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Abstract

A manifestly Poincare invariant formulation for D = 11 superstring action is
proposed, The action is invariant under a local fermionic w-symmetry as well as
under & number of giobal symmetries, which turn out to be on-shefl realization of
the known “new supersymmetry* S-algebra. Canonical quantization of the theory
leads to a quantum state spectrum, which can be identified with that of the tvpe IIA
superstring. Besides, a mechanical model is constructed , which is a zero tension
limit of the 12 = 11 superstring and whick ircorporates all essential features of the
latter. A corresponding action invariant under off-shell closed realization of the
S-algebra is obtained,

1 Introduction

Green-Schwarz (GS) approach [1] to the construction of manifestly super
Poincare invariant actions for extended objects implies the invariance un-

der the local k-symmetry [2], which eliminates half of the initial fermionic
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variables. It provides free dynamics for physical sector variables as well
as supersymmetric spectrum of quantum states. The requirement of con-
sistency of the manifest super Poincare invariance with local xk-symmetry
leads to rather rigid restrictions on possible dimensions of the target and
worldvolume spaces in which the action can be formulated. These restric-
tions are enumerated in the known brane scan [3,4], which prohibits, in
particular, the Green-Schwarz type formulation for D = 11 superstring
action already at the classical level. According to the brane scan the only

permitted dimensions are 3, 4, 6 and 10.

It would be an intriguing task to avoid this no-go theorem in relation to
recent progress in understanding of the eleven-dimensional nature of the
known superstring theories (see [4-9] and references therein). In the strong -
coupling limit of M-theory R!! — oo, where R!! is the radius of the 11th
dimension, the vacuum is eleven-dimensional Minkowski and the effect-
ive field theory is D11 supergavity, which is viewed now as strong coupling
limit of ten-dimensional type ITA superstring [5]. Since D11 Poincare sym-
metry survives in this special point in the moduli space of M-theory vacua
(“uncompactified M-theory” according to Ref. [8]), one may ask of the ex-
istence of a consistent D11 quantum theory with D11 supergravity being
its low energy limit. One possibility might be the supermembrane action
[10-12], but in this case one faces the problem of a continuous spectrum
for the first quantized supermembrane [13-15]. By analogy with the ten-
dimensional case, where the known field theories can be obtained as low
energy limit of the corresponding superstrings [16,8], a different natural
candidate might be a D11 superstring.

Several ways are known to avoid the no-go theorem, either by consid-

ering space-time with non standard signature [17-20], or by introducing
higher spin worldvolume fields into the action [22-28]!. In the present pa-

'In recent works [29,30] D = 11 action with second-class constraints instead of the K-symmetry was,
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per we chose another line. Since the brane scan is based on demanding of
super Poincare invariance, there might exist D = 11 GS type superstring
actions for which the supergroup is different from the super Poincare [4].
To elucidate how it may work note that the crucial point of GS formulation

for the case of superstring is the y-matrix identity
o (CT")s) = 0, (1)

which holds in I == 3,4,6,10. It provides the existence of both global su-

persymmetry and local k-symmetry for the action [1]. An eleven-dimensional

analog of Eq.(1) has the form [3,31.32]

10D 5(CT#)5) + 45 (CT™) 15 = 0, (2)

2. Tt turns out to be

which contains antisymmetric product of y-matrices
applicable for the superstring case instead of Eq.(1), if one replaces the

standard superspace 1-form
daz* — i6T#df (3)

by an other one, which contains the same product of I'-matrices as in
Eq.(2), i :

da? — i((0T*df)n,,. (4}
Appearance of the new variable n#(7, ¢) seems to be an essential property of
the construction [17-20,29,30,34-36 |. An action, which may be constructed
from these 1-forms, is not invariant under the standard supertranslations.

suggested. In was achieved by adding of an appropriatety chosen terms to the GS action written in D = 11.
Since there is no x-symmetry, identities of the type (1}, (2) are not necessary for the construction, but
the price is that only one half of supersymmetries survive in the resulting Poincare invariant action.
Supersymmetry of quantum states spectrwm for the model is under investigation now.

*Being appropriate for construction of the supermembrazne action [10],this identity does not allow one

to formulate I} = 11 super Poincare invariant action for superstring with desirable properties. As was
shown by Curtright [31], the globally supersymmetric action based on this identity involves additional
to ¥, 6,4, 8, degrees of freedom in the physical sector. Moreover, it does not posses the x-symmetry that
could provide free dynamics {31,33]. .

As it will be shown the suitable generalization is the “new supersymmetry”
[18-20]

=c, 82" =i(e"0)n,. (5)

The algebra of the corresponding generators is different from the super

Poincare and may be written as [17-20]

{Qa, Qs} ~ T Py (6)

It is known as S-algebra previously discussed in the M-theory context [17]
(see [21] for discussion of the general case). To understand why it may
be interesting, note that in special Lorentz reference frame, where n# =
(0,---0,1), eq.(5) reduces (see Appendix for our y-matrix notations) to the
following one:

36 = ¢, 50, = Eq,

Saf = —ig,I'PPf, — ie”‘f‘gﬁﬁﬁ, szl =0,

(7)

where 8 = (8,,0%), 1t = (5,10), i = 0,1,---,9. Equation (7) coincides ex-
actly with the standard D = 10, N = 2 supersymmetry transformations.
Thus, one can treat the new supersymmetry (3) as a way to rewrite the
D = 10, N = 2 supersymmetry in “eleven dimensional notations”, and
the corresponding action might be related to type IIA superstring. The
possibility of lifting the known ten-dimensional models to the manifestly
invariant eleven dimensional form is now under intensive investigation [18-
20,29,30,35,36], and the main problem here is to find an appropriate Lag-
rangian formulation with the variable n# treated on equal footing with all
other ones. From the previous discussion it is clear that the most preferable
might be a formulation where the gauge n* = (0,---,0,1) would be pos-
sible. Unfortunately, it is unknown how to introduce pure gauge variable
with the desired properties [18-20,34-36]. Below, we propose D = 11 super-
string action, in which only zero modes of the auxiliary variables survive
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in the sector of physical degrees of freedom. Since the state spectrum of a
string is formed by the action on a vacuum of oscillator modes only, one
expects that the presence of zero modes for the case is not essential. This

fact will be demonstrated within the canonical quantization framework in

Sec.2.

As compared to Refs.[18-20,35,36], an advantage of the present formu-
lation is that the explicit Lagrangian action for D = 11 superstring will be
presented. Moreover, since the variable n#(7, ) is treated on equal footing
with other ones, global symmetry transformations form a superalgebra in
the usual sense, without appearance of nonlinear in generators terms in
the right hand side of Eq.(6) (see below). Thus, true form of the S-algebra

will be ohtained.

The work is organized as follows. In Sec.2 classical Hamiltonian analysis
for the bosonic part of the D = 11 superstring action is carried out. We
demonstrate that zero modes of the auxiliary variables surviving in the
sector of physical degrees of freedom do not make contributions to the
gquantum state spectrum of the theory. In Sec.3 an action of the D =11
superstring and its local and global symmetries are presented. In Sec.4 we

show that physical degrees of freedom of the theory obey free equations of

motion. The canonical quantization of the theory leads to the quantum

state spectrum identical to that of the type IIA GS superstring. In Sec.5
zero-tension limit of the superstring action is studied. We present D = 11
action for mechanics system, which is invariant under local x-symmetry as
well as under off-shell closed realization of S-algebra of global symmetries.
In the result, a model-independent form of the S-algebra will be presented.

Appendix contains our y-matrix conventions for D = 11.

2 Bosonic part of the action and its spectrum.

As was mentioned in the Introduction we need to get in our disposal an
auxiliary space-like vector variable. As a preliminary step to such a con-
struction we discuss an action of the bosonic string modified by some ad-
ditional terms with the above mentioned variable. The aim of this section
is to show that the additional terms describe trivial degrees of freedom.
Although zero modes of the auxiliary variables survive in the physical sec-
tor, they do not make contribution to the quantum state spectrum of the
model. An action for the DD = 11 superstring will be obtained in the next

section as a supersymmetrization of the above mentioned bosonic action.

The action which will be examined is

)
S = /dga {2\/9__9@3:#6633# — ¢ (" Bya?) — 00, A — p(n? + 1)} .{8)

Here n#(c®) is D11 vector and d2 scalar, A%(c?) is D11 and d2 vector,
while ¢(0) is a scalar. In Eq.(8) we have set ¢®® = —¢’® 0! = —1 and it
also supposed that all the variables are periodic on the interval ¢ C [0, 7]
functions. From the equation of motion 65/d¢ = 0 it follows that n* is a
space-like vector.

Let us discuss the dynamics of the model. For this aim the Hamiltonian
formalism seems to be the most appropriate, since second-class constraints

will arise and must be taken into account.The total Hamiltonian construc-
ted by means of standard procedure [37,38] has the form

N R
H= fda {—E[pg + (812)%] — Ny (p01z) — Ey(ndre) + (nd1Ag)+
F6(n® + 1) + 0™ (7y)ab + Aoy + AeaTe® + Aiph + M (P} — n#) + Mept ), (9)
where

/= oL
= pt 4+ Ln N = goog’ Ny = gﬁﬁ’ - (10)




and p*, pli, phy (%), 7§, 7y are momenta conjugated to the variables .m*‘,
AR, nk, g4 €, ¢ respectively; A, are Lagrange multipliers corresponding
to the primary constraints. The complete set of constrains can be found

and presented as follows

ph=0, n*—p{=0; {11)

=0,  &~—(pp) =0 (12)

(mdap =0,  m=0, =0, pf=0 (13)
(m)P=-1, apf =0 (14)

Hy = (p1812) = 0, Hy = (p' +82%)% = (4 (15)

Constraints (11),(12) are of second-class, while the remaining ones are first-

class. An appropriate gange fixing for the constraints (13) is

. b=0,  Af=[do'epr. (16)
0

(=
Il
=3
D
Il
[S=F

After introducing of Dirac brackets, which correspond to second-class set
(11)~(13),(16), the canonical pairs of variables (n#, pt), (£,, e s (Gabs (7)),
(¢, 74), (f‘lﬁ, p)) can be omitted. The Dirac brackets for the remaining
variables coincide with the Poisson ones [38]. The choice in (16) simplifies
the subsequent analysis of (Af, p{)-sector, since the Hamiltonian equations

of motion for these variables look now as
A =pf, o =0. (17}

In order to find an appropriate gauge fixing for the constraints (14) let
us consider Fourier decomposition of periodical in the interval ¢ C [0, 7]

functions
Ai(r.0) =YH(r) + 5, yh(r)e™,

) n#l : _
TP, e) = p;(,',-) + Z#:Op#(.',.)eﬂno-_ (18)
A
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Then the constraint &,pf = 0 is equivalent to p* = 0, n # 0, and ar
appropriate gauge condition is y* = 0, or, equivalently, & A} = 0. Thus
physical degrees of freedom in the sector (Af,p}) are zero modes of these

variables and the corresponding dynamics is

Al (r,0) =Y# 4+ Phr,

\ (19,
p’f(T, a) = ng‘ = const, (Py) =-1

Since there are no of oscillator variables, this sector of the theory may
be considered as describing a point-like object, which propagates freely

according to Eq.(19). Dynamics of the remaining variables is governec

now by the equations
ot = —p" — (Fyp) Py, Oop"' = —01012%. (20
In addition, the constraints
Hy = (Pdiz) =0, Hy = (p" + (Pp)PF £ 812*)* =0, - (21)
hold, which obey the following algebra

{H., Hy} = £4[Hy(0) £ (Pyp)Ho(o) + (0 = ¢")]|00(0 — o),
{Hy, H_} = 4[(Pyp)Hy (o) + (0 = 0'))0,8(c — ¢'), (22)
A{Hy, Hy} = £2Hy(0")0,0{c — ¢').

On the D = 10 hyperplane selected by the constraint Hy(o) = 0 it reduces
to the standard Virasoro algebra. Note also that the variable #(7, o) obeys
the free equation (82 — 82)z* = 0 as a consequence of Eqs.(20),(21).

To proceed further it is useful to impose the gauge condition
(P,o1p) =0, (23)

to the constraint Hy = 0. By virtue of Eqs.(20),(23) one finds, in particular,
that (Pp) = (P,P), where P* is the zero mode of p*(7,0). Then the
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solution to Eq.(20) (for the case of closed world sheet) reads

;1:”(7',()") = X# %(P'u + (PyP)P;‘L)T-I—

37 T flane™n o) 4 ol emitnlr=al], (24)

p'u(?', 0’) — %P’” + \_LE z[@gei%(r+a) _ QEHE_iQH(T_G)],

which is accompanied by the constraints

Prak =0,  Pra* =0, (25)
Hy=15 L0, L=} 5 ol ol =0, (26)
H = % %’;Lﬂemn{r+d)’ L,= %_i ab ol =0,
where aff = —af = 2f(P‘” + (P, P)PY).

From Eq.(25) and the equality {P¥* + (P,P)PH)P¥ = 0 for the mo-
menta of the center of nass, it follows that the sector {z#, p#} of the theory
describes, in fact, a closed string, which lives on the (D-1)-dimensional

hyperplane orthogonal to the P} - direction.

Using the zero modes X*, P#, ¥Y'#, P¥, one can construct the following

combinations

AF = X*H— ii; o Pt = P+ (F,P)FY, (27)
which obey the Poisson brackets

{X P =9, {x*, X7 = {Pr PY} =0, (28)

Thus, the quantities P*, L = L(XPPY — XYP¥) are generators of the
Poincare group. This allows one to obtain the mass formulae for physical
states. We adopt the Gupta-Bleuler prescription by requiring that physical
states be annihilated by half of the operators : L, : , : L, :

(Ln — adyup)| phys >= (L, — ab,q) | phys >=0, - n > 0. (29)

9

By virtue of Eq.(26} for n=0 one finds the mass of the states

m? =P? = 4z { Y {a*, ok +aF ak) + 2&} . (30)
n>0

As it should be, the mass of a state is determined by oscillator excitations

of a#(r, o) -string only, zero modes of the sector (A, p{) do not make any

contribution into this expression.

In order to describe the spectrum of the superstring suggested below,
it is useful to consider also noncovariant quantization in an appropriately
chosen coordinate system. By making use of a Lorentz transformation
one can consider coordinate system where P = (0,..0,1). This breaks
manifest SO(1, D — 1) covariance up to SO(1,D — 2) one. In this basis
Eq.(20)-(23) are reduced to

Pt =0, gyl =0; (31)

Gt = —p‘_‘, 3upﬁ = "'alalx'au (P'a + 51513’@):2 = 0; (32)

where 4 = (fi, D — 1}. Thus, zero modes of the theory (8) along the dir-

ection P decouples from (D) — 1)-dimensional sector (32), while oscillator

modes along the direction P} are absent as a consequence of the equations
(Bdyz) = (P,dip) = 0.

Let us discuss the obtained results. Classically, the bosonic D - dimen-
sional theory (8) can be considered as describing a composite object. The
sector of the auxiliary variables (A, pf') corresponds to a point-like object.
The only physical degrees of freedom of the sector are zero modes Y#, P

which describe propagation of a free particle, see Eq.(19). The sector _of'
variables (z#,p*} describes the closed string (32),(30), which lives on (D-

~ 1) - dimensional hyperplane orthogonal to P} - direction (the constraints

(15), which relate the particle and the closed string mean that the latter
one has no component of center of mass momenta as well as of oscillator
excitations in the P} - direction, see Eqs.(24),(25)).

10



Next let us look at the spectrum of the theory. The ground state of the
full theory | pyo,p0.0 >=| py >| po >| 0 > is a direct product of vacua,
corresponding to the sectors (Y#, P¥), (X¥* P#), (a#, a#), which obey
lepyg >=—|ppo> P'lpo>=pylp> o ]|0>=a|0>=0
for n > 0. The excitation levels are then obtained by acting with n < 0
oscillators on the ground state. From the mass formulae (30), and Eq.(32)
it follows that the quantum state spectrum of the theory (8) coincides
with that of the (D-1) - dimensional closed bosonic string. One notes that
zero modes Y#, P}’ manifest themselves in additional degeneracy of the

continuous energy spectrum only.

3 Action of D=11 superstring and its symmetries

As the D = 11 superstring action we propose the following supersymmetric

version of (8):

S = [f{

T2, - i (0,a" — ST, 0,0) (AT, 040) -
mg@mﬂm—%ﬂm%—mﬁ+nL (33)

where § is a 32-component Majorana spinor of SO(1,10), £, is a d = 2
vector and [I# = J,a* — i0T*n,3,8. The role of the last two terms was
explained in the previous section. The third term is crucial for existence of
local k-symmetry and, at the same time, it provides a split of z!° coordinate

from the physical sector.”?

Let us describe global symmetry structure of the action (33). Bosonic
symmetries are the D = 11 Poincaré transformations in the standard

realization, and additional transformations with antisymmetric parameter

30n-shell states carry only ten-dimensional momenta, which turn out to be common property for
known D = 11, 12 formulations{18-20,39].

11

A
bzt = b* ",
be
g A
S AL = —b", {5, II.” — &,nY +4(0T7 8,0 ) .
b ( b= £ ( )

The following fermionic supersymmetry transformations also take place:

(34)

80 = ¢, dzt = iel*n, 0, (35)
be
o i 9 THvgy _ O (epun 0T 8.0
dAH = zsab\l/__gﬂw(el“ 9) 6(eF 0){6T,0,H)+
+6(€1",,9)(67I‘””8a9).

One can prove that the complete algebra of symmetry transformations is
on-shell closed up to the equation of motion J,n* = 0 and up to the trivial
transformations d A# = 3,p# (see Eq.(38) below) with field-dependent para-
meter p*, as it usually happens in component formulations of supersym-
metric models without auxiliary fields. In Sec.5 an off-shell closed version
of these transformations will be obtained for the case of D = 11 super-

particle. The only nontrivial commutator is?

[0c,,0¢,] = 0s, W= =2i(6 1" ey). {36)
Let us note that one needs to use the D = 11 Fierz identities to prove
Eq.(36) for A* variable
(T¥)a(a(CT* )ys) + (T*)a(a(CT¥) gy = 0. (37)
A relation of Eq.(35) to the D = 10, N = 2 supersymmetry has been
described in the Introduction.

Local bosonic symmetries for the action (33) are d = 2 reparametriz-

ations (with the standard transformation lows for all the variables except

*To elucidate relation between Eqs.(36) and (6) let us point a simple analogy: algebra of the Lorentz
generators M® = L(z#p¥ — 2¥p#) can be written either as [M5¥, M#9] = gtP M9 4 oy [M# Mee] =
—n**p®x” + ... The second case may be considered as corresponding to Eq.(6). '

12



the variable ¢, which transforms as a density, ¢'(¢’) = det(ds'/do) () ),
Weyl symmetry, and the following transforinations with parameters p#{c®)

and w,(o?),
AL = G p + wen, 3¢ = -—%e“"&lwb. (38)

These symmetries are reducible since their combination with parameters
of a special form (w, = Gw,p* = —wn') is a trivial symmetry, §, A% =
—wd,n", 8,4 = 0 (note that d,n* = 0 is one of the equations of motion).
Thus, Eq.(38) includes 12 essential parameters, which correspond to the
primary first-class constraints pj = 0,74 = 0 (see below).

The action is also invariant under a pair of local fermionic k-symmetries.

To describe them let us consider the following ansatz:

30 = +I04, S*T¥&TL, S = —60T"n, 0, (39)
5g® = 8i\/=gP*(H,05F k),

where

de
S = L(Lkn, %), W= PR, PR (g m“)- (40)

vl

Note that on-shell (where n? = —1) the operators S*.,? form a pair of

ORI

projectors in #-space. Let us remember also that the d = 2 projectors
P% obey the following properties: Pt = p-te pFabpFed _ pFcb prad
After tedious calculations with the use of latter properties and the Fierz
identities (37) a variation of the action (33) under the transformatlons (39)

can be presented in the form
88 = —e®8,n, Gy + (n* + 1) H + %(n,I1) F,, (41)

where

cd _ 1 - -
= i (T 0) Ly, + (30T 6) (AT, )

13

— = (08T ,6)(FT™246) + iy (5T 6)n,

ab
. g AL~
H= -i—z\/___é_](@aHI‘#fﬁ)Hbm (42)
cd
Fy = ifeac—e (88T )n,, + (9,557)F

v—g
F PO aT,,], AT = 0, I¥#6%.
All terms in Eq.(41) can evidently be canceled by the corresponding vari-

ations of the auxiliary fields,

SAY=GY, bp=H, 6t =F, (43)

In the end one can see that the eleven dimensional superstring action
(33) is invariant under the transformations from Eq.(39) supplemented
by ones from Eq.(43). Let us stress that three last terms in the action
(33) turn out to be essential for achieving this local k-symmetry. Since in
Eq.(39) there appeared the double projectors (S* and II,,I'®} acting on
the ¢-space, the total number of essential parameters is 8§ + 8.

As a cheek-up of our calculations note that after the substitution n# —
(0,---0,1) the equations (39) are reduced to the ten-dimensional K-symmetry
transformations of the GS superstring action

00% = —P~TINI**PRog, 08, = PFIA,TE e P,
dzt = ifTh 60 + i, TP 58, (44)
89" = 8iv/=g{P~**(8,0k**) — P+**(5,05~%)). |

4 Dynamics of the D=11 superstring and D=10 type
ITA GS superstring.

In this Section we are going to demonstrate that the dynafnics of physical
variables in the theory (33) is governed by free equations. In the coordinate

14



system, where n# = (0,--.0,1), the variables and the corresponding equa-
tions can be identified with the ones of type 1A GS superstring (modulo
center of mass type variables discussed in Sect.2). As a result, quantum
state spectrum of the theory (33) coincides with that of the type IIA GS
superstring. This conclusion is independent on the frame chosen since the
initial action has D = 11 Poincare invariance.

Performing the standard Hamiltonian analysis for the theory (33), one
finds a pair of second-class constraints p# =0, p{ —n# = 0 among primary
constraints of the theory. Then the variables (n”, p/) can be omitted after
introducing the associated Dirac bracket (see Sec. 2}. The Dirac brackets
for the remaining variables coincide with the Poisson ones, and the total

Hamiltonian may be written as
N, . . .
H = ]dcrl {w?(pg + Hlﬂl—.['rf) — Nlp#]._.['f +P1”81A‘g — £o(p1,u§1$”)+
+O(p] 4+ 1) + sy + Mapplh + A (g ab + Ao + LoAs™},  (45)
where p*, pff, pY, p¢, (7y)ap are momenta conjugated to the variables z#; Af, A,

£as gab Tespectively; A, are Lagrange multipliers corresponding to the primary

constraints, and the following notations are used

— 01 ~
N=YGr M= =pf -0+

Lo = fig — i(p, — %éryale)(érﬂ”)apl,, —i(dt — %ér#”pwale)(érﬂ)a =0
(46)

Poisson brackets for the fermionic constraints are:
{Lo, Lg} = 20 [(p" + ) (CTHS™) 5 — (3 — T)(CTHS7) ), (47)

from which it follows that half of the latter are of first-class. The complete

system of constraints can be presented in the form

Pg1“=. 0, &~ (pp1) + i(gF#aIH)Ply =0; (48.a)

15

(Tg)as = 0, mg = 0, peo =0, ph = 0; (48.5)

apt =0, (o)’ =-1; (48.¢)

Hy=duatp, =0, Hyi=@E'+0%*=0, L,=0. (48.d) -
Besides, some equations for the Lagrange multipliers have been determined

in the course of Dirac procedure,

=0, M =054k + 20" + QH (49)

(ﬁ,u — Hl'u)]._“uSﬁ(Ag — 319) = O’ (50)
(B + I, )THS (A + 18) = 0;

where

QF = —N&PF — NG — &bzt —
— {ip, 6T + 3(8T,6,6)01# + L(GT*#5,8)8T, ] o, (51)

and the Eq.(50) was obtained from the condition {L,, H} = 0. The con-
straints (48.a-c) were considered in Sect.2 and we do not repeat the cor-
responding analysis here. Doing the gauge fixing (16) and solving of the
(Af, pi)-sector similar to the Eq.(19), one can see that the dynamics of the

remaining variables is governed by equations of motion of the form

Gozt = ~(p* + (pPy)Pt) — i(6T Xg) Py,
Qop* = —0) [re” — i(BT#816) Py, + i0TF)] , (52)
3095' - '—Ag, !

together with the constraints (48.d). Equations for ps-variables are omitted

since they are a consequence of the constraints L, = 0 and other equations.

Similarly to GS superstring, physical variables of the theory (33) obey

free equations of motion. To demonstrate this let us consider the following

16



decomposition for f-variable, § = 6 +6~, where #* are spinors of opposite
S-chirality® ‘
0t = S*0, STt =0. (53)

By virtue of Eq.(50), the last equation from (52) can be rewritten as
(P + Wy, )TH(8y — 81)0F =0, (Pp — I )T* (O + 1)}~ =0.  (54)
Further, the following conditions
rtet =0, TI''¢" =0, (55)

turn out to be an appropriate gauge fixing for the first-class constraints,
which can be extracted from the equations L, = 0. Then I't \f-projections
vanish, T*AF = 0, while for T~ Aj-projections one finds as a consequence
of Eq.(50),°

I\ =-T 0,8, I=a;, =006, (56)
Besibes, the following identities

AT+ = OTNy = 0,
(8T +#Xg) Py = (AT 2) Py = 0, (57)
(fT+48,6) P,, = (6T*0,0)F,, = 0,

hold in the gauge (54), where i = 1,2,---,8, 10.

Thus, we have, in fact, a situation similar to D = 10 GS superstring,
and the corresponding analysis coincides with the well known case [1,16].
Physical variable sector contains the transverse components z*,i = 1,---,8
of the coordinate z# (sec Sect.2), and a pair of 32-component spinors #+
constrained by the equations (53),{55). By virtue of Egs.(52)-(57) one gets

5In the basis where n¥ = P# = (0,---,0,1) the S-chiral spinors 6% can be identified with D = 10
Majorana- Weyl spinors of apposite chirality §+ = (%,0), 6~ = (0,8%). Also, in this basis S%-projectors
commutes with the light-cone F%-matrices.

From equation ByT* & = 0 subject to condition T+W = 0 it follows, in particular, that BYT- ¥ = 0.
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that the physical variables obey the free equations
oo’ = —(p' + (PP} PY), dp* = —8812"; (58)
(O — 81)I“9+ =0, (80 + al)P‘B" =, (59)

To analyze the quantum state spectrum for the theory under consider-
ation let us follow on the SO(8) covariant procedure described in Sect.2.
In the basis where Py ={0,---,0,1) the gauge conditions (55) are equi-
valent to I'"§ = 0 with the solution being ¢ = (4,,0,0,8;), where 8,,8;
are SO(8) spinors of opposite chirality. Then the equations (59) reduce to
(8y—81)8, =0, (8p+ 1)8; = 0 ones, while the second equation from (48.d)
coincides with the ten-dimensional Virasoro constraints. They lead to the
standard mass formulae and one can see that the quantum state spectrum
of the theory (33) can be identified with that of type IIA GS superstring.

5 D=11 mechanical system with off-shell closed new

supersymmetry S-algebra.

Being zero-tension limit of the GS superstring, the Casalbioni-Brink-Schwarz
superparticle incorporates all its essential features [40,41]. Tt allows one to
study corresponding problems in a more simple framework of the mech-
anical model. In a similar fashion, in this Section a point-like analog for
the D = 11 superstring is presented and discussed. The action is invariant
under local k-symmetry as well as under a number of global symmetries
with on-shell closed algebra of commutators. Its off-shell closed version
will be obtained by a slight modification of the initial action, which allows
one to extract a true form of the S-algebra. Being model-independent, it
may be used now as a basis for systematic construction of.various D = 11

models.
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Our starting point is the following D = 11 Lagrangian action

s=[dr {;—emn# Ftsh— gn? + 1)} ,

- (60)
¢ = i — i(0"6)n, — Ens,

with all the variables being functions on the evolution parameter r. Note
that the last two terms are, in fact, an action for bosonic particle z#(r)
written in the first-order form.

Global bosonic symmetries of the action (60) are D = 11 Poincare trans-
formations (with the variable n* being inert under the Poincare shifts), and

the following transformations
1
gt = b0, Gt = - I, (61)
e

with antisymmetric parameter w” = —w"#. There is also a global sym-

metry with a fermionic parameter €®,
0.8 = ¢, Seat = —i(AT"¢€)n,, dezt = —E(EF“”H)H,,. (62)
e

The algebra of the corresponding commutators turns out to be on-shell

closed and looks as follows:

i

[91, iz = 0, [, ol 2" = —bi¥, (o11") = (1 & 2);

[5611562]9 = 01 [5611 562]'/’6# = (552:#7 (63)

(6.1, 6.5] 28 = 82" + {i(alrwe)((xzny) — (16 2)] 5 = —2i(eT"ey);

e

16,0410 = 0, [0, 02" = 0,

(6., 824 = -%b*‘,,(éeﬂ”) + (@),
Commutators with the Poincare transformations are omitted here since
they have the standard form. All the extra terms in the right hand side of
Eq.(63) contain 6II* ~ n#* and vanish on-shell, where n# = 0. To find off-

shell closed version of these transformations let us note that all extra terms
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arise owing to the variation of the II*-term. The latter appears, in its turn,
due to variation of the variable z#. Following the standard ideology [42,43],
these terms can be canceled by replacing IT* — (II* — B*) in Eqs.(61),(62),
where the auxiliary variable B* has the same transformation properties
as I*, 0B* == ¢II*. The resulting off-shell closed version of the global

symmetries is

0.0 = e, Sext = —i(B1* ¢)n,,,
1

5,2 = —i(eT™) [—H,, - B,,] . 6Br=
e

L) (64)

e

1 1
St = b ,n", Spz# = —w”,,(;l'[” — B”), &B* = gw”,,h", (65)

while the final form of the action, which is invariant under these trans-

formations, looks as follows:
1 1
= iy g A 2 - ZR?
S—fdr{zel_[ O, +nf2* — ¢(n* + 1) QB}. (66)

Thus, S-algebra consist of Poincare subalgebra (M, P#*), and includes
generators of the new supertranslations ), as well as second-rank Lorentz
tensor Z,,, corresponding to tramsformation (65). The only nontrivial
commutator is

{Qa, Qp} = 2(CT™) 52, (67)
Note, that it is not a modification of the super Poincare algebra, but es-

sentially different one, since the commutator of the supertranslations leads

to Z-transformation instead of the Poincare shift.

The action (66) is also invariant under the local k-symmetry transform-

ations
06 =T, ¥k,  ba* = i(fT*60)n,,
§2k = mé(érwae)ny, 8¢ = —2i(856),
Se = die(fT*x)n,,. (68)
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This fact is essential to confirm that physical sector variables obey free
equations of motion. The Hamiltonian analysis for the model is very similar

to that of the superstring action discussed above, and is as follows. One

finds the total Hamiltonian
H = Zp% 4 £(pp:) + 602 + 1) + Aere + Aepe + N + Ngp

(69)
Al + Xou(Pf — 1) + La A,
and the constraints
ph=0, pi-nt=0; (70.a)
pl=—-1,  (pp:)=0, P =0 (70.c)
La = 1690‘ - ":(gT“)Q-P;; =0, (70d)

where ¢ = p,, J#6. The matrix of the Poisson brackets of fermionic
constraints

{LmLﬁ} = Qi(crﬂy)aﬁpypzm (71)

is degenerated on the constraints surface as a consequence of the identity
(T#p,p.)’ = 4{(pp.) — p*p]1 = 0. It means that half of the constraints
are first-class. Also, from the condition {L,, H} = 0 one finds equation,

which determine Ag-multipliers,
p TN, =0, Ny =po TN (72)

After a gauge fixation for the first-class constraints (70.b) (and take into
account the second-class constraints (70.a)), the canonical pairs (e, 7),
(6, 74), (€, pe), (BE,pE), (n”, i) can be omitted from the consideration.

The dynamics of the remaining variables is governed by the equations
=i N, =0 (73.0)
it = — (AT Ag)pey, Pt =0 (73.0)
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6= —X%,  fp = 0. (73.c)

The next step is to impose a gauge for the first-class constraints which are

contained among the equations (70.d),
¢ =0. (74)

By virtue of (72),(73.c) all the Agp-multipliers can be determined, Ap = 0,

and Egs.(73.a-c) are reduced to free equations.

The resulting picture corresponds to zero-tension limit of the D = 11
superstring action (33). The above consideration of the physical sector
allows one to treat the system as a composite one. It consist of the bosonic
z#-particle (73.a) and the superparticle (73.b), (73.c), subjected to the
constraints (70.c). Their free propagation is restricted by the kinematic
constraint (pp,) = 0, which means that the superparticle lives on D = 10

hyperplane orthogonal to the direction of motion of z#-particle.

6 Conclusion.

One can consider D = 10 GS superstring action as a lift of SO(8)-covariant
formulation for superstring up to the manifestly SO(1,9)-invariant form. In
this paper we have considered, in fact, the next step of such a lift, from
SO(L,9) up to SO(1,10). The key point was that the action constructed is
based on the superalgebra of global symmetries (34)-(36), (67), which is
nonstandard super extension of the super Poincare one. It allows one to
avoid restrictions of the brane scan followed from demanding of the super
Poincare invariance. In the result, we have constructed N = 1 S-invariant
action for D = 11 superstring with the quantum state spectrum identical
to D = 10, type IHA GS superstring. The only difference is an additional .

infinite degeneracy in the continuous part of the energy spectrum, related
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with the zero modes Y#, Fi. On the classical level these degrees of freedom
may be identified with coordinate and momenta of a free propagating point-

like object.

In accordance with the results of Refs.[18] and [20] one expects that crit-
ical dimension of the theory is D = 11. We hope that similar construction
will work for lifting of the D = 10 type [IB string to corresponding (10,2)
version (see also Ref.[20]). It will be also interesting to apply the scheme
developed in this work for construction of the Lagrangian formulation for
(D — 2,2) SYM equations of motion considered in [35,36].
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Appendix

In this Appendix we describe the minimal spinor representation of the
Lorentz group SO(1,10), which is known to have dimension 2(0/3. To
this aim, it is enough to find eleven 32 x 32 matrices I'* satisfying the
anticommutation relations M'*T¥ L T*T# — =M, v =0,1,...,10, p* =

(+,—,...,—). A convenient way is to use the well known 16x 16 y-matrices .

of SO(1,9) group, which we denote as I, rmef oy — 0,1,...,9. Their

23

explicit form is:

0 13)° 0 -—1g
I-\i — 0 72aa , fn — 0 vzaa ’
Via 0 Yaa 0
o (1 0 Cpeo L O , (A1)
0 —14 0 -1
where v 34, ¥as = (Vo) T are real SO(8) y-matrices [29],
Y + 45 = 2071, (A.2)
and ¢,0,¢ = 1,...,8. As a consequence, the matrices 1"’“; I'™ are real,

symmetric, and obey the anticommutation relation
(™ "} = —25™1, (A.3)
where ™ = (4+,—,...,—). Then a possible realization for the D = 11

y-matrices is

I 15 O
"o . , =0,1,...,10. (A4)

The properties of [™, I™ induce the following relations for I'#:

rot=-r%  (@T=-r,
(DAY =T#,  {T% T} = —2p*" 14y, (A.5)

The charge conjugation matrix C,
C=T" cl'=—cC, C?=—-1 (A.6)

can be used to construct the symmetric matrices CT#, (CT*)T = CT*.

One can introduce antisymmetrized products
I« = %(F"I"’ - T, - (AT
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which have the following explicit form in terms of the corresponding SO(1,9)

and SO(8)} matrices:

0 ’yi 0
" FDi 0 B ﬁ,i 0
el o) T 0 — |
0 .
_:}/t 0
I 0
o9 _ T o 1 0 -1
Lo T®J 10 |’
01
ﬂ/ij 0 0
P?_j_ I\ij 0 B 0 i’i}
Lo TW T yioo |’
0 y
0 A9
Fig 0 ~t 0
I = =1 —1, (A.8)
0 T 0 0 —v
0
0 10
0
I\U,IU_: ( b ) ): 01
0 10 ’
r 0 0
01
o | O
- (8- 0
e 0 O' y 0
¥ 0

[
o

. \ ~1 0
0 -I? 0 1
IR = : (A.9)
r‘ o 1 0
0
0 -1
where ¢ = 1,2,...,8 and T'%, ['%, T010 are symmetric, whereas '/, T,

T4 T8O are antisymmetric. Besides, these matrices are real and, as a

consequence of Eq. (A5), obey the commutation relations of the Lorentz

algebra.
Under the action of the Lorentz group a I = 11 Dirac spinor is trans-
formed as .
88 = —gwﬂyf"“’ﬁ. (A.10)

Since I'* matrices are real, the reality condition §* = 8 is compatible with’
(A.10) which defines a Majorana spinor. To construct Lorentz-covariant

bilinear combinations, one can note that
_ 1 - _
60 = +yww b, = AiC. (A.11)

Then the combination ¥ T4 is a vector under the action of the D = 11
Lorentz group,
S(UTH#0) = wh, (4T#9). (A.12)

The following properties are also useful

It TG = (=1)"gTH ... T#y
PTUr Py = (~1) 3 GLMHhgp, (A.13)
It is possible to decompose a D = 11 Majorana spinor in terms of its
SO(1,9) and SO(8) components. Namely, it follows from Eq. (A.8) that
the decomposition '
0 = (8,,8%, (A.14)
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where o = 1,...,16, holds. Here & and é are Majorana-Weyl spinors of
opposite chirality with respect to the SO(1,9) subgroup of the SO(1, 10)
group. It follows from the third equation (A8) that in the decomposition

8= (0,,0.,8,0,),a,a=1,...,8, (A.15)
the pairs 8,, #, and 7}, 8; are SO(8) spinors of opposite chirality.

It is convenient to define the I = 11 light-cone I'-matrices

0 13 0
1 ' 00
I* = (T4 T%) = V2 :
V2 ( ) 0 0 0
0 —1g
00
1 | 01
™= —I"-T% =3 i
V2 15 0
0 0
p_ 01 ,
™ 0
po_ L 0 1 (A.16)
Then the equation I'*¢ = 0 has a solution
8 = (0,,0,0,8;). (A.17)
Besides, under the condition I'tf = 0 the following identities:
OT*0,0 = 6U'onf =T%16 =0,  (FT*a)I¥9 =0,  (A18)
hold.
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