”d(in)}av(tn+T)}= (4)

wheren=1,..., M.

In order to infer the cocflicient consistent with the data set {4} we shall assume that each
set a is realized with probability P (a). Of course, [ P(a)da = 1, where da = day days....dapa.
Expectation values (W;} are defined, as usual,

i} = ] P(a)eda, (5)

and a relative elltropy is, in the usual way [23,24), associated to the probability distribution,

namely,

5= [P (1};((1))) da, (6)

where Py (a) is an appropriately chosen a priori distribution {24,25]. Our central idea is that

we reinterpret the data set (4), according to the expression (3)
v(t. + 1) =(a) -V, (7)

where V is a vector-constructed by evaluation of p Gaussian functions (3) in each component

of the d-vector v.

* As customary [24], one is then led to maximizing the entropy (6) subject to constraints

(7} and the normalization condition, obtaining

§ = f {P(a) In (2((:))) + 3P (a) ®)
+ WX . aP(a)}da,

where Ap and A are Lagrange multipliers associated, respectively, to the normalization
condition and the constraints (7), and W is a matrix with M rows V (r). Variation of §’

with respect to P (a) immediately gives
P(a) =exp(— (14 Ao))exp(—T - a) F(a), )

where T' = WX (W' is the transpose of W).

A choice has now to be made concerning the e priori probability distribution By, Here
we select a (Gaussian Py, i.e. choose it to be proportional to exp(—a.a/2c¢), with a free
parameter . When we replace this choice of the a priori distribution in eq. (9), we
obtain a Gaussian form for the probability distribution P (a), centered in {a) = —2¢T, with
dispersion ¢. Both the definition of T and the constraints {7) allow for the elimination of

the Lagrange multipliers X. One can thus express the {a;}, solely in terms of the data set:
(a) = v (tp + T) I, [W], (10)

where I, [W] = (W)’ (W (W)t) s Moore-Penrose pseudo-inverse [31]. Now, we choose
the most probable set of parameters (the mean value of the distribution) compatible with
the con:straints (7) as our working hypothesis. In this way, one can capture the dynamics

underlying a short portion of the EEG.

B. Clinical Data

The human individuals digital recordings have been obtained from: i) two adult patient

with focal epilepsy at sleep stage 1-2. The epileptic focus was localized at the occipital EEG



derivations, ii) a 12 years old patient with petit male at sleep stage 1-2. The recordings have
been obtained with a standard clinical device with 16 channels with a reference electrode
placed at the patient’s nose. Sample rate (7;7') has been of 102.5Hz and the low pass filter
has been of 51.25H2. We used the recordings of the occipital channel in both EEG time

series, 50 as to test our prediction technique.

III. RESULTS

Our procedure for the automatic detection of epileptic spikes will be illustrated with ref-
erence to two situations: during interictal activity from the two patients with focal epilepsy,
and during a seizure {rom the patient with petit male epilepsy (as mentioned above, in both
cases we use the occipital channel). One portion of the EEG signal (normalized to unit) is
employed lor adjusting the parameters of the model which is then used in a larger portion
of the EEG signal for testing its predictive power. We expect good predictive performance
when the dyramics of the EEG interval used for building the model is similar to the dy-
namics of the interval used for testing. A poor forecasting indicates that the system has
changed its dynamics.

In order to build the model it is necessary to determine its embedding dimension d. To
this end, we bave analyzed the performance of the models for different embedding dimen-
sions. The model incorporates five Gaussian functions, [see eq. (3)], and the time lag used
is one sample (A = 7,}. We compute the mean relative error (MRE), between the EEG
éignal (v;) and the forecasting (v}) as a function of the embedding dimension. The MRE is
defined by

vy

2
N oy, — o
MRE = N"'Y (i) : (11)
3
and we shali sce that it exhibits & minimum when the embedding dirmnension reaches a certain
. value, this value depending on the signal nature. We choose the dimension corresponding to

the minimum of the MRE as the embedding dimension of the model. We used two different

lengths of segment (300 and 400 points) for the modeling and EEG segments exhibiting
different dynamics. In all cases the adequate embedding dimension was robust with respect
to the number of points used in the modeling. In the Fig. 1, corresponding to a patient
with focal epilepsy during IA, the MRE minimum is reached at d = 4 for all the 4 models
considered (2 of the models used 400 points and the other 2 used 300 points). This result is
in clear contrast with the case of EEG signal without epileptic activity. For comparison we
show in the Fig. 2 the MRE versus embedding dimension computed on an EEG segment
without TA (interval recorded 2 min. before the interval used in the Fig. 1) where clearly
we cannot.see any minimum at low dimensionality (here also 2 curves resulted from models
with 400 points and the other 2 from models with 300 points). Thus a short portion of the
EEG provides an effective characterization of its dynamics.

Fig. 3 corresponds to the case of the EEG signal from the patient with petit male, during
the seizure. In this case the MRE minimum is at d = 3. In fact, as many authors have
reported using other techniques, low dimensionality is due to a complexity decrease in the
EEG during the seizure. The main advantage of our technique is that we use only 3 or 4
seconds of standard clinical recordings in order to characterize the loss of complexity. This is
a remarkable facet of our approach because, when we deal with EEG signal, it is difficult to
obtain a long transient for a reliable estimation of the parameters like correlation dimension
or Lyapunov exponents.

We shall now present the result for the various models obtained using different segments
of the EEG recording with the appropriate embedding dimension d as determined above
for the regions with epileptic activity. In the regions of the EEG signal without epileptic
activity we shall use d = 11 which corresponds to the value of d at which the MRE starts
to saturate (see Fig. 2).

In Fig. 4 we display the results for one of the cases in which the EEG exhibits 1A spikes
(it is the case used in the Fig 1). The EEG recording is displayed at the top of the Fig.
4. The graph in the middle of Fig. 4 displays the prediction/érror from a model that was

built using the first 400 points {region without LA spikes} of the EEG signal shown at the
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top of figure 4. The embedding dimension used was d = 11 (see Fig. 2). We can clearly sce
huge sharp peaks, related to big errors (notice that the scale of this plot was zoomed up 10
times) ab the points where A spikes occur. In the graph at the bottom of the Fig. 4 we
can see the concomitant prediction error from a model constructed using 400 points of the
region with [A spikes (between 1350 and 1750). The model has dimension d = 4 (see Fig
1). In this case the amplitude of the peaks in the prediction error is considerably smaller
than before. Moreover we do not see a signicant peak in the error in the region without 1A
(the model was made using an IA segment) where one would expect bigger errors.

We can conclude that these kind of models (deterministic models) can capture some
aspects of the dynamics but not all of them, due o the presence of a stochastic component
in the EEG signal. Nevertheless, as we can see from the Fig. 4, given a model constructed
using a segment without IA spikes, if we compute its predictive performance in segments
with TA spikes, these spikes can be detected clearly, by means of the peaks localization in
the prediction error.

- In Tig. 5, we can see the case of the other patient with focal epilepsy. We found the
same results using different segments of the EEG as done in the case of the Fig. 4. In order
Lo further test our method, we applied to the signal displayed at the top of Fig. 5, the two
models used for constructing the Fig. 4. The corresponding prediction errors are displayed
in the Fig. 6. As we can sce, the result is essentially the same as shown in the Fig. 5. This
means that the present method is robust in the sense that the model can be constructed
once and for all using the signal of one patient, and provided the signals are normalized, the
same model can be used for analysing other patients EEG signal.

The automatic detection of epileptic spikes is not specific of the focal epilepsy, the peaks
in the prediciton error also occur in the spikes of generalized epilepsy. We applied this
technique to petit male epilepsy, shown at the top of Fig. 7. In the middle of the Fig.
7 we show the prediction error from a model, with embedding dimension ¢ = 11, which
was constructed using the 400 points in a region without seizure (hetween 1300 and 1700).

Again, we can see clearly sharp peaks, related to big errors in the seizure segment. At the

9

_bottom of Fig. 7, we can see the concomitant errors from a model with d = 3 (see Fig. 3)

constructed using 400 points in a region with seizure (between 600 and 1000). In this case,
as in the case of the plot at the bottom of figures 4, 5 and 6, the error does not show sharp

peaks.

IV. DISCUSSION AND CONCLUSIONS

We have presented here a new method, based on deterministic [T-modeling of EEG
signals, for automatically detecting JA spikes. By suitably adjusting the dimension our
model is able to “capture” the essential correlations of the system. The ratio between the
amplitude of the peaks and the background error signal is greater than the ratio between
the amplitude of the spikes and the background EEG. Our method can be implemented
in the online-detection of IA when many hours of EEG recording are needed for a reliable
diagnosis.

A remarkable fact is to be emphasized: the rather small quantity of poinis needed for
the modeling. Thus the problems associated with the nonstationarity of the EEG signals are
avoided. This means that the detection power, using the error signal, is good enough without
loss of temporal resolution. In dealing with focal epilepsy, the high temporal resolution is
particularly valuable because it improves the possibility of localizing and monitoring the
epileptic focus activity using a multi-channel EEG recording [28].

We conclude by pointing out that the application of deterministic nonlinear models to the
analysis of complex signals should receive renewed impetus from the present considerations.
Moreover, these results corroborate the conjeture that epileptical activity could correspond
to low dimension chaotic attractor, while the nature of normal EEG continues an open

question.
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FIGURE CAPTIONS

Figure 1 MRE as a function of the embedding dimension for the EEG signal shown af the
top of the Fig. 4. All the curves refer to models using segments with 1A. Two of the
curves correspond to models constructed using 400 points and the other two to models
constructed using 300 points. The models were tested over the following 1000 points

which also lie in a region with IA. Delay is one sample {A = 7;), and we used p = 5.

Figure 2 MRE as a function of the embedding dimension for the EEG without epileptic
activity. Two of the models were constructed using a segments of 400 points and the
other two using segments of 300 points, and then they were tested over 1000 points of

a subsequent interval (without IA). Delay is one sample, and we used p = 5.

Figure 3 MRE as a function of the embedding dimension for the EEG with petit male
shown at the top of Fig. 7. all the curves refer to models using seizure segments. Two
of the models were constructed using 400 points and the other two using 300 points,
and then they were tested over the whole segment with seizure (1-1000). Delay is one

sample, and we used p = 5.

figure 4 Top: 3 seconds of the EEG recording from a patient with focal epilepsy. Mid-

dle: prediction error from the model constructed using the first 400 points (without
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IA spikes} with embedding dimension d = 11. Béttom: prediction error from the
model using the 490 points with IA spikes (hetween 1350 and 1750) with embedding

dimension d = 4.

figure 5 Top: 3 seconds of the EEG recording from another patient with focal epilepsy.
Middle: prediction error from the model constructed using the first 400 points (without
1A spikes) with embedding dimension d = 11. Bottom: prediction error from the model

constructed using 400 points with 1A épikcs (between 1800 and 2200} with d = 4.

figure 6 Prediction errors for the EEG displayéd at the top of the Fig. 5, using the same
models of the Fig 4. Top: prediction error [rom the model without IA of Fig. 4 (to be
compared with the prediction error displayed in the middle of the Fig. 5). Bottom:
prediction error from the model with IA of Fig. 4 (to be compared with the prediction

error displayed at the bottom of the Fig. 5).

figure 7 Top: 3 seconds of the EEG recording from a patient with petit male. Middle:
prediction etror from the model constructed using 400 points without epilepsy activity
(between 1300 and 1700) with d = 11. Bottom: prediction error from the model

constructed using 400 points with [A spikes (between 600 and 1000) with d = 3.
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