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Abstract: We study the problem of negative contributions to final mo-
mentum distribution during the freeze out through 3-dimensional hypersur-
faces with space-like normal. We suggest a solution for this problem based
on the mechanism of continuous emission of particles. We show how the
final particle spectrum is obtained in a simple one-dimensional model.

1 Introduction

Fluid dynamical models, especially their simpler versions are very popular
in heavy ion physics, because they connect directly collective macroscopic
matter properties, like the Equation of State (EoS) or transport properties,
{0 measurables.

Particles which leave the system and reach the detectors, can be taken
into account via source (drain) terms in the 4-dimensional space-time based
on kinetic considerations, or in a more simplified way via freeze out (FQO)
or final break-up schemes, where the frozen out particles are formed on a

3-dimensional hypersurface in space-time. This information is then used as

input to compute measurables such as two-particle correlation, transverse-,
longitudinal-, radial-, and cylindrical- flow, transverse momentum and trans-
verse mass spectra, ete.

In this paper we concentrate on freeze out. A basic standard assumption
in this case is that freeze out happens across a hypersurface as already men-
tioned, so it can be pictured as a discontinuity where the kinetic properties
of the matter, such as energy density and momentum distribution change
suddenly. The hypersurface is an idealization of a layer of finite thickness
(of the order of a mean free path or collision time) where the frozen-out




particles are formed and the interactions in the matter become negligible.
The dynamics of this layer is described in different kinetic models such as
Monte Carlo models [1, 2] or four-volume emission models [3, 4, 5, 6, 7]. In
fact, the zero thickness limit of such a layer is an over-idealization of kinetic
freeze out in heavy ion reactions, while it is applicable on more macroscopic
scales like in astrophysics 1.

Two types of hypersurfaces are distinguished: those with a space-like
normal vector, do**do, = —1 (e.g. events happening on a propagating 2-
dimensional surface) and those with a time-like normal vector do¥do,, = 1
(a common example of which is an overall sudden change in a finite volume).

Once the freeze out surface is determined, one can compute measurables.
Landau when drafting his hydrodynamical model[8], just evaluated the flow
velocity distribution at freeze out, and this distribution served as a basis for
all observables. This approach was used in early fluid dynamical simulations
of heavy ion collisions also [9, 10, 11]. This procedure was improved to add
thermal velocities to the flow velocities at freeze out, by Milekhin[12, 13]
and later by Cooper and Frye [14]. This method is widely used, however it
rises at least three problems [15].

First, in some cases before the 90’s, the possible existence of discontinu-
ities across hypersurfaces with time-like normal vectors was not taken into
account or considered unphysical® [19, 20, 21, 22]. This point was studied
recently [23] so we do not discuss it further.

Second, since the kinetic properties of the matter are different on the
two sides of the front, the explicit evaluation of conservation laws across the
freeze out surface should be taken into account which is not always easy to
implement. In some (simple) cases [24, 25, 26], these conservation laws are
enforced and discussed. For example in [24], it was pointed out that the

'On the other hand, if kinetic freeze out coincides with a rapid phase transition, like in
the case of rapid deconfinement transition of supercooled quark-gluon plasma, the short
freeze out hypersurface idealization may still be applicable even for heavy ion reactions. It
is, however, beyond the scope of this work to study the freeze out dynamics and kinetics
in this latter case.

*Taub[16] discussed discontinuities across propagating hypersurfaces, which have a
space-like normal vector. If one applies Taub’s formalism from 1948, to freeze out surfaces
with time-like normal vectors, one gets a usual Taub adiabat but the equation of the
Rayleigh line yields imaginary values for the particle current across the front. Thus these
hypersurfaces were thought unphysical. However more recently, Taub’s approach has been
generalized to these hypersurfaces {17] (see also [18]) while eliminating the imaginary
particle currents arising from the equation of the Rayleigh line. Thus it is possible to take
into account conservation laws exactly across any surface of discontinuity with relativistic
flow.




freeze out momentum distribution for hypersurfaces with time-like normal
may become locally anisotropic. We remind the procedure that should be
followed in section 2.

The third problem is a conceptual problem arising in the Cooper-Frye
freeze out description when we apply it to a hypersurface with space-like
normal: it is the problem of negative contributions (see section 2). This
is the main subject of this paper. This problem appears in all freeze out
calculations up to now we are aware of, and to our knowledge it was not
satisfactorily discussed yet in the literature. It was recognized by some of
those who applied the Cooper-Frye freeze out description before [25, 26, 27).
A possible solution was presented in part 2 of ref.[26] for noninteracting
massless particles, in 141 dimension. In section 3 we generalize the results
from [26] and in section 4 we suggest an improved solution to this problem.

2 Conservation laws across idealized freeze out
discontinuities

In the zero width limit of the freeze out domain (freeze out surface), the en-
ergy - momentum tensor changes discontinuously across this surface. Con-
sequently, the four-vector of the flow velocity may also change [17, 28, 29).
These changes should be discussed in terms of the conservation laws.

The invariant number of conserved particles (world lines) crossing a sur-
. face element, do#, is
dN = N* do,, , (1)

and the total number of all the particles crossing the FO hyper-surface, S,
is

N = / N* do,, . @)
s
If we ingert the kinetic definition of N#
d3
ne= | 5P fro(@),
into eq. (1) we obtain the Cooper-Frye formula[14]:
dN
E% = /fFO(SU,P) ptdoy | 3)

where fro(z,p) is the post FO phase space distribution of frozen-out par-
ticles which is not known from the fluid dynamical model. The problem is




to choose its form correctly. Usually one assumes that the pre-FO momen-
tum distribution as well as the post FO distribution are both local thermal
equilibrium distributions boosted by the local collective flow velocity on the
actual side of the freeze out surface, although the post FO distribution need
not be a thermal distribution. Parametrizing the post FO distribution as
thermal, fro(z,p;T,n,u*), and knowing the pre-FO baryon current and
energy-momentum tensor, N}’ and T}*, we can calculate the post freeze out
quantities N* and T from the relations {16, 17]

[N# do,] =0 and [T do,] =0, (4)

across a surface element® of normal vector do#. Here [A] = A — Ag.This
fixes the parameters, T, n, u#, of our post FO momentum distribution,
'fpo(ﬂ}',p;T,n,UV)-

We can now remind briefly what the problem of negative contributions
to the Cooper-Frye formula is and a possible way out. For a FO surface
‘with time-like normal, both p* and do* are time-like vectors, thus

phdo, >0,

and the integrand in the integral (3) is always positive. For a FO surface
with space-like normal, p is time-like and do* is space-like, thus p#de, can
be both positive and negative. (Note that p* may point now both in the
post- and pre- FO directions.) Thus the integrand in the integral (3) may
change sign in the integration domain, and this indicates that part of the

. distribution contributes to a current going back, into the front while another
part is coming out of the front. On the pre-FO side p* is unrestricted and
p*do, may have both signs, because we are supposing that pre-FO phase is
in the thermal equilibrium. However, in the zero width limit of the FO front,
it is difficult to understand such a situation. What happens actually is that
internal rescatterings occur inside the finite FO domain and feed particles
back to the pre-FO side to maintain the thermal equilibrium there. On the
post-FO side, however, we do not allow rescattering and back scattering any
more. If a particle has passed the freeze out domain it cannot scatter back.
In other words, the post-FO distribution should have the form[25, 26],

-f;‘O('T:p: do-#) = fFO(map)(-)(p“ dO'”). (5)

3In numerical calculations the local freeze out: surface can be determined most accu-
rately via self-consistent iteration [26, 30].




Consequently, this distribution cannot be an ideal gas distribution. (On the
pre-FO side, the distribution may or not be ideal). The conservation laws
across a small element of the freeze out front with space-like normal take

the form:
d3p * YY gkt NH
]s f 0 fro(®,p,do”) p* | doy, :fs o) do ©

/. ( [22 stofe.pdom p“p) do= [ @ doy. ()

3 Conserved currents for cut Juttner distribution

We now study the particular case where fro is a Jiittner (or relativistic
Boltzmann [31]) distribution and so f} is a cut Jiittner distribution. This
case for massless particles was considered in part 2 of ref.[26] (following [25]).
The cut selects particles with momenta p“do, > 0, in the ” Reference Frame
of the Gas” (RFG). Thus, we have to observe that the RFG frame is not
the Local Rest frame, and the velocity of the RFG frame, s 18 M0t the
flow velocity of the post FO matter.
In the RFG frame, the baryon current reads

. 2_0, /2 _ m= ~
NO = = vA+a’Ky(a, b) — b—zﬁie b] 'n,(,u,,T)%, (8)
No= B[(—p?4+1)A—ae ]m—°> i, T) =42

where #i = 8xT%#T(2nh) 3, o = T, so that Ay, T) = Aa?Ka(a)/2
is the invariant scalar densﬁ:y of the symmetric massless Jittner gas, b =
a/V1—v?, v=doy/doy, A=(2+2b+b%)e ", and

M)
Kn(z,w) = 2(7’;)' _/d:r: — 22 e

i.e. Knp(z,2) = Kp(2). When evaluating the limits we used the relation
Kn(a,b) = Ky (a) =4 2""1(n ~ 1)la=™. This baryon current may then be
Lorentz transformed into the Eckart Local Rest (ELR) frame of the post
FO matter, which moves with uf = N#/(N“N,)'/? = v5(1,vg,0,0)|rrq
in the RFG, or alternatively into the Rest Frame of the Freeze out front
(RFF), where doy, = (0,1,0,0)|grr and the velocity of the RFG is u¥ B RFG =
Ys(1,2,0,0)| grr. Then the Eckart flow velocity of the matter represented by

5




the cut Jiittner distribution viewed from the RFT is uf, = v:(1, ., 0,0)|rrr,
where v, = (v + vg) /(1 + vug).
The proper density (i.e. the density in the ELR frame) is obtained as

n(lu"JT)U) =V NVN, =

2 _ 2y3/2 ]2
%\l [vA+a2]Cg(a, b) — @m;—)e—b] — 4[A (~v2+1) —a2eb]? .

Note that the proper density of the cut Jittner distribution, n, is reduced
compared to the proper density of the complete spherical Jiittner distribu-
tion, 7.

The energy momentum tensor in the RFG is

7% = #Z{ Ky (a,b) + £K1(a,b) + Bv),
= 2
T = I~ +1)B-L(b+1)e ],
7 2 3
70 = B {LKoa,0) + 22},
T = L {o(1-v2/3)B + §Ks(a,b) - 22 (b+1)e™ — 20Ky (a,0) }

' (9)
where B = (1+b+b%/2+b%/6)e" and T%% = T%. This energy-momentum
tensor may then be Lorentz transformed into the Landau Local Rest (LLR)
frame of the post FO matter, which moves with u% in the RFG, or into the
Rest Frame of the Freeze out Front (RFF) where do* = (0, 1,0,0). Alterna-
tively both can be transformed to the frame where we want to evaluate the
conservation laws, eq. (4), and the parameters of the post FO, cut Jiittner
distribution can be determined so, that it satisfies the conservation laws. In
the massless limit the energy momentum tensor in the RFG is:

T = 3T (v+1)/2, T = 3T (-v2+1) /4,
T°% = AT (v3+1) /2, TW = 2L (24 3v—o%),

and T%% = T,

Thus, (i} if we know the 3 parameters of the pre FO flow and (ii) the local
freeze out surface from kinetic considerations, then assuming that the post
FO distribution, f},(p,x), 18 a cut Jittner distribution, we can completely
determine the parameters of the post FO matter from the conservation laws
(6,7).




4 Freeze out distribution from kinetic theory

We can calculate the kinetic {reeze out distribution based on the four volume
emission models[4, 5, 6]. In order to illustrate the physical mechanism of this
freeze out process, let us study a simple one-dimensional flow. We suppose
an infinite tube where a stationary flow of a fluid is supplied from the left
(# < 0) so that the freeze out occurs for the positive direction of z. Such an
idealized model has the advantage of being not only simple but also useful
to illustrate the basic roles of the conservation laws in a freeze out process.
Because of the high symmetry of the problem, the conservation laws become
very stringent.

In the four volume emission model, we introduce the escape probability

P(F, t,m =e ftm O'Uregn(f"-ﬁ-ﬁ/Et,t)dt’ (10)

where n is the total density, v = p/E, the velocity of the particle, o, the total
cross section and vy, the relative velocity. For a stationary one dimensional

' case, we can express it as ¢

(?" t, —) — ‘P(.’L' CcOoSs 9) =g f a'n(m) cosa (11)

where v

cosd = p—, (12)
by

for cos@ > 0. For cosf < 0, the upper limit of the integral is —oo, and for
x — —00, n{z) — constant and P - (.

It is this escape probability that determines the free particle d1str1but10n
as a fraction of the total particle distribution

ffree(map) - Pf(fﬂ,p), 7 (13)

where
f(z,0) = firee(,p) + fins(z,p) (14)

and fint is the interacting particle distribution. The total density n{xz) is
given as

n(a) = [ &pi(,p). (15)

“We are considering fast particles so that vye; ~ v. A formula similar to (11) is also
obtained for massless particles.




It is obvious from Eq.(11) that if n is constant, then P becomes identically
zero and the post-FO component can never emerge. If the system is truly
one-dimensional for all = values, then the total density n should vanish for
large x, otherwise P vanishes. However, this contradicts the conservation of
flux in the stationary case: NY(z = o) = NY(z = 0) = [ Bp(p®/E)f(z =
0o, p) # 0 is incompatible with n(z = o0) = [ d®pf(x = oco,p)) = 0, since
the velocity p*/E < 1. Therefore, to get a stationary one-dimensional flow
the system should have a finite size in the freeze out direction.

Suppose that there exists a boundary at z = L > 0, so that for z > L,
the density falls off very rapidly and the escape probability is almost zero
there. Such a situation happens for a semi-infinite tube open to the vacuum
at x = L. We can write

dz

L
Plz,c080) = e~ J= @ ais (16)

for cos > 0. For cosf < 0, the upper limit of the integral is —oo as
before, so that for  —+ —oo, n(z) — constant and > P — 0. The free and
interacting distributions are determined by

ffree(map) = 'Pf(‘?;:p): (17)
fint(‘T’:p) = (1 - P)f($3p) (18)

In the following, we show that the above equations together with the con-
servation laws determine all the distribution functions when we assume a .
thermal spectrum for the interacting component.

First, note that all the distributions are specified if,

1. the interacting flow velocity, vint{z),
2. the interacting temperature, T'(z),
3. the interacting density, n;,;(z), and

4. the escape probability in the z direction,

Pz)=e” L on(ayds, (19)

5We are using the frame of reference where all the distributions are stationary, that is,
the frame in which the FO domain is at rest,




are known. To see this, first we write
Pz, c0s8) = {Po(z)}"/ <, (20)

and express the total and free distributions in terms of fj;.

1 ]. 1 — in
f@p) = 75 fum) = ;=5nm(e) Ze 4T, (21)

P 1 - in
ff'ree(-’ﬂap) - Tnmt(m)fe pruy t/T: (22)

it — Y
H ( ~Yint |’

with v = 1/4/1 — vin:(z)? and Z is the normalization factor,

where

2=21) = [ dpe i,

In our stationary regime, the conservation laws are expressed as

NYz) = Const=N(0), (23)

T"(z) = Const="T(0), (24)
and

T (z) = Const = T*(0), (25)
where

p.’fﬂ
N@) = [ f(,p)
Po
T%(z) = [ &’p p°f (2, p),
Y2
()= [ap L j(zp)
Po
- Once the initial values N1(0), 7% (0) and T*1(0) are specified, these equa-
- tions, together with Eq. (21), determine algebraically T(z), vini(z) and
nint(x), at each z as functions of Py(x).

On the other hand, from Eq.(19)

B = on{a), (26)




for cos§ > 0 and Fy = 0 for cos # < 0, but,

1 1 in
n{z) = /d3pf(;v,p) = Nint () fds m;""z“emppu“t/Ts (27)
so that we get a differential equation for P,

1 dPo

P dm = 0N m)/ds e—p”ulnt/T’ (28)
0

1-PZ
which can be solved, for example, from % == 0 to the right (z > 0) specifying
some small value of Py till Py tends to unity. Note that P, is an increasing
function of z, as expected. We can also solve the differential equation for
z < 0, too. We have Py(z) — 0 for z - —o0.

To compute n, N*, 7% and T, we need to know the integrals:

1 pleqgint
11 [Pint, T, ving] E[dsp?me P,

cos 1 it
ot /T
pg 11— Pol/cosﬁe “ ’

IZ[-PintaTa 'U'int} = /dgpp

_ pcosf —pligint [
I3[ Pint, T, vo] =/d3pwe Pt
2 C082 9 1 e_puui’nt ,/T
Do 1— P01/ cosd )
for cosf > 0. For cosf < 0, all integrals should be set to zero. Note that
these functions are not scalar, and the above expressions are valid in the
frame where the density distributions are at rest 6.

I4[Pine, T, vipz) = / dgpp

5 Conclusions
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