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ABSTRACT

The interaction between a very thin macroscopic solenoid, and a single magnetic
pa.rticlé precessing in a external magnetic field By, is described by taking into account
| the thermal and the zero-point fluctuations of Stochastic Electrodynamics. The induc-
" tor belongs toa RLC circuit without batteries and the random motion of the magnetic
dipole generates in the solenoid a fluctuating current Tyi,(4), and a fluctuating voltage
Eaip(t), with spectral distribution quite different from the Nyquist noise. We show that
the mean square value {1},) presents an enormous variation when the frequency of
precession approaches the frequency of the circuit, bub it is still much smaller than the
Nyquist current in the circuit. However, we also show that {(I3,) can reach measurable
values if the inductor is interacting with a macroscopic sample of magnetic particles

(atoms or nuclei) which are close enough Lo its coils.

LEmail hfranca@if.usp.br

1. INTRODUCTION

Recently, we have shown [1] how to extend Boyer’s classical model for free space
paramagnetism [2] for dealing with the modifications that arise in the paramagnetic
behaviour of a rigid magnetic dipole, as an effect of the interaction of the dipole with
a macroscopic solenoid which is part of a RLC electric circuit without batteries.

The classical model for paramagnetism makes use of the random clectromagnetic
Auctuations of the zero-point and the thermal radiation fields of Stochastic Electrody-
namics (SED) {3]. Besides the simple understanding of the paramagnetic phenomena
provided by it, confidence in Bayer’s model is further assured by the fact that it gives a
very good quantitative account of the experiméntally observed paramagnetic behaviour
of a magnetic dipole at any temperature [4].

As part of a collective effort [1-8] to better understand the effects of the vacuum
clectromagnetic field — another narmne given to the zero-point and thermal radiation
fields — in the interaction between a microscopic object as, for instance, an electric or
magnetic dipole and some kind of environment, we will concentrate on the modifications
in the electric current flowing along the RLC circuit. Such modifications are caused
by the presence of the magnetic dipole in the neighbourhood of the inductor. In
this regard we would like to call the reader attention to the recent paper by Blanco,
Dechoum, Franca and Santos [71, which gives a detailed description of the Casimir
interaction between a microscopic electric dipole and o macroscopic solenoid. Several
new predictions, not yet observed, are presented clearly in this paper.

In the section 2 we show that the magnetic dipole precessing around a constant
external magnetic field creates an additjonal electromotive force along the coils of the
solenoid. The fluctuations in the movement of the dipole, due to the vacuum feld and

to the random magnetic field generated by the Nyquist electric current, create another




fluctuating electromotive force in the solenoid, whose spectral distribution is different
from the spectrum of the Nyquist fluctuating voltage. The conclusions are presented

in the section 3.

2. EFFECT OF THE MAGNETIC DIPOLE ON THE RLC CIRCUTT

In the present section we deal with the effect of the presence of a magnetic dipole
in the reighbourhood of the inductor of a RLC circuit.

The rigid magnetic dipole is at the origin of a coordinate system and it is subjected
to an external constant magnetic field B, = Bsé,, to the ﬂuctuating zero-point and
thermal radiation fields of SED and to the magnetic field emitted from g solenoid which
is part 6f a RLC circuit, disconnected from batteries or any other eclectric power supply.
| The solenoid has radius ¢ and N coils uniformly distributed along its length ¢
(€ > a). The distance from the axis of the solenoid to the dipole is y and the entire
situation is depicted in Figure 1.

The current in the electric circuit obeys the following equation,

Lt + RI(t) 4 éfa,’t T(0) = En(t) + Eaplt) = £(1) | (1
where £y (1} is the Nyquist electromotive force [9] generated ip the circuit as a con-
sequence of the dynamical equilibrium between the dissipation of energy and the fluc-
tuations [10]. Eap(t) denotes the electromotive force generated by the oscillating

magnetic dipole which creates a time varying magnetic field Baip(t) through each coil

of the solenoid. The result of this calculation is 1
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where S is the spin angular momentum vector associated with the magnetic dipole by

g, - (4)

and e is the electric charge of a particle of mass m and gyromagnetic ratio g, We are
denoting by B..i(?) the magnetic field generated by the solenoid.
The first term in the right hand side of equation {3) corresponds to a precgssion

arourtd the z axis with frequency

B
?7=“—S~—°- (5)

In that motion the magnetic dipole vector g makes a constant angle § relative to

the z axis and it creates an electromotive force given by (see (2))

N 2mrq?
Caip(t) = o

nusenfsen(nt + o) | _ (6)

where o is an arbitrary phase. We shall take o — 0 in what follows.
The electromotive force Eaip(t) is responsible for establishing an electric current
along the RLC cireuit which, for an atomic dipole, is given by

1
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N 2ra? § ) Seﬂ(n ) (TI' 770) (’? ) (7)
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where yy is the Bohr magneton, pg = eh/2mec, and Z(w) is the impedance of the

RLC circuit,

Z{w) = B (wL—»l—) . 8)

wC

If the particle is a nuclens one must replace uq by the nuclear magneton.
Up to now the angle 0 of precession remains undetertnined. Tig average value

may be determined by taking Into account the interplay of the three other terms in
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equation (3). As pointed out earlier [, 2] the last term in that equation describes
a monotonic tendency to align the magnetic moment, ¢ with Lhe constant external
magnetic field By, The two middle terms represent fluctuations brought about by
the zero-point and the thermal radiation ficlds of SED and by the fluctuating electric
current in the RLC circuit.
The fluctuating magnetic field Byp is usually written as [2]
2
Byp = Zfd% €(k, A) H(w, T)cos(wt + £(k, A)) = (B, B,, B,) | (9)
=1
where the unit vectors é(k, ) characterize the state of polarization A of each plane
wave of wave vector k, and &(k,A) are random phases uniformly distributed in the

interval [0,27]. The function H{w, Ty) relates Byy to the energy spectral density of

both the zero-point and the thermal fields at a temperature Ty and it is given by

i Fiw
2 — .
Hw, Ty) = 7od coth (2de) . (10)

The soleroid magnetic field acting on the dipole is straightforwardly calculated and

the result turns out to be [1]

N 27a2
By =&, & 22
£ ot

1) . (11)

The net result of the interplay in which all the various torques in equation (3) take
a part is summarized in a stationary probability distribution P(0) for the alignment

angle & [1],

P(0} = Asinf exp 5n cosd <l = '2> ;
2 fr2 N 2mg2\? {[En(1 T2) (12)
e+ 55 (7 57)

where A is a normalization constant, and SN(w,TC) is the Fourier transform of the

Nyquist electromotive force [9, 11],

. ik h
<]5N(w,1;)| ) - E‘E coth (5‘%) , (13)

because one can take £(t) ~ Ey{t) in equation (1).
We also indicate explicitly the possibility that the magnetic dipole be in a thermal
bath at temperature T; while the circuit is in another thermal bath at temperature T,

different from Ty. In particular, the average value of the z component of the magnetic

moment g was found to be [1]
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Now we are in a position to complete the calculation referring to the average value
of the current generated by the magnetic dipole. Performing the time average as well
as the average over all the possible values of the angle § we obtain, using (7) and (12},

the result

()= 2 () s [ () (2) o (22

The first term inside the brackets corresponds to the contribution of the fields associated

(16)

with the radiation bath with temperature 7}, that are scattered by the dipole into the
solenoid coils. The second term has its origin in the radiation generated in the circuit
(temperature T,), which are scattered by the dipole, and return to the solenoid coils.

The Fourier transform £(w) of the total electromaotive force (see eq. (1)) will be

defined by
E(t) = %./Dm dwg(w){exp[kiwt —ip(w)] -+ e} (17)
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where ¢(w) are statistically independent random phases. The analitical expression
for g(w) can be obtained, with sufficient accuracy, by taking the Fourier transform of

eq. (1), which leads to

P N 27g?

&= En(w) — 7 o —— W i, (w) . (18)

To find i, (w) we linearize equation (3) by replacing {22} for p, and neglecting
the z componert of the vacuum magnetic field B, in face of the constant applied
magnetic field By. With this procedure, due to Schiller and Tesser [12], we are left
with only two coupled stochastic equations, one for (), the other for t14(t). Defining
a complex variable y = Hz + 2y it is possible to rewrite the corresponding part of
equation (3) as

2 . . 2(p.y .. .
o= iBx - el s i yin) (19)

where B, and B3, are defined in (1) and B, is given by (11).

The Fourier transform of the last equation gives

fz(w) = 0 )Lffz)z P— [(E’m(w) + E’sol(w)) (Bg - %‘fgﬁ)
(- 58=) - (%)
2me -
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where (j =z or v)
Bi{w) = gjdﬂk €k, M) é‘;— H(w, Ta)exp[—it(k- \)] . (21)

Considering the effect of the dipole on the circuit as a small perturbation equa-

tion (20) simplifies to

irle) = (Bz %>w<*;:)_ (2”%)2 Kiww%%gﬁ;(w)) B
= -
- e | '- (2

where we used the fact that B, > Hp=)w3 /3¢ for any frequency in a broad range
centred at the frequency of precession of the dipole.

From eq. (18), a standard calculation for the autocerrelation function of the fluc-

tuating voltage (9] allows us to write

(EP) = 126 P(T) ) = 222 cop, (ZZ‘;) ; (% L) (ﬁéﬂ)
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where (u,} is given by our expression (14). In the above calculation we have considered
that the fluctuations associated with the Nyquist noise are statistically indepéndent'
from the vacuum electromagnetic fluctuations which characterize Byvr(t)., It should
be remarked that the above result is a new prediction. Up to now only the first term _
in (23) was experimentally observed [11] because the other terms, generated by the
action of a single magnetic dipole, are very small,

Considering the sharply peaked functions in the various terms of equation (23) it

is possible to show that the total average current in the RLC eircuit is

<12> = jo dw (|T(w)) ) CO“‘ (zz?" ) + ; (5) cg;_z gwolie) p*(n) coth (2:7‘)
+ g (5)4 C_Z;—zgﬂu(ﬂz) p(n) coth (22;) , (24)

plus other negligible contributions coming from the poles of | Z(w)]~?
Here @ = (LC)"Y2 and the function p(n) is given by equation (15). The first

term in equation (24) is the Nyquist term while the other two are due to the motion
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of the dipole. Notice that this result is in agreement with the calculation presented in
equation (16).
The same approximations can be used to calculate the mean squared charge stored

in the capacitor, giving
A . kO
2 —
(@) = azq ot (ZkT) +

4 2 (s)apon® (3)4 () [eoth {11, (2Y* o (P
3 3R \y) P 2T, y) Pl TN

(25)

where the first term is the contribution of the Nyquist noise.
We shall show in what follows various numerica] results which will help us to have a

‘quantifative idea of the importance of the new terms in equations (23), (24) and (25).

3. CONCLUDING REMARKS

In section 2 we have shown that the presence of a precessing magnetic dipole in the
neighbourhood of the inductor of a RLC circuit increases the mean squared curreng
that fows through the circuit.

To grasp the magnitude of the effect we present in Figure 2 a plot of (I%) and
(Ijl-p> given by equation (24) vs. the applied magnetic field By for 5 magnetic particle
(like the jon 33+ considered in refs, [1] and []) that has A=, 0 =2 and a ratio
S/h = 4. We used the following set of parameters for the RLC circuit: N — 320 turns,
¢ = 2em, a = 2.8 x 10-5 em, y=2a, R= 1075 /em, I = 19-24 s*/cm, and (¢ =
10% cm, The temperature of the two thermal baths were chosen to be Ti =T =K.
These parameters are different from those we have used earlier [1] (see also refs. (7] and
[13]). We have considered these particular values in order to facilitate the visnalization

of the effect in the Figure, 2.

We sce from Figure 2 that <[§ip> has an impressive variation of 102 orders of
magnitude when 7 = 1By /S approaches the frequency of the circuit (1. However,
even in the resonance situation, when 7 = 1/V/LC, the Nyquist mean squared current
{I%} is 10%° times larger than the dipole mean squared current <Ijip>. The smallness
of the effect may be understood once we remember that we were using only one atomic _
{or nuclear), hence microscopic, dipole to perturbate a macroscopic eleetric circujt. If
we have, as an experimentalist would, a macroscopic paramagnetic sample conbaining
M atomic dipoles precessing independently around the external applied magnetic field

By we would have, instead of equation (24), that the total current js given by
(1" = (%) +8M (B (26)

where 3 is a geometrical factor which depends on the particular way to distribute the
particles arround the inductor. This suggests that under suitable circumstances it may
be possible to observe a significant deviation from the Nyquist term in the current that
flows in the circuit because for a macroscopic sample M ~ 1023

As mentioned elsewhere [1] we may interpret these results as a consequence of an
interplay between the RL(C circuit, the magnetic dipole and the entire environment
represented by the random fields of SED. The RLC circuit picks up thermal and zero-
point energy from the environment and a fraction of the fluctuating energy is radiated
to the dipole [7, §]. There, the extra electromagnetic noise brought in by the circuit
alters the dipole tendency to align itself with the external field By as is shown in ref. 1)
and in the Figure 3. On the other hand, the dipole also radiates the energy it picks up
from the envitonment and the solenoid is able to absorb a part of it. According to the
Figures 2 and 3, both the energy of the circuit and the energy of the magnetic particle
increases in the resonance condition, even when the temperature is very close to the

absolute zero, Therefore, one can conclude, on the basis of the energy conservation
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principle, that the zero—poiﬁt radiation bath is the relevant energy reservoir for this
phenomenaon.

It is possible to have a better estimate of the order of magnitude of the eflect
if we consider the solenoid surrounded by lg of water (a cilinder of radius 0.6cm
and height I cm involving the inductor). This sample has 10%? protons which, at
resonance, became demagretized by the random radiation geﬁera.ted by the solenoid
(see Figure 3). Considering the parameters of the circuit described above, we see,
from equation (26) and Figure 2, that <[jip> ~ 10° {I%} (notice that the nuclear
magneton is only 1072 4q). Therefore, we conclude that the effect can be measured.
The experiment would be similar to and no more difficult than the observation of the
Nyquist spectrum by Koch et al. [11].

Another useful estimate is the order of magnitude of 10~? watis obtained for
R(I(%P) if we use an atomic paramagnetic sample of 10 particles and the data
of Figure 2. This small but significant power dissipated in the circuit, is being continu-
ously exchanged between the radiation bath, the RLC circuit and the magnetic sample
since the entire system is supposed to be in dynamical equilibrium,

We hope that our simplified theoretical analysis will encourage the experimental
investigation of these phenomena. 1t is well known that the study of atomic and

-nuclear magnetism is one of those areas of science which has remarkable versatility
of applications in Physics, Chemistry and Biology, and which seems to go beyond all

expectations.
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FIGURE CAPTIONS

FIGURE 1

Schematic picture showing the magnetic dipole orientation with respect to the ap-
plied magnetic field By, and at a distance y from the inductor of the RLC circuit,
The magnetic field Byip(1) and the fluctuating current I(t) arc also indicated. The

solenoid axis is parallel to the z direction and extends from —£/2 to £/2,

FIGURE 2

The mean square value of the Nyquist current {I%} is compared with the currenf
induced by a single dipole Igp. We see that <I§ip>, given by equation (16), presents
an impressive variation of 10'% orders of magaitude as a function of By. The reso-
nance peak of <]dzip> occurs when = uBy/S = 1/v/IC and it is due mainly to the
contribution of the second term in (16). The temperature of the system was taken as

T. = Ty = 2°K but the effect also appears at high temperatures.

FIGURE 3

Magnetization per nucleon as predicted by our eq. (14). The parameters of the
circuit are similar to those used in refs. (1], [7], (8] and [13], namely R = [p-12 sec/cm,
L =5x107% sec?/em, N ~ 3200, £ = dem, a = 7x107%m and € = 3%x10%cm. The
temperature was chosen 7. = Ty = 0.001°K. We have considered that the magnetic
particle is a proton (§/h ~ 1, g =~ 2.8 and 2p ™~ po x 107%). In the upper curve
¥ = L4 cm whereas in the lower curve y = 0.5¢m. The broken tine corresponds to
taking y — co. The suppression of the magnetization occurs when we vary Bp up to

the resonant value By = 20kQ (see also Figure 2).
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