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ABSTRACT

A framework to describe the real-time evolution of interacting fermion-scalar fleld mod-
els is set up. On the basis of the general dynamics of the fields, we derive formal equations
of kinetic-type to the set of one-body dynamical variables. A time-dependent projection
technique is used then to generate a nonperturbative mean-field expansion leading to a set
of self-consistent equations of motion for these cbservable, where the lowest order corre-
sponds to the Gaussian approximation. As an application, we consider an uniform system
of relativistic spin-1/2 fermion field coupled, through a Yukawa term, to a scalar field in
3+1 dimensions, known as quantum scalar plasma. The renormalizability for the Gaussian
mean-field equations, both static and dynamical, are examined and initial conditions dis-
cussed. We also investigate solutions for the gap equation and show that the energy density

has a single minimum.
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I. Introduction

Qver the last two decades, the interest in the real-time evolution for relativistic quantum
field models stems mainly from two different areas of physics. On the one hand, inflation-
ary cosmological models provide very appealing scenario to describe the early stage of our
universe. The essential ingredient is to study the time evolution of a scalar field, which
undergoes a second-order phase transition from a high-temperature symmetric phase to a
low-temperature broken phase [1]. On the other hand, properties of hadronic matter manifest
themselves through transient phenomena in globally off-equilibrium situations [2]. Notably,
in the ultra-relativistc heavy-ion experiments there is large concentration of energy in the
collision region. During the relaxation process, may hapen that the chiral condensate mis-
aligns with the vacuum state [3]. This phenomenon might soon be probed in Brookhaven
Relativistic Heavy Ion Collider (RHIC) or the CERN large Hadron Collider {LHC). In either
of two context nonperturbative methods must be employed, and any microscopic models will
involve a set of mutually interacting quantum fields, which can be thought of as interacting
subsystem. At the other end of energy scale, interest in condensate matter [4], quantum
optics [6] and theorists working on the fundamentals of quantum measument process fall
into this category as well [6].

For this class of problems, one typically tries to obtain and solve equations describing
the kinetic behavior of a particular, “relevant” subsystem or of a restricted set of “relevant”
observables of a more comprehensive astonomous system. Such is indeed the case, e.g., of
the scalar driving field in the inflationary scenario [7] and of one-body densities [8] and cer-
tain correlation functions in heavy-ion collisions [9]. The problem thus can be stated very
generally by considering several subsystems and asking the effective dynamics of a particular
subsystemn. The quantum state of each subsystem can be described in terms of a reduced
density operator which will in general evolve non-unitarily on the account of correlations
and decoherence effects involving different subsystems [10]. The non-unitary effects will
manifest themselves specifically through the dynamical evolution of the eigenvalues of the
subsystem reduced density matrices. As consequence, each individual subsystem behaves
in general in 8 noniscentropic fashion. Such complex picture is considerably reduced when-
ever one is able to find physical grounds to motivate a mean-field like approximation, which
assume isoentropic evolution governed by effective, time-dependent Hamiltonian operador
for each subsystem [11). This method, with different denominations, has a long history in
such diverse areas as atomic physics (Born-Oppenheimer), nuclear physics (Hartree-Fock-
Bogoliubov), condensed matter (BCS), statistical physics {Landau-Ginzburg) and quantum
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optics (coherent or squeezed states). Because no higher than second moments of fluctu-
action are incorporated in its implementation, the mean-field approximation is related to a
Gaussian-like ansatz for the wavefunction in the variational calculations [12].

In the field-theoretical context, this has been implemented through the use of a Gaus-
sian for the subsystem density functional in the framework of a time-dependent variational
principle supplying the appropriate dynamical information, notably for bosonic fields [13].

Actually, the Gaussian Ansatz, having the form of a exponential of a quadratic form in the

field operators, implies that many-point correlation functions can be factored in terms of
two-point functions. This is well known in the context of the derivation of the Hartree-Fock
approximation to the nonrelativistic many-body problem [14]. This factorization has been
used by Chang to implement the Gaussian approximation for the A¢? theory [15] . The
dynamics of the reduced two-point density then itself becomes isoentropic, since irreducible
higher-order correlation effects are neglected.

An alternative method to improve the Gaussian approximation within the context of
the self-interacting Ag?! theory was proposed recently [16]. The approach basically follows a
time-dependent projection technique discussed some time ago by Willis and Picard {17] in the
context of master equation for coupled systems and extended later by Nemes and de Toledo
Piza to study nonrelativistic many-fermion dynamics [18]. The method consists essentially
in writting the correlation mformation of the full density in terms of a memory kernel acting
on the uncorrelated density with the help of a time-dependent projector. At this point,
an systematic mean-field expansion for two-point correlations can be perfomed. The lowest
order recovers the results of the usual Gaussian mean-field approximation. The higher orders
describe the dynamical correlation effects between the subsystems and are expressed through
suitable memorial integrals added to the mean-field dynamical equations. Thus, the resulting
equations acquire the structure of kinetic equations, with the memory integrals performing
as collisional dynamics terms which eliminate the isoentropic constraint. Numerically, few
lowest orders of these equations are treatable and the results have been shown that the
collisional terms are able to eorrect partially both, quantitavely and qualitatively, the failures
presented in the mean-field approximation {16, 19]. In a recent paper, Natti and de Toledo
Piza have exiended the method to study relativistic fermion field theories [20]. In particular,
they have counsidered chiral Gross-Neveu model in I 4+ l-dimensions [21], obtaining a set
effective dynamical equations in Gaussian approximation. The calculation beyond of the
Gaussian approximation to this case is currently in progress.

With sucess of the applications of the method in the previous contexts it is natural to

try to extend the discussion in a system involving both scalar and fermion fields. As &
first step towards this end, Takano Natti and de Toledo Piza [22] have obtained relevant
dynamics for the Jaynes-Cummings Hamiltonian, a well known model in quantum optics
[23]. Main motivation stems from the fact that it is a soluble model and thus provides
a clear understanding of the physical phenomena involved. The exact numerical result are
then useful in controlling various approximations necessary for the treatment of more realistic
case. Furthermore, the model can be seen as 041 dimensional quantum field theory known
as relativistic scalar plasma [24] in zero spatial dimensions. In {22] one has verified that the
inclusion of the present approximation of the collision effects in the dynamical equations is
not only fundamental to generate the qualitative behavior associated with the decorrelation
process related to the initial damping of the Rabi oscillations, but also successfully describes
such effects quantitatively over a time span covering at least several Rabbi periods.

In continuation of previous works, we report in this paper an aplication of the technique
to describe the real-time evolution for relativistic scalar plasma model in 3 + 1 dimensions.
This is non-trivial, renormalizable model for which many results are available in the literature
so that it offers suitable testing ground for the proposed approach. It is of course difficult
to give, within this model, a definite physical meaning and compare to experimental data.
However, it corresponds to one of the simplest quantum-field theoretical models used to
discuss the relativistic dense matter in the contexts of heavy-ion collisions and the high-
density astrophysical system [24, 25, 26]. We will, therefore, consider this model as a first
simple application within the context of interacting boson-fermion system. An outline of
the paper is as follows. On the basis of the general dynamics of the fields, we derive in
Sec.II a set of formal equations of motion for one-body observables of an interacting boson-
fermion system, which are the groundwork for approximation schemes. We shall show in
Sec.III that the time-dependent projection technique discussed in previous works can also be
applied in this case. Sec. IV will illustre this general scheme in the simplest context of scalar
plasma system in Gaussian mean-field (isoentropic) approximation. We discuss also the
self-(_:onsistent renormalization for the resulting equations in the equilibrium and dynamical
sitvations. In the former case we discuss the solutions for these variational equations and
the nonequilibrium initial conditions are discussed in the later context.

IT. Gaussian Variables and Their Effective Dynamics

In this section, we shall describe a formal treatment of the kinetics of the bosonic ¢(z)
and fermionic %(x) interacting quantum fields. The basic idea of our approach is to focus on
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the time evolution of a restricted set of simple variables. We argue that a large number of
relevant physical observables are related to one-body operators. Consequently, we consider
as variables of interest the expectation values of linear, ¢(z), and bilinear field operators such
as ¢(z)e(z) , ¥(x)¥(x) , ¥(z)y(z) and ete. The dynamics of these quantities are kept under
direct control when one works variationally using a Gaussian functional Ansatz [12], and
will, therefore, be referred to as Gaussian observables. In order to keep as close as possible
to the formulation appropriate for the many-body problem, we work in fact with expressions
which are bilinear in the creation and annihilation parts of the fields in Heisenberg picture.

(See sections 11 of Ref.[16] and Ref.[20] for more details).
IT-a. Gaussian Variables

Let us begin by expanding the boson field operators ¢(z) and Il(z) as

QS(X, t) _— Z (2V1 )1/2 [ p(t)eip.x + bL(t)evip.x]

(1)

i3 (Y2 e w000

P

M(x, )

where () and by(t) are the usual boson creation and annihilation operators satisfying the

standard commutation relations at equal times

[bp(f)a bL’ (t’)]t=t’ = dpp'

(], (), B ()it = [bp(2), b (E)]e=e = O
In Eq.(1) V is the volume of the periodic box,
(po)? =p*+* and pz=pot-px,

where {) is the expansion mass parameter which will be fixed later. _
We also consider Dirac spin-1/2 fields 9(z) and () and are expanded as follows:

1/2 _ ‘
V(1) = g(,%) [t )20+ i ) (e

(3)
7 M\ 1 (1) ik. k.
= —} —= |k, e ™ + 4. ksaste“‘]
it = L(5) 75 [mEadlo o(k, o ()
where a(l) (t) and a(l)( t) [eg 2)Jr(it) and a{i ) (#)] are fermion creation and annihilation operators

associated with positive [negative]-energy solutions us(k, s) [ua(k, 5)] of Dirac’s equation.
Canonical quantization demands that the creation and annihilation operators satisfy the

standard anticommutation relations at equal times

(’\Jf(f) GL)} _Z; (tr)}g=y = 5k,k’63,s'5)\,A’ for )\, X = 1, 2
(4)
t nt
(A) (t) l(()'" _1.' t’)}z__ = {(I,(A) ag‘ _)g-' (tl)}tzt" =0 .

In Eq.(3) we have used the notations
(k)2 = K>+ M? and kr=ket—kx

being M the mass parameter for the fermions.
The next step is to identify the Gaussian observables. In general, the state of the system

is given in terms of a many-body density operator F in the Heisenberg picture, a time-
independent, non-negative, Hermitian operator with unit trace. Although the procedure is
quite general, we will illustre our approach in the simplest context of an unifom system. The
extension to inhomogenoeous field configurations is discussed in Ref. [27].

The first variable of interest is the nonvanishing mean values of the boson field

(B(x, ) = ZW [Ba(t)e®™ + B} (t)e™] (%)
being
Bo(t) = (bp(t)) = Trar o(®)F),  Bp(t) = (3h(8)) = True [Bh(0F] - (6)



Here and in what follows the symbol Ty, denotes a trace aover hoth bosonic and fermionic
variables. Partial traces over bosonic or fermionic variables will be written as Try and
Tre respectively. In the case of uniform system the mean values of the fields $(x,t) are

x-independent. This requires
By(t) "™ B (1)dp0 = Tracbo(t)F = B(2) . (7)

Thus, the mean-values of ¢ and II become

(8)
<mm=i§$mmn3m«
With the help of (6) and (7) we define the shifted boson operators d,(#) and di(t) as
dp(t) = bp(t) — B(t)dp,ﬂ with [dp(t)ad:\:'(t’)]tﬂ' =bpp » (9)

which by construction have vanishing F-expectation values.
The other Gaussian variables are the mean values of the bilinear forms of boson and
fermion operators. As usual [28], we can construct the extended one-boson density matrix

R, for an uniform system as
[ Ax(8) E(0)
Rp(t) =

[ () 1+ A1)
(10)

'(@M%@)(%M¢MM}
(@ d 1) @@y |

where the one-boson density matrix A, is hermitian and the pairing density matrix 5, is
symmetric. In (10} translation invariance has been used so that the densities defined there
are diagonal in momentum space, which is no longer true in the case of inhomogeneous
systems (see Cap.7 of [28] for details).

For the fermion field we have the following nonvanishing mean values of bilinear for

of field operators:
Bosnmar® = Tr{[e)@eld)] 7} for AX =12
s yxsn(t) = T’r{[ (’\;c)s( )af{’\g(t)] .7-'} for AMMN=1,2.
Using these objects we can construct the extended one-fermion density [28] as

[ Ry (%) Oy s (2)
Ris =

L _H;,s(t) L - R;,s(t)

[ B (0%, (0a @)

RN O R Al )

where the hermitian matrix Ry, and the antisymmetric matrix Il , are the one-fermi
density and pairing density, respectively. These together with the quantities defined in E
(8) and (10) constitute the selected set of observables and provide an adequate starting pol

for our kinetie treatment.

II-b. Quasi-Particle Operators and Bogoliubov Transformation

The procedure to deal with the pairing density consists in reducing the extended on
body density defined in (10) and (12) to a diagonal form [29]. This can be achieved by
canonical transformation of the Bogoliubov-type. Thus, let us first define the quasi-bos

operators as

Bot) = 23(t) bp(t) — B(t)dpo] + v (#) [b}, () — B(£)p,]

LD = zp(t) [Bh(2) — B()Spa] +up(t) [bp(t) — B(2)5p] -
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The coefficient of the transformation can be find by requiring

(Bp(6)p(£)) = (BLo(DBL (1) =0

Notice that from the reflection symmetry one must have z,(f) = 2,(t) ,9p(t} = wp(t)
where p denotes modulus of p. A systematic way to determine z,(t) and y,(t) is to solve

the following secular problem:

GRyAL = AGN, , C(14)
where
10 [ zo(t)  yp(t) } { vo(t) 0 ]
G= X,(8) = Ny(t) = (1)
0 -1 yp(t) zp(t) 0 1-+w(e)

and the eigenvalues vp(t) = (,Blf,ﬁp) are the quasi-boson occupation number. Since the
Bogoliubov transformation is canonical one can verify that A, satisfies the orthogonality

and completeness relation
XiGX, = X,GX =G = af~yy=1 . (16)

Analogous consideration can be made to the fermionic operators with the eigenvalue

problem defined now by
le,snk,s‘:t'k,s = Nk,s . (17)

In this equation the unitary matrix Ay ¢(¢) bas the following structure:

U;,s K:a Ull 0 0 Vig

s =

: ; Uke = v Vs = (18)

Vis Dk 0 Up Vo, 0

As before k will denote the modulus of k because of reflection symmetry. The matrices -

Ny s(t) are diagonal

[ Vs 0
Nk,s =
L 0 L~- Vk,s
. (19)
r ¥ A A
o) (aa(t)) (el (Bolis()
= 3
i
| (@, 1)) M) (edBel) (1)
where a( ) are the guasi-fermion operators defined by the Bogoliubov transformation
[ afl®) ] ajox (1)
o (t) Ur, Ve, 1| de®
: = : (20)
) Vis Ui 1| al,(1)
i
o,'(0) | o)

Thus, the elements of the diagonal submatrix #.(t) can be interpreted as quasi-fermion
occupation numbers. Finally, the unitary conditions for X s(t), Le.,

X} X, =1, and XX =1, (21)

imply the following constraint equations for Uy, and Vi,

Vi{.svils + Uk,sU;,s =L , Vk,sUg“s + Uk,svfs =0, ,
(22)
ViVis + ULUia = o RAUEs+ Ul Vs = 0s.

In summary, we have obtained in this subsection the transformation rules to the quasi-
particle representation, which is more appropriate to treat the two-particle correlations. In
fact, with the help of Egs.(13) and (20) (actually of this inverse) it is then an eagy task to
express ¢(z), ¥(z) and 9¥(z), Egs.(1) and (3), in term of 8}(2), Bp(?), afj‘g (¢} and a{’:‘g(t).
doing so, one finds that the plane waves of ¢(x), ¢/(z) and (z) are modified by a complex,
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momentum-dependent redefinition of 2 and M involving the Bogoliubov parameters. The
complex character of these parameters is actually crucial in dynamical situations, where the

imaginary parts will allow for the description of time-odd (i.e., velocity-like) properties.
IT-¢c. Formal Equation of Motion

What we have achieved so far amounts to obtaining an expansion of the fields ¢(z), ¥(z)
and v¥(z) such that the mean values in F of Gaussian observables are parametrized in terms
of the Bogoliubov coefficients, =,(t) and y,(¢), in terms of the elements of Uy 4(t) and Vi ,(2)
matrices and of the occupation numbers 1, (¢) = Tr (ﬁ;ﬁp]’) and 1) (t) = Tr (aiﬁfaffﬁf)
for A = 1,2. In general, all these quantities are time dependent under the Heisenberg
dynamics of the field operators, and we now proceed to obtain the corresponding equations
of motion.

We begin with the boson subsystem. The dynamical equation for the mean value of the
boson field {@(t)} results directly of the Heisenherg equation

{(£)) = Trocld(t), HIF | (23)

where H is the Hamiltonian of the system and (¢(2)) is given by (8). Equivalently, we might
write {23) in terms of B(t), since its real and imaginary part are proportional to {4(t)) and
(T1(1)) respectively. In doing so, one has

iBpbpo = zpTTee(Bolp0, HIF — 43T raelBL o0 po, HIF (24)

where we have used (13),
For the remaining bosonic Gaussian quantities, we first rewrite the eigenvalue equation
{(14), using (16), as

XIR, X, =N, . (25)

Taking the time derivative we have

XIR X = N, — XR, A, — XIR,A,
' = N, - XlGX,GN, — N,GXIGX, . (26)

11

The left hand side of the £q.(26) can be evaluated using the Heisenberg equation of moti

. TTBF[ﬂ;f,ﬂp; H]}- TTBF[ﬂpﬂmpy H]f
iXIR X, =
TraelB 8Ly, HIF  Troe[Bo8L, HIF
The right hand side of the Eq.(26), on the other hand, can be evaluated explicitly using (1
and (15). Equating the result to (27) yields

vy = TTBF[ﬁ;ﬁpaH]]’- {2
i(1+ 20p) (Epyp — Tplp) = TrarlBlL,, HIF (°

which describe the time evolution of the bosonic variables.
The procedure can, of course, apply to the fermionic variables. The analogous equatio
to {26) and (27) in this case read respectively as

Xg,s'fzk,s;fk,s = Nis — ngsxk,st,s - Nk,sX]ist,s _ (3

Tr ([ak H fal(cA.Zi H]}—) Tr ([CB k, sakAgv H}f)
iX} Ricsios = . (3
7r (0%, ol 1IF) Tr (ool 1)7)

The right-hand side of the Eq.(30) can also be evaluated explicitly using (18-22}, namely,

s + s Bl ol- =0k + (Voo G0 o1+ ] 3

2 Ricss = 4
s s Ho [ — ks T {Vk,s: gk,s}+ — W5 + [Vk.s; hk,s]-—

where the matrices by, and g, are given in terms of Uy ; and V,,

h’k,s = —i(f/f,‘s%ts-!-UJ,sUk,&’) (3:
Gks = _i(Vl?:sUit,s'i'Ulz,st»ﬁ) : (3‘

From (31) and (32) we obtain dynamical equations which describe the time evolution of t}
fermionic Gaussian variables. They read

12



. . t
Wy s T {yk,s: hk,s]* = Tr ([ 83) 1(;\3: H]f) (35)
—gts + (e gbuts = Tr(e8el) HIF) . (36)

Equations of motion (24), (28), (29), (35) and (36), together with the unitarity conditions
(16) and (21), determine the time rate of change of the bosonic and fermionic Gaussian
observables in terms of expectation values of appropriate commutators. They are, however,
clearly not closed equations when the Hamiltonian H involves interacting fields. In this
case, in fact, the time derivatives of the Gaussian observables are given in terms of traces
which are not expressible in terms of the Gaussian observables themselves, since they will
involve also many-boson {-fermion} densities. This situation can be dealt with in terms of

the projection technique reviewed in the next section.
IT1. Projection Technique and Approximation Scheme

This section discusses the time-dependent projection technique in the context of inter-
acting boson-fermion field models [17]. We shall show that it permits one to obtain closed
approximations to the equations of motion obtained in previous section. The framework was
developed earlier in the context of nonrelativistic nuclear many-fermion dynamics [18] and
was recently applied to the A¢* field theory [16]. The formulation leads to a nonperturbative
mean-field like expansion for the dynamics of the two-point correlation function and from
which one recovers the results of the Gaussian mean-field approximations in lowest order.
When the calculation is carried to higher orders one adds dynamical correlation of higher
orders to the simplest mean-field approximation.

We begin by decomposing the full density F as

%9
|

Folt) + F(£)
= FEFE+F), (37)

where F(t) is a Gaussian Ansefz which achieves a Hartree-Fock factorization of traces in-
volving more than two field operators. The factorized form of the F(#) embodies what we
refer to as the double mean field approximation. The subsystemn densities F§ and Fg are in

13

fact unit trace gaussian densities, written in the form of an exponential of a bilinear, Her-
mitian expression in the creation and annihilation parts of the bosonic and of the fermionic

fields respectively {14]. In the momentum basis, they reads

_ exp [Sap Aapbils + Bapblbh + Cupbabs)
 Tr{exp [Tiap) Aasbbbs + Bapbld] + Copbabs] }

1
(38)
_ exp [S(c,d) Dc,dalad + Ec,daia‘; + Fc,dacad]
Tr {BXP [E(c,d) D, galoy + E, galal + Fc,dac&d]}

The parameters in Eq.(38) are fixed by requiring that mean values in Fy of expressions
that are linear or bilinear in the fields reproduce the corresponding F averages [see Eqs.(41)
below]. The densities F§ and Fy are time-dependent object, which acquire a particularly
simple form when expressed in terms of the Bogoliubov quasiboson and quasifermion oper-

ators,
1 ( Vp 5o :
, (39)
p 1+ 1+ Vp)
1
H [Vk sak F] ak 5 + (1 Vl(c 3)0'1(;)‘3@1(;)‘3; ] . (40)

k8, A

They have a unit trace and by construction satisfies

Troe (BaFo) = Trae (BaF) = Trap (ﬁ*}‘o) =Trge (ﬁl ]:') =0
Trer (B Fo) = Trae (BuBpF) =
Troe (ﬁlﬁgfo) =Trep (rmﬁg}-) =0
Trae (ﬁlﬁbfo) Trge (ﬂ ﬁb}_) = vyl
Troe (Bu8}Fo) = Tae (BaBF) = (14 va)0us
{41)
Troe (0ap) = Troe (0aF) = Tror (0150} = Trae (alF) = 0
Troe (oo o) = Trar (e F) =0
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Trar (alaifg) = Trpp (aiabf) =0
Trge (a;a;,fg) = Trgs (af};ab}') = Vel
Trap (aaozgfo) =TTgr (aaa; ) = (1 — 1) 00 .

The remainder density F'(t), defined by the Eq.(37), is a traceless, pure correlation part
of the full density. In view of the special form used for F;(¢) it will in general contain
correlations of two types : inter-subsystem (boson-fermion) correlations and intra-subsystem
(boson-boson and fermion-fermion) correlations (see Ref.[22] for an application in quantum
optics).

The crucial step is to observe that F4(¢) can be written as a time-dependent projection
of F, e,

Folt) = POF , P(t) =PE)P() . (42)
In order to obtain P(2) we require that, in addition, to Eqs.(42), it satifies (see Appendix

A of Ref.[16] for construction of P)
iFo(t) = (P(t), L] F = [Fo(t), H] + P(t) [H, 7] , (43)

where £ is the Liouvillian time-displacement generator defined as

L-=1[H, -]. (44)

The relation (43) is just the Heisenberg picture counterpart of the condition P(£)F = 0
which has been used to define P(¢) in the Schridinger picture [17].

The remaining formal steps towards closing the equations of motion for the Caussian
variables are now straightforward. To do so, we note that the existence of the projector P(t)
allows one to find an equation relating the correlation part F'(t) to the Gaussian part Fo(t)
of the full density. This can be immediately obtained from the Eqs.(37) and (43) and reads

(18, + PR)L) F'(t) = (T — P()) LF(1) . {45)
This equation has the formal solution

P =660F0) i [[#60,0)T-POYLRD), s

15

where the first term accounts for initial correlations possibly contained in F and G, ¢
stand for the time-ordered Green’s function '

gmm=TGmFEwmﬂ4). (47

It is worthwhile to notice that F'(¢), and therefore also F, can be formally expressec
in terms of Fy(t') (for ¢ < t) and of initial correlations #'(0). This allows us, therefor
to express also the dynamical equations discussed in Sec Il-c as functionals of F(#') and
of the initial correlations. Since, on the other hand, the reduced density Fy(t') is given b;
the one-body densities alone, we see that the resulting equations are now essentially closec
in terms of Gaussian observables. Note, however, that the complicated time dependence o
the Heisenberg field operators is explicitly probed through the memory effects present ir
the expression (46) for F'(£). Workable approximations scheme are therefore needed for the
actual evaluation for the equations of motion.

An attempt to deal with the collision terms within the general situation of quanturr
dissipative systems has proposed in Ref.{30] and the method has been used in field-theoretical
context [16, 22]. It consists in replacing the full Heisenberg time-evolution of operators by a
simpler mean-field type evolution governed by

Hy=PHH .

(see Refs.{16, 22] for explit form of P1(t) and H,). One finds from this that the field opera-
tors at different times are related by a phase factor written in terms of Gaussian variables.
Consistent with this picture a systematic expansion for G(¢,#), and therefore the correlation
density F'(f), can be derived. In doing so, the equations of motion discussed in the previ-
ous section can be evaluated leading to a set of self-consistent equations for the Gaussian
variables. An important feature of this scheme (which holds also for higher orders of the
expansion [30]) is that the mean energy is conserved, namely

a

EU{) =0

where
(Hy=Tr HFy(t) + Tr HF'(t) .

Few lowest orders of this expansion are treatable both analytically and numerically. The
zero order, which corresponds to F'(¢) = 0, recovers the usual Gaussian approximation. The
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higher orders describe the correlation effects and are added to the mean field results in form
of collision integrals.

In summary, the adopted approximation scheme can be interpreted as follows. The
dynamical evolution is split into: i) a pure mean-field part, related to the contributions
to the dynamical equations involving the projected density Fy{t), Eqs.(39) and (40); ii)
correlation effects, approximated by the contributions with adopted form for F'(¢), Eq.(46).
The later evolution is nonunitary in the sense that they change the coherence properties of
Folt) through the time evolution of the occupation number 1, (2) and w4(t) [see Egs.(28)
and (35)]. In fact, one can see this by replacing F by Fo(t) in these equations and obtains
Zp{t) = 0 and i (t) = 0. As consequence, the entropy function associated with Fo(t), i.e.,
S(t) = —TreeFp(t) log Fy(t) will change in time due to the correlation contributions, which
perform as collisions terms from the point of view of the one-body densities.

Although the procedure is quite general and can be, readily, utilized for field models
involving scalar and spin-1/2 particles, the following sections will adopt, as first application,
the simplest context of relativistic scalar plasma model. We shall consider in the present pa-
per the lowest (mean-field) approximation, corresponding to F'(t) = 0. Collisional dynamics

will be reported elsewhere.
IV, Relativistic Quantum Plasma

Section II obtained a framework to describe the effective one-body dynamics in the con-
text of scalar-fermion field theory. The resulting equations of motion are formally exact and
we have discussed in Section III an approximation scheme to get closed dynamics in terms of
(Gaussian variables. As first simple application, we shall consider in this section a system of
Dirac fermion field coupled, through a Yukawa term, to a non-self-interaction scalar field in
3+1 dimensions, known as relativistic scalar plasma model [24]. Hence, in Subsection IV-a
we obtain the Gaussian mean-field equations of motion for this model. The renormaliza-
tion procedure is scrutinized in detail in IV-b. Thus, we shall discuss the solutions for the
resulting gap equation and show that the energy density allows always a single minimum.
Finally, in subsection IV-¢, we shall investigate the renormalizability for the Gaussian equa-
tions of motion using the energy conservation as the key. Nonequilibrium initial states are
then discussed in order to have well defined dynamics.

IV--a. Effective Dynamics of Relativistic Scalar Plasma
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Let us begin by writting the bare Hamiltonian as [24]

[#

H = (7.8~ myb— g + o [(40)10 + [90F -+ u2¢7]

H

(48

[We use the notation: [, = [ d°z] where m and p are, respectively, the mass of the spin-1/'
and scalar particles and g is the coupling constant. We shall study here the off-equilibriun
situation of the system characterized by the time-evolution of Gaussian observables whosi
dynamics are governed by Eqs.(24), (28), (29), (35) and (36). Looking at these equations
one sees that its evaluation consist in taking the traces of appropriate commutators in th
Fock space.

To do so, one has to expand # in the quasi-particle basis. At this point, let us make som
comments on the technical details. First all, one needs to have a convenient representatior
for 4-matrices and the Dirac spinors us(k,s) in order to Fourier expand the fermion field
We choose (See Appendix A of Ref. [20] for representation of y-matrices)

I 0 ; 0 o .
o __ i .
p(20) (%) -

In this representation the Dirac spinors ui(k, s) and ua(k, 5) read as

Xs
ko + M\ Y2
ulk,s) = | ~33 o - kx,
{ka + M) ‘
(50
Xs
ko — M\
u?(k! 8) = 2M a- sz H
(ko — M)

where M is the expansion mass parameter given in (3).
Next, we can use the constraint equations (16) and (21) to parametrize the coefficient:

of the Bogoliubov transformations of bosons and fermions respectively as
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2z, = coshep+ i%E
(51)
s .p
yp = sinhg, + @—5
Uy = Up =cosgy; and Up =Un =10
(52)

Vig = Va1 = sin gy ™ and Vi = Voo

with kg, 7p, 9k and v real. Thus, the Hamiltonian (48) can be now written in the quasi-
particle basis and we have all the ingredients to compute the equations of motion for the
Gaussian variables. The rest of this subsection will summarize the main results.

The mean value of linear form of the scalar field gives two equation motion corresponding
to the evolution for the homogeneous condensate and its canonical moment,

(¢) = 4n(1D) (53)
1) = —2=(¢) (54)

M k| .
gy /z( o [cos 2oy 6 + —fMI sin 2 s cos s | (1 — ylﬁls’ - VES) )
8

[fie denotes {2m)~% [ d®k|. The results for the equations of motion (28) and (29) read as
= 0 ' (55)

Fp = —dm(p®+ Q%) ingetr _ (56)

1 (p2 +M2) 6—25[, .

f oo—Rp 2402 1/2 4dretr _
e (p"+ ) dme™ — T D)

(57)
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The equation (55) shows that the occupancy v, are constant in the mean-field approximatior
as we have mentioned before. The results (56) and (57) correspond, respectively, to the
imaginary and real paris of (29), and are the counterpart of the two-point dynamics in the
usual functional variational ealculation [32, 33].

For the fermionic sector of the system, the resulting pairing dynamics written in terms

of real parameters read as

B®) = 0 and 52 =0, \ (58’
k
Pus = LM = = @) sin s (59
2 _
W RIS -

P~ (m ~ 9{))]

k| cot 2¢y ; cos Y 5 -
ko ’

Observe that there is no spin-dependence in the above equations. Therefore, we might
sitnplify our notation by writting

Phs = Pk 5 Vs =Y and Y =V (61)

Furtermore, the sum %, is just a constant factor = 2.
Another physical quantity of interest is the energy of the system, which can be evaluated

easily in this approximation

H) _1
Vv = VTTHJ:O

k? M -M
= —2[k [(‘;—m) cos 2y + (i%-————)lk{ sin 20y, cos i | (1 — v — o)
0

ko
P (B )
4 3 2 2
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=N —Ze (? + i) 2/ 2 21/2¢ 2%, 2
+167rfp [e (p? + Q2)1/2 + (4m)"(p* + Q°) (e + )| (14 2u,)

M k| |,
+g(¢)2/k . [cos 2 + l_M—l sin 2¢ cos 74 {1- 1/,9) - _vl(cz)) (62)

[/, denotes (27)~2 [ d®p]. As we have mention in section ITI, an important feature of this
scheme is that the mean energy is conserved in all orders [30], which can be verified explicitly
using the equations of motion (53)-(60). Notice also that the results above contain divergent
integrals, therefore renormalization is required in order to have a well defined dynamics. We

shall focus on this point in the next subsections.
IV-b. Static Equations and Renormalization

This subsection will discuss (53)-{60) in the equilibrium situation. We investigate the
solution of these equations and study renormalization conditions. Hence, we set

W=k =kp=mp=(§) ={) =0 (63)

and consider zero occupancy, vy = V;EA) 0. Thus, Egs.(53)-(60} become

[M — (m = g{d}|ea)] iR Yileg = O (64)
o< e
Tpleg =0 (66)
(D7 + QP)eols — (2 4 ) Dake = (67
(ID]e =0 (68)
(D =~ 4ﬂg2 f (cos 201en + %}’sm 20k foq COS 'rkleq) : (69)
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Any solution of this set of equations corresponds to a extremum of the energy density, c
vacuum of the theory.
b-1. Equilibrinum conditions and mass parameters

Looking at the equations (64)-(65) one notes that there are two situation to be considerec
1) M=m- g(¢>|=q
In this case we have
tan @yl =0 or coS@ul, =1 singyl,=0 {70
and 7 can be any value. The equilibium condition require, therefore, that Bogoliubo

transformation, given in (20) or (52), to be an identity matrix. On the other hand i) is :
variational condition which fix the mass parameter M introduced in the field expansion.

11) M 7£ m — g(é)}eq

Here the pairing angles are written as functions of (@),

sin (yk{ecg =0 (71:
05 20 3 (k2 + mM)
008 Pklea [(6% + mM)2 + (m — M)2k2)1/2
(72)
Klea (&2 + mM)? + (m — M2
where 7 is the effective fermion mass,
m=m— g{d)e - (73)

The above discussion suggest that the system might present two distinct equilibrium
conditions for the fermionic pairing dynamics. The former means that M given in i), say
M, is actually the optimal mass parameter in the expansian of the fermion field [33]. As
consequence, the Bogoliubov coefficients form an identity matrix. In the later case, an
arbitrary M is used as mass parameter and modified further to incorporating the pairing
effects, say M. However, the minimal conditions given by (71)-(72) will in fact switch M,
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to M, found in the first case. To see this explicitly, we substitute (71)-(72) into (69) and
obtain the same gap equation below in either of the two cases,

12 (@) = 16mgmG(m) (74)

where

! = (Ak -+ m? log 20 (75)

k W a2 \/E'rh)
being Ay the cutoff of the integral. In the earlier calculation we have considered the general
mass parameter M. Nevertheless, (74) shows that the mass gap equations turns out to be
independent of M {See also (85) below for the Gaussian mean-field energy). Henceforth, we
shall fix A = m in rest of discussion of this paper.

b-2. Gap equation and countertems

Notice in (74) and {75) that the coeflicients of logarithmic divergence is cubic in 7.
Furthermore, from (73) one sees that the divergent terms are polinomial of third degree in
(#}].- As usual [25], one might take care of the above infinities by adding to the original

Hamiltonian counterterms of the form
ArH, = ¢+ ¢2+ ¢3+ ,(;54 : (76)

At this point it is worthwhile to remember that ¢ is a non-self-interacting scalar field in
this model. Therefore, to insure that there is no meson-meson scattering [26], the bosonic
~ quantum fluctuation will not be considered in this system. We shall then set the pairing

dynamics to zero, i.e.,

Kplee =0 and npl, =0 . (77)

With these assumptions and using the counterterms introduced in (76) the mass gap

equation becomes

[A+28CGQ)] + [12 +0p +20DGOQ)] ().,
SO+ 2 = 1670mGm) (79
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The arbitrary parameters A, dg, € and D can be found now easily by adjusting the
coeffients of {¢}|., in both of sides of (78). Thus, the self-consistency condition will require

D = 48rg*L{m) {79
st = —961%g*L(m)G(p) — 16w9°G(0) + 2dnrm?g*L(m) (80’
C = ~48wmg®L(m) (81’
A = 967’mg®L(m)G{u) + 16mmgG(0) — 8xmgL(m) , (82,
where
; (53

k 2K2(k2 + m2)1/2

and the function G is defined by (75). We have also chosen p and m as the mass scales for

boson and fermion fields respectively.
Substituting these counterterms in (78) we have appropriate cancelations by construction.

Besides, there is also a combination of type

L(m)[G(p) - G(Q)]

coming from the first and second term. Since 2 is an’ arbitrary expansion mass parameter,
one can, therefore, remove this divergence by taking £ = p. With these ingredients we find

the following renormalized gap equation

S — g 1o (2) + %J =0 . (84)

The above equation together with (64)-(65) determine the stationary points or vacuum of
the theory in the Gaussian mean-field approximation.

5-3. Mean energy and stationary points

Let us examine next the energy density when it is stationary with respect to the fermioﬁ

variables, i.e.,

B e e ) = (24 )¢3+(“2 % D ))<¢>2
m(qs)s ‘4 [ G(m) - (85)
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where we have added the counteterms contribution to (62) and disregarded unimportant
additive constants. Substituting (79)- {82) into this result one finds, after some algebra, the
renormalized version of mean-field energy as funetion of mean-field value {¢} or 7 is

T2 m m* — md
(—I;~)—=§;1;5 ﬁu(mﬁﬁz)ga-m“ln(a)dr(—;m] : (86)

where we have added appropriate constant in order to have E{(¢#} = 0) = 0, One can now
discuss the possible solution of {84) by analysing the minima of (86).
Let us define z = g{¢).,/m and E(z) = (8x*/m*){H)/V. Thus (84} and (86) can be
rewritten, respectively, as
2

g;%x —(1-2z) {In(l — 2} + é] =0 (87)

(88)

E(x) = = * + (1 —z)* [ln(lkx)_pﬂ _Z_i .

_(]’2'1']'?2

The combiration %;33 has been used by Kaiman as an effective coupling constant [24].
The different behavior of E(x) are shown in Figs.(1)-(4) for several combination of u/m
and g% Notice first that this function has the domain at 0 < z < 1, which is the physical
range for the fermion mass. The point z = ( corresponds to {¢) =0 or R =mand z = 1 is
the case when the effective fermion mass /m = 0. Qualitatively, the results indicate that the
system always presents a single minimum. The Figs.(1)-(2) show E(z) for several values of
g” with pt/m fixed (see figure captions for numerical values of the parameters), The positions
of Tpnin, which indicate the vacua of the system, approach to z = 0 when we decrease g%
In the limit of g% -+ 0, one gets Tyun — 0, as it can be verified in the Fig.(3). In this
case, m & M is the optimal fermion mass, as it must be in the free field theory. On the
other hand, the Figs.(3)-(4) plot the function E{z) keeping same value of Yukawa coupling
¢*, but with different ratios of u/m. Comparing these two curves one sees that Tmin —> 0
when p/m — oo. In other words, when the meson mass is large, the force range is small,
as usual in the Yukawa theory. In the limit infinity u, the fermion particles of the system
cannot interact. It can be seen also from the Kalman’s formula, where mif s plays roles of
effective coupling constant. The above discussions suggest that the field has always a stable
vacuum. This means that there is a finite range around the minimum where the dynamics of
the system is well defined. In the next subsection, we shall therefore discuss renomalization

conditions for the time-dependent equations.
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IV-c. Renormalizability and Initial Conditions for Time-Dependent Eqguations

The last section has discussed the problem of renormalization for the vacuum sector of
the relativistic scalar plasma model in the Gaussian mean-field approximation. We have
shown that the physical quantities can be made finite with the counterterms introduced in
(76) and (79)-(82). Here we shall consider the system in an off-equilibrium situation and
study renormalizability for the equations of motion. (See, e.g., Refs.]12, 32] for the issue of
renormalization of time-dependent equations in ¢* field theory)

Let us begin by rewriting (54) with the counterterm contribution

@) = -~ (4+56W) - = (w+8u+ Do) 0
2
9 38~ ) 2l (m) + () (%9)

where the divergent integrals I)(m) e I(m) are given by

I (m) cos 2y (90)

__/ m
T (K2 m2)2

Lim) = fk(k—z_i—_,v%sin 2 cos . (91)
The other equations of motion are not modified by the counterterms. These integals are
divergent if, for instance, limg_,o, (k, £) =const, which must be kept under control with the
counterterms and appropriate choice of initial states. However, it is hard to know the large
momentum behavior for the dynamical variables as functions of time, since, in principle, one
needs to solve the equations of motion, which is not easy for nonlinear problems. On the
other hand, we have seen in Section III that the encrgy is conserved in this approximation
scheme. This property suggests us to choose correct sets of initial conditions, in the sense
that the total energy is finite, and therefore energy conservation will keep the dynamical
variables limited at all time.
Following this key, we recalculate the mean-value of energy

# _1
—Tf~ = VTT‘HF(]
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:—2/k0c052cpk+2g( $) [ (m) + I2(m))
vz (T )+ (2 + Sow) @

2
(e B4 2600 0+ S0+ (" (2
vith the assumptions discussed in the previous sections. Thus, this expression differs from
'62) by the counterterm and hosonic pairing contribution. Using the equations of motion

53), (59), (60) and {89) one can verify easily the energy conservation. Therefore, if the
ystem starts with a finite amount of energy, by the conservation law only well defined
lynamics are allowed.

We shall thus find a criterion for initial conditions in order to get finite energy density.
.o do so, we define a new set of variables as follows:

o8 2 (t) = cos 21 )eq + R(k, 1) (93)
sin 2pk(t) = sin2ple, + S(k, 2) (94)
cosn(f) = cos e+ W(k,t), (95)

here €08 2 fun, Sin 20k, and cos /., are solutions of the time-independent equations given
y (71) and (72). In terms of these new variables the energy density (92) becomes

H k? 7 m — m)?
fk (—@SE?MS(W W) + By (96)

here Ky = +/k? +- /2 and

1 [#xp? _ _ m mt — mt
o= gz [T+ min (2) 4 (““4—)} - ©7)

From (96) one sees that the initial conditions of B, S, W can no longer be arbitrary, they
ust vanish as fast as |k|™ (n > 0) in a such way that F < co. With this a.ssumptlon one
ids the following simple relation valid for large k,
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|K[(rm — M)

e S(k, 0) (k — o) . (98).

R(k,0) =

Using this relation, Eq.(96) can be rewritten as

e L R

Analysing this relation, we conclude that the initial conditions with

Stk,0) ™ (100)

and
Wk, 0) LN - (101)

being [ > 2, will give finite results for these integrals. Hence, the energy conservation will
enforce the dynamical variables limited at all time.

In summary, we have presented a framework to study the initial-value problem for in-
teracting fermion-scalar field models. The method allows one to get a set of self-consistent
equations for expectation values of linear and bilinear field operators. The lowest order of
this approximation scheme corresponds to the results of variational mean-field-like calcula-
tion, and the collision terms represent the correlation effects involving different subsystems
from the viewpoint of one-body density. The technique is quite general and model inde- '
pendent. In particular, we have implemented a zero-order calculation within the simplest
context of relativistic scalar plasma system. We have shown in detail that the standard form
for renormalization also applies to these nonperturbative calculation and we have obtained
finite expression for energy density. A simple numerical calculation suggests that the system
has always a single stable minimum, although further investigation will be necessary for other
oscillation modes. The standard procedure to this question is throught the RPA analysis
[12], where the stability is indicated by its the eigenvalues. It is interesting to mention that
the excitation modes described by the RPA equations are the quantum particles of the field.
In fact, the physics of one meson and two spin-1/2 fermion can be investigated from this
equation [34]. We have also discussed the renormalizati?n for the time-dependent equations.
Using energy conservation as the key, we found that there are a finite range around the
vacuum where the dynamics of the system is well defined.
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Finally, we comment that the projection technique discussed in the Sec.III can be readly
applied [16, 22] to include dynamical correlation corrections to the mean-field approxima-
tion. In this case, the occupation number are no longer constant and will affect the effective
dynamics of the Gaussian observables. The framework presented here serves also as ground-
work to finite density and finite temperature discussions [35]. In particular, o finite-matter
density calculation beyond the mean-field approximation allows one to study collisional ob-
servables such as transport coeflicients [36]. The extension of this procedure to explore
nonuniform systems is straighforward but lengthy. In this case, the spatial dependence of
the field are expanded in natural orbitals of extented one-body density. These orbitals can
be given in terms of a momentum expansion through the use of a more general Bogoliubov

transformation [27, 28].
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Figure Captions

FIGURE 1. The behavior of the ground-state mean-feld energy demsity F(z) of the
uniform scalar plasma system as a function of fermionic effective mass z = g{¢)/m = 1-m/m
for any values of the coupling constant ¢ and mass scale a/m = 0.1 fixed.

FIGURE 2. The behavior of the ground-state mean-field energy density E(z) of the
uniform scalar plasma system as a function of fermionic effective mass 7 = g{d)/m = 1—m/m
for any values of the coupling constant g and mass scale p/m = 2 fixed.

FIGURE 3. The behavior of the ground-state mean-field energy density F(z) of the
uniform scalar plasma system as a function of fermionic effective mass z — g{d)/m = 1-m/m
for coupling constant g2 = 7/100 and mass scale mu/m =2,

FIGURE 4. The behavior of the ground-state mean-field energy density E(z) of the
uniform scalar plasma system as a function of fermionic effective mass z — gloy/m=1-m/m
for coupling constant g? = 7/100 and mass scale mufm = 0.1.
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