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Abstract

We study the renormalization of the field theory which describes the Lif
shitz point (LP). Our motivation was an old controversy on the order-¢2 values
of critical éxpcmcnts for this multicritical point. First we analyze the Green
functions at the LP where some simplifications occur. The primitively diver-
gent diagrams are identified and renormalization prescriptions which eliminate
ultra-violet divergences to all orders of perturbation are found. The Green
functions in the neighborhood of the LP are expanded in terms of the Green
functions calculated at the TP, This enables us to derive the renormalization-
group equation satisfied by the renormalized Green functions and by analyzing
ts solutions we find expressions for the critical exponents which hold to all
orders of perturbation. Finally, we obtain generalized scaling relations for the

exponents associated with the LP.
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L. INTROCDUCTION

The Lifshits point (L)' is o melticritical point which ocenrs in magnetic systems?, liquid
crystals?, charge-transfer salts?, structural phase transition”, domain walls instabilities® and
ferroelectric crystal”. Hornreich® and Selke® reviewed most of work related to this special

point. In order to see how a LP arises, consider the Landau Iree energy of a system described

by a scalar order parameter M*:
F o= M2+ asM* + aght® 4+ ..+ e (VM) + o VEM)? + .., (1)

where the coefficients a; and ¢; depend on the temperature 7" and on an external parameter
p. The system has a LP if, as we move along the critical line To(p) {obtained from the
condition ay = 0), the coeflicient ¢i(T, p) changes sign. The point {Ty,py,) on the critical
line at which ¢; = 0 is the LP. In this case the ¢; term hecomes relevant and has to be kept.

f:-x simple model with these properties is the axial next nearest neighbor Ising (ANNNI)
model'®. It consists of a spin—% Ising model on a cubic lattice with nearest neighbor ferro-
magnetic couplings and next nearest neighbor competing anti-ferromagnetic couplings along
a single lattice axis. Its phase diagram, in the p — T planc, where p is the ratio between
the competing couplings, is divided into three regions. In addition to the usual paramag-
netic and ferromagnetic phases, due to the competition there is a region with modulated
phases, which are specially modulated structures characterized by a wave vector k. High
temperature series techniques were utilized to study the neighborhood of the LP in the
three-dimensional ANNNI model by Redner and Stanley, Oitmaa, and Mo and Ferer!!. The
critical exponents 3, ¢ and v, were estimated from Monte Carlo data by Selke and Fisher'?.

The first renormalization group calculation of critical exponents associated with the LP
was performed by Hornreich et al.* using the Ginsburg-Landau-Wilson Hamiltonian

1 I N 2 3 7 R
Ii = E f o (f[) ([)A_q . (bq + 4_|] / /((1),“ . ([)(“)((I)'I“ . (],"f“ g 'iu)!

q 91 G2 g4

2
v(g) = 1o+ g + gt + (¢2)

m d

=Y. 4, gG=E Y. q, (2)

=1 p=m

where <f>q is a n-component order parameter. Note that the space is divided into two isotropic
subspaces: an e-subspace of dimension m, and a f-subspace of dimension d — m. A LP is
associated with a wave vector instahility in m directions of the a-subspace. A large class
of models is described by Hamiltonian (2), each one parametrized by different values of n
and m, 1 < m < 8. The ANNNI model corresponds to the m = n = 1 case. At the
Lifshitz point both ry and ¢y go to zero and the g} term has to be kept. The upper critical
dimension d,(m) above which classical critical behavior is expected ié obtained by means of

the Ginsburg criterion and is given hy!

m
du(m):4+—2—, m < 8. (3)

Using renormalization group techniques and an e-expansion about d,(m), Hornreich et
al’ calculated, for all m, the exponents vg and gy to order ¢, and, for m = 8, Vg, bgs and gy
to order ¢?, where the subscript ¢4 {€2) refers to the a-subspace (§-subspace). Mukarmel'?
determined 7 and 1y to order €? for all m, and B; to order € for m < 6 {one does not
expect helical long-range order for m > 6), Hornreich and Bruce' caleulated, for m = 1, the
exponents np; and 7y to order €2 and the exponent J; to order €2 and their result agrees with
Mukamel’s. However, Sak and Grest™ performed an independent calculation, for m = 2 and
m = 6, of 7sz, N and 3y to order ¢, obtaining results which are different from Mukamels.
As emphasized in review the articles®® cited above, the reason for this discrepancy is not |
¢lear. |

All renormalization group calculations mentioned above use the Wilson-Fisher momen-
tum space technique'®. Since hamiltonian (2) is not rotationally invariant and the propa-
gator contains a quartic term, the two-loop integrals over momentum shells are extremely
involved and in all caleulation performed so far different approximations were ugsed. Due.
to the difficulty in analyzing which approximation gives the correct two loop corrections we

have resorted to a different approach. We decided to use field theory to calculate exactly
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PR AR L AURLLIDLLIOUS WO LIE CIIVICAL exponents [or tire Lishitz point. in order to do
this we first had to analise the renormalization of the theory described by Hamiltonian (2),
and then to adapt to our problem a formalism introduced by Weinherg!™ and applicd to
critical phenomena by Zinn-Justin'®. A clear presentation of this technigue can be found in
Amit’s book'®. In its original formulation, the critical behavior of the ¢ theory is obtained
by expanding all Green’s functions in terms of the massless Green functions calculated at
the criticat point. In our case we expand about the LP. Qur formalism applies to all values
of m in Hamiltonian (2), to all orders in perturbation theory and allows us to identify the
critical exponents in terms of the rendrmalizatiou constants. It is important to mention
that field-theory has already heen applied to study other properties of the Lifshitz point.
Nasser and Folk® studied crossover phenomena; Abdel-Hady amd Folk?' analyzeed tricrit-

ical Lifshitz points; aud Nasser ct. al?? calenlated universal amplitude ratios. However,

. to our knowledge this is the first time that a thorough study of the renormalization of the
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field theory which describes the LP is made and used to obtain expressions for the critical

exponents.

This paper is organized as follows. In section 2 we review briefly the field theory formal-
ist emphasizing the modifications which have to be done to apply it to Hamiltonian (2).
In section 3 we derive the renormalization group equations, identify the critical exponents,
and demonstrate that they satisfy generalized scaling relations. In section 4 we present our
conclusions. Finally, in an appendix we show in some detail the cancellation mechanism of
the divergences duc to the insertion of the two-point function into other diagrams. This

cancellation is more involved than in the usual @' theory.

1I. PERTURBATIVE FIELD THEORY AND CRITICAL PHENOMENA

In this section we present a brief review of renormalized field theory and its relation
to critical phenomenal®. The starting point consists in using the Ginsburg-Landau-Wilson

effective Hamiltonian (2} with an extra parameter go. Thus, instead of v{g) given in Eq. (2)

Yruo o Ollelll Loy
v(g) = 1o + g5 + cog” + golg2)? (4}

The dimensionless parameter og, as we are geing to show below, plays an important role in
the renormalization of the two point Green function. As a consequence of our choosing it
dimensionless, the a-components of the momentum ¢ have dimension of square root of mass,
[7a) = {s'7?] and, where « has dimension of mass. The parameters rq and ¢, are related to
the temperature and to p by ro = 7' — Ty, and ¢ ~ p - pyp, where Ty, and por, are the
mean-field coordinates of the Lifshitz point in the p — T plane. In momentum space there
is an ultraviolet cutoff A ~ 1/a, where a is the lattice spacing in the original system.

All equilibrium propertics can be obtained from the one-particle irreducible (1PI) Green
functions TNE (K, . kn,py, -, Pri 0, 66,7, A, @, A), which contain N B(k;) fields, L ¢*(p;)
operators, and which are renormalized in such a way that the corresponding renormalized
functions I S.;V"") are finite in the infinite cutoff limit when the space dimension d < dy(m).
The magnetization 4 is zero in the paramagnetic phase and not null in Ehe ferromagnetic
phase in zero magnetic field. In this paper we shall be concerned with the calculation of
critical exponents for the LP in the paramagnetic and ferromagnetic regions. In this case
the magnetization is constant and we can use with a single component order parameter. The
dependence on n, the number of components of ‘fq, is contained only in the combinatorial
factors of the Feynman diagrams and can be inserted in the last stage of calculations.

The inverse of the zero ficld susceptibility ¥ is proportional to I'® caleulated at zero

external momenta:

X7t = pIT00,0, 00, 9,70, A, @ = 0, A). (5)

At criticality x diverges and the equation which determines the critical line T,(p) is given

by

T% (0,0,00, cg, 70, A, 0, A) = 0, (6)



At: the Lifshitz point the coeflicient of £ 1s zerc and, 1n addition to Bq. (&), the cootdl-

nates (cr,7r) of the Lifshitz point also satisfy

-8—21“(2#]) (k, —k, 00, 0,70, A, 0, A) = 0. (7)

a o kZ=0

Recall that 1 = T — Tor, and ¢y ~ p — Pag, and, to lowest order in perturbation theory
(mean-field approximation), v, =1y — Tyr, = 0 and g, ~ pr, — por, = 0. As we take fluctua-
tions into account Ty, and py, move away from their mean-field values. The corrections are
determined by expanding 7, and ¢, in the coupling constant A, inserting thege expansions
in Bgs. (6) and (7) and solving them perturbatively. When we expand the propagators
in thé Feynman diagrams about r, = ¢z = 0 we obtain integrals withont any dimensional
parameters. These integrals in the dimensional regularization scheme vanish and all cor-
rections to the mean-field coordinates of the Lifshitz point are exactly zero. Thus, Green’s
functions at the LP are calculated with the propagator (opqh +¢3)~". From now on we shall
use dimensional regularization, calculating integrals in dimension d = d,{m) — ¢, and taking
the limit A — oc.

Tlhe identification of the primitively divergent 1PI functions is not straightforward. Due
to the fact that the a-components of momenta in the propagator are raised to the fourth
power and the S-components to the second power in the propagators, naive power counnting
does not give the correct degree of divergence d of the diagrams. To obtain the correct §
we first integrate over the J-components. Consider a general diagram which contributes
to VL) with N external legs, L insertions of operators ¢?, I internal lines {propagators),
¢ loops (£ integrations over internal momenta) and v vertices. These variables are not
independent. A ¢* vertex has four lines, a #? insertion has two lines, and each internal
line is shared between two vertices, or two insertions, or between a vertex and an insertion.

Thus, we have the rclation
Ay +2L =21 + N. (8)

According to the Feynman rules there is a momentum associated with each internal line

and integration over this internal momentum. However, the conservation delta-functions at
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which expresses the overall momentum conservation of the diagram and we obtain
¢=]—-v—L+1 (9)

Each propagator in this diagram has the form
-1

oo(} i + Ko + (o @io + Kp)*| (10)
where I{ stands for the sum of the external momenta which flow through the propagator and
the sum is over internal momenta. We can use Feynman parameters to put all I propagators
together, obtaining a single term in the denominator raised to the power . After integrating
over g5, ¢+ = 1,2, ..., £, the resulting term in the denominator, which now only contains the g,
components, is raised to the power I — ¢dg/2. Using naive power counting for the remaining

ce-components we obtain § = #d, — 4{J — £dg/2). Using Eqs. (8) and (9) we rewrite this

5—[d;(4+d—;)]1+(L—%)(%+dﬁ) \ (11)

Recalling that d, — m we see that the term which depends on I in the equation above

expression as

cancells when d is equal to upper critical dimension d,, see Eq. (3). At d = d, the only 1PI
functions with primitive divergences (§ > 0) are >0 [0 T30 and %2, These are the
same as in the ¢* theory and here we can also neglect T} which gives an infinite constant.

As in the usual ¢! theory, which describes the criticality of the Ising model, all TWE) at
the LP are renormalized multiplicatively, except T'®? which also requires additive renormal-
ization. We have checked this point by performing a two-loop caleulation of the primitively
divergent CGreen’s functions for m = 2 and 6. However, there are differences, for example,

the divergent part of I® has the structure

AO’U B

P = 2k + =k + O(c) (12)

€
with A # B. Thus, besides field renormalization we need the renormalization of the ¢

parameter to eliminate the poles of I'2%). In general, the relations between I'™:%) and M{")

at the LP are given by



.y F};v,h)(ki:pizaw i ﬁ) Zr,f) / [F(N,L)(kirpiugﬁ) )\)
méN}uéb,QF(O’g)(P: _p, dy, )\)lg—pg:&'z]} (13)
;u?j:l)

where g is the renormalized coupling constant, ¢ = Z,0, is the renormalized oy parame-
ter, Z,,Z4 and Zye are renormalization constants, and & is an arbitrary momentum scale.

Bare parameters and renormalization constants are calculated through the renormalization

conditions

0 rz0)p 4 |

ak4r (k k,G,g,.‘i) cki=x? = O (14)
kz:[)
& T e k0,9, 6|y =1 (15)
o it

FE‘IE!,O)U‘:I'»" . !kdio”g!ﬁ;)fﬁﬁo =9, (16)
Fg’l)(kl,kg,p, a,4,K) 5 = 1, {(17)
v FE‘g'Z)(p: 9, 4, n){gpg:nz = O: (18)

#h=0
thre the renormalization points are defined as follows: sPe weans 7' %k, iy = w{4d;; —
1)/4; 3, means ¢'2k%, = 3u/4, 02k, - Faa = —w/4, ok + k)2 = 0P = &, and,
except in Eq. (15), the external momenta at which the values of the Creen functions are
evaluated have no compenents in the G-subspace. This choice of renormalization points will
make bare parameters and renormalization constants g-independent as we are going to show
below,

Let us discuss in more detail the dependence of I‘S.;V’L) on o. In order to do that we

first determine the dependence of I'™:%) on ¢y. In perturbation theory ™™ is a sum of

infinite 1PT diagrams. Consider one of these diagrams, with v vertices, I propagators, L
insertions of operators ¢? and £ loops. If we make the change of variable ¢;, — 74 Y 4q'm,
for the c-components of all £ internal momenta g;, then dig; = dd Giad gy — o ddg;
and the whole diagram is multiplied by a factor oy “*/*. In the propagators, see Eq. (10),
after changing variables, only the a-components of the external momenta are multiplied by

oyl Combining Eqgs. (8) and (9) we obtain £ = v — N/2+ 1 and the global factor can also

8
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each vertex has a factor A. Thus, the a-components of all external momenta in the 1PI

Green functions are multiplied by 00 /* and the coupling constant by o, 5 e/t

. There remains
a global factor {o8*/*)¥/2~1 This analysis holds for all diagrams of T'V'L) and we can finally

write

N

N_ g 1 )
F(N’L)(kiapis Ji, ’\) = (U ) 2 FU\,L)(U(;1 ki, ktﬂr(fo Pico Pigs 1, Aoy tnﬂ)

=(o*)

where we used the expression oy = Z.'¢ to write the last equality in Eq. {19). If we can

"5

N
LA |

=3

rivL ("3"‘1 Kin, ktﬂ: U“pm, pzﬁ: 1 s AGT d,'(,/d) (19)

show that the renormalization constants Z,, Z4 and Z, do not depend on & then Egs. (19)
and (13) can be used to give the dependence of TSQV’L) on o.

Eq. (19) enables us to rewrite the renormalization conditions (Egs. (14) through (18))

as
9 1,000 ki k3, Zt, Aot/ = 20
api (2T P00k, K5, 2, Do esgar =0 (20)
't} k“t“ .
d - -
7 1200 (kL 2, 27 2™ )] Ly = 1, (21)
A k%:ﬁ?
Ud“/4Z§F( ( I/qkm:ka,ﬂ: ;! )\‘gvda/d) St =4 (22)
Zs 2T (0 i, hig, 0 *pay pp, 2,1 o™ )| =1, (23)
PO (opg, pig, 271 do ™) — T (opl, p, 771, Ao~/ )| 0 = 0. (24)
Pg=0
At this stage it is convenient to introduce dimensionless coupling constants up and u
such that
ukt D = godalt,
w0 = A,
DEdn/Z-l-dg. (25)

We can satisfy equations (20) through (24) by expressing ugo—%/* and renormalization

constants Z;,Z; and Zy: as power series in w. In fact, due to the rotational symmeiry in

9



Lagll subspace, [0 depends onty on the external momenta through scalar products of
their @ and 3 components separately. Recall that the @ components of the momenta are
always multiplied by ¢'/*. With our choice for the renormalization points (see definitions
after Eq. (18)) this dependence on o disappears. This is less obvious for Eq.(20). In this
case rotational invariance implies that T%%% = Fg’n)(aki, k%). After caleulating its derivative
with respect to k7 and evaluating it at the renormalization point ok% = &%, &% = 0 a global
factor o remains. However, this factor is cancelled out by the ¢ on the right hand side
of Eq. (20). Finally, according to Eq. (19), when o is factored out the conpling constant
A = k=% is multiplied by o~%/*. Expanding the product uga=%/1 in powers of u, instead
of expanding only uy as in the usual ¢ theory, we eliminate the last dependence on ¢ in
Eqgs.(20) through (24). In this way, we can satisfy these equations by expressing ugo= /4
and renormalization constants as power series in % only, as stated above. An alternative
choice for the renormalization points consists in choosing, except in Eq. (20), the external
rnoinenta without components in the a-subspace. In this case, it is clear again that Egs.
{20) throngh (24) do not depend on o. However, we verilied that the resulting two-loop
integrals are more involved than in the previous case. We have calculated,® for m = G, the
critical exponents using both choices for the external momenta. The results are the same

and confirmn the independence on o.

-Since the renormalization constants do not depend on o, Eqs. (13) and (19) imply that
Nfa-l _n
' F&N‘L)(ki! bi, 0, u, h‘) = (Ud"/l!) ! FS?'L) (Ul/'ikith 'ti:iﬁ: glfalpich piﬁ: l: i, &)

- Z;WBZ;E'; F(N’L)(ki,pi, dy, 'LL()K.d_D) — (SN)UCSL’QF(GIQ) (}J, —p, 0o, UQﬁ4_D)I (26)

oph—n? | >
pfj =0

where u is defined in Eq. (25) and all dependence of FS{V’” on ¢ is in the a-components of
the external momenta and in an overall multiplicative factor.
In an analogous way we derive the expression for the remormalized connected Green

function Ggﬁ’[’) (see the appendix for more details)
N,L = -
ng_a’ )(kz':pi: O, U, K) = quz Z£2 [G(N’L)(kizpiaaﬂguoffl D)

10

650826 (p, ~p, o0, )|| . (1)

pE:O
The renormalization-group equation can now be obtained in the standard'® way by first
moving Z;;W * and Z(fg to the left hand side of Eq. (26) and then applying the operator

{k0/0K) 4, to the resulting expression. In this way we obtain

b 8 N
{ﬁi + Au)— + v {u)a% -~ —é—’m{u} + Ly (u)} FS{N’L) {kiypiyo,u, K)

Ok Ju
= Oy pdrak” *Blu), (28)
where
&PB(u) = -7} A%Fw'?) (p, —p, 00, w2 pos2, (29}
Ju
B(u) ('ﬁ)m , (30)
dNnz,
i) = (752) (31)
00
olnZ
Yplu) = (K‘, o ¢) , (32)
K Aan
(9an¢2
o) = - (<222 )A , (33

Green’s functions with T +# T}, can be expanded about Ty. This technique is analogous
to the expansion of the renormalized ¢* above and below T, in terms of the massless critical
theory introduced by Weinberg!” and applied to critical pheromena by Zinn-Justin'®, In

our case, we expand Green's functions about T = T}, and ¢ = 0. It can be shown!® that

_ §r Te g
F(N’L)(kiupi: Jp, Cp = 0: 6Ta ’\: d)) = Z L}Tj(?L
IJ e -
) PVILLAD) (1= 0, ps, gs = 0, 05,00 = 0,07 = 0\, & = 0}. (34)

Note that the ¢y parameter was kept fixed and equal to zero which is equivalent to keeping
p = pr. In this way, our analysis is restricted to the line p = py, in the p — 7" plane. This is
irrelevant for the determination of the exponents ne2 and ng which are calculated precisely

at the Lifshitz point. On the other hand, v and vy require the determination of Green’s
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funﬁ;tions in the neighborhood of the Lifshitz point. However, we expect the exponents to be
the same if we cross the boundary between the paramagnetic and the ferromagnetic phase,
through the Lifshitz point, along any direction in the p — T plane. This is the case for the
one-loop corrections. Our results agree with the one-loop results of Hornreich ef al.l. We
expect that this invariance with direction also holds for our two-loop calculation of vy and
Ve

If we subtract the term & o8, 200, a2 p2=0 from both sides of Eq. (34), multiply

the resulting expression hy Z(;,V/ 74)“ define

Lo
= Z3'or, M =27, (35)

where ¢ and M are finite, introduce the dimensionless couplings up and u (see Egs. (25)),

and use Eq. (13) we obtain
.on - : -
Z7 ZH[PN ) (e, g, 00, 81, 08", 6) ~ S 081,200 (D, =2, 00,0, w0k ™", 0] s 2]y
1);5:[)

M N+JL+I

= I‘%V’L)(ki,pi, a,t,u, M), (36)

kipli = 0:?31': G = 07 g, U, "i)

where the double sum in Eq. (36) defines FE{V‘L) in the neighborhood of the LP. Thns, we can
renormalize Green’s functions away from T, using the renormalization coustants caleulated
at the LI solving Eqs.(20) through (24).

Recalling that each T'Y") in the right hand side of Eq. (36) satisfies the renormalization
group equation (28}, it is simple to check that Green's functions away from 77, satisfy the

renormalization group equation

J 1 a
[ + B{u } +%( Jo 5;“5%5(“) (N‘wa)
+yge (u) (L -+ t;)] FS{V’L) (ki, piy ot u, M, k) = Sy o 26” *B(u), (37)

where the terms which appear in Eq. (37) were defized in Eqs. (29) through {33).

12

Linally, L4s5.  120) and {(ZD) gIve 115 Lie dependence ol the renormalized il'l Green

functions on ¢
N/2-1
T s, ey, 1, M, ) = (0%4) 7 PR 0V g, i, g, 1,1, M5, ),

(38)

Eq. (38) is valid in the broken symmetry phase. Above T}, in the paramagnetic phase, one

obtains an analogous expression with M = {.

IH. IDENTIFICATION OF THE CRITICAL EXPONENTS

In field theory the critical behavior is obtained combining the solutions of the renor-
malization group equation at the fixed point with dimensional analysis. In our case,
parameters, fields and 1P1 Green’s functions without the momentum conserving delta-
function have the following dimensions: [ro] = {&%], [co] = [k%], [00] = [£%], [ks] = [x],
] = (57, el = (2], [l = [6777], [\] = [R972), [g(x)] = [="+0e/440/2], and
[DNEYN ks, ... )] = [wida/24da)(1-N/+N =211 Note that our choosing ap dimensionless leads
to a coupling constant A which is dimensionless at the upper eritical dimension as usual.

The exponents 7e, Mes, Veg, g4 and 7y are determined from the renormalization-group
cquation for Fg’o) at the fixed point » = u*. It suffices to consider the case T > T} for
which M = 0. Replacing * for u in equation {37) with N = 2, L = 0 and recalling'® that
A(u*) = 0 we obtain

a3 ., d A Y R .
“ow 105 T gy~ | Ta (B ky 0wt k) =0 (39)

where 75 = y,(u*), 77 = {u*), 7 = v42(w*). The definitions of ,(u), 74(u} and ¥g2 (1)
are given in Eqs. (31), (32) and (33}, respectively. Rotational invariance in each subspace
guarantees that F(Rz.o) (k,t,u*, k) = I‘%’“)(kg, k},t,ut, k).

The general selution of Eq. (39) is given by

Dt (ke k0,1, 1) = 1000 (k0 k2, o 1) (40)

13



witere 55 15 an arbitrary function. Combining Tags. (38), which gives the dependence of

I'2% on g, and (40) we obtain
FE.?’D)(ICZI!, k;, ot k) = K10 (am'”’:’ki, k.f;, 1,7, u*) (41)

On the other hand, if p is an arbitrary mass parameter then dimensional analysis vields

2,0 « 2, O'k'i k2 t . K

Combining Egs. (41) and (42) we finally obtain

. . SN AN A B
Fg’ﬂ)(okﬂ, /s:f,, tout, s} = Mg P 0—2‘3 (i) , —g, 12 (E vt ] (43)
o \p AP \p

The exponent 74 is obtained putting ¢ = 0 and ks = 0 in Eq. (43}, and choosing

1 2 4

p = 0T 5 |1, |75 (49)
In this way,
i . . L SO it 4 Bt

P (okd, k3w k) = 07 6 20 k| T 2% (1,0,0,u7), (45)

and from Bq. (45) we identify

N
=4[ —"2], 4

Ted ( 2 ) (46)

In an analogous way, putting ¢ = 0, k, = 0 and choosing p = |ks| in Eq. (43) we obtain the

exponent 7,

N2 =) _ (47)

The exponents v, vg and vy are also obtained from Eq. {43), keeping £ # 0 and choosing
T

T
p=1t""g 7 (48)

Thus,

14

P (ak,

2
o b Lt um k) =

— o (m_q; )55% $20) (cm—fr; e (t{v-;)“i‘:%% k3 (m-ﬁ)‘ﬁz‘ ,1,u*) . {49)

Inspecting Eq. (49) we note that ®®° depends only on the combinations |k, and

|kg|&m with

fip ~ 17T (50)

The correlation lengths £5y ~ t7"¢ and £ ~ 17 define the exponents v and vy, Thus,

(51)
Finally, putting ke = kp = 0in Eq. (49), and recalling that T&(0,0,u*, ¢, &) ~ x~1 ~ £7
we identify the exponent

2 -9
= , 52
N5y (52)

The exponent J; is obtained from the remormalization equation for H (t,u, M, s} =
I"g‘o)(t,u, M, k). The general solution of Eq. (37) for N = 1 and L = 0 at the fixed

point u = " is given by
H (0,8, 0", M, k) = £/ (ax7% t5=% 0, Mii/?), (53)

Taking into account the dependence of H = T% on ¢ (see Eq. (38)) we obtain

Ho,t,u", M, k) = o TR (I,tn"ﬁ,u*, U%“Mn%"f_%"s) . (54)
Using dimensional analysis and recalling that [H] = [g!*da/14d5/2] = (122 [M] =

[ THda/Atds 2] = [g=14D12)  and [p] = [£] we obtain

* —% 1+pj2 [ K nivgn
Hio,t,w*',M,x) =c 5 p -
2
—— 1_a_dy .
t K Y2 . da M K 2N —3 e
xh (I,E (;) YU, B m (;) . (55)
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in oyder to calculate the exponents &y and dg we choose p such that

Loyr iy

e M (e\PITEE
o p 1D (;) =1 (56)

In this way, Eq. (55) becomes

Ba-o} —;;{-d s

Lo+ dg » Low__do * YO .
H(Gz tau*:Mr H’) = gINTE" (Mli?-"fl —f"l’q)D ] -
—d42v]
oy Lo da s\ T s
xh (l,tff ” (Mm"“ s%)ﬂ e ,u*,l) ) (57)

Putting ¢ = 0 & T =Ty, in Eq. (57) and recalling that on this line H ~ M% we identify

5~ Dr2=i= %
S D2y g

(58)

The exponent # is calculated by making H = 0 and ¢ < 0 in Eq. (57). The resulting

equation can only be satisfied if

v 2yl
kb - S
. Loe_dy, . T
g = TR (M&Eﬁ_ 8 7") ST R (59)

i
is such that R(1,zy,u*, 1) = 0. Near the LP we expect M ~ (—#)%. Thus, from Eq. (59)

we extract

2 .

fe=5 n
2-v

Finally, the exponent « is associated with the specific heat at constant field. It can be

_sh‘own19 that
T2 (0,0,0,8, M = 0,u", k) ~ £ (61)

The general solution of Eq. (37) with NV = 0 and L = 2 at the fixed point « = u* is given
by
g D=1 B (%)

D —d+ 2y — Loy’

(62)

FS?‘E) (0,0,0,t, 4", k) = 52 PO (rm_"";, teTE 11.*) +
Taking into account the dependence of I} on o, given in Eq. {26), we obtaiu
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d ey o o» - SR B Vo *
PO20,0, 0,1, u*, k) = o~ T PEHEE O (1,574, u*) L2 E s (63)
| D— 1+ 2y — Gy
Dimensional analysis allows to rewrite this equation as
_2'7;"'%1“"7; -3
o WK t
FS‘;.),E) (O,U, o, t, ’U.*, F\,) _ o_depD—l (_) @(0,2) 1’ — (E) ,’bb* +
p PP
—da /4 D—4B *
o A %
+ (d L (64)
D -4+ 2y -ty

Choosing p such that

- (E)_ﬁ =1, (65)

we obtain

e e

02 _da sy dg e i S
FS—f }(0,0, out, t K) = o kTR (tn 72) B

g e /4I€D"4B (u*)

x OO (1,1, u*) + : 66
( ) D—4+2’y§-%ﬁ7; (66)
Comparing Egs. (61) and (66) we find the following expression for a
4D~ 2y + Gyt
v = T2 4 (Ya' . (67)

2-%

It is important to emphasize that the expressions for the critical exponents Egs. (46),

(47), (51), {52), (58), (60, and (67) hold to orders of perturhations. Using these equations

it is a simple task to check that the critical exponents associated with the LP satisfy the
generalized scaling relations given below.

Fisher's law:
Y = Vu(d—nu) = ve(2-np); (68)
Widom’s law:
Ye= Be (0 — 1) ' (69)
Rushbrooke’s law:

17



o e+ 2+ =2 (70)
and Josephson’s law (hyperscaling)
2 — Gy =— dngg + duflg,; (71)

These scaling relations were first derived by Hornreich!,? based on an one-loop analysis.

IV. CONCLUSIONS

. We have studied the renormalization of the field theory which describes the LP. This has
been done by first studying the Green functions at the LP. In this case the propagator sim-
plifies considerably and we are capable of making a thorough analysis of the renormalization
structure of the theory. Three points are worthy emphasizing: (1) our finding renormaliza-
tion prescriptions for which the renormalization constants Z4, Z42, and Z, depend only on
the renormalized constant u and not on the parameter ¢; (2) our determining the precise
dependence of the renormalized Green functions on &; (3) the expansion of the Green func-
tions in the neighborhood of the LP in terms of the Green functions calculated at the LP.
All three points have allowed us to obtain rather simple renormalization group equations
whose solutions have enabled us to identify the critical exponents. Our expressions are valid
for all orders of perturbation and for all values of m. Using this formalism we have rederived
the scaling relations first put forward by Hornreich et al. based on a one-loop analysis. Our

" ideas can probably be adapted for other multieritical points.

Finally, our main motivation was the solution of an old controversy on the values of the
critical exponents for the LP with m = 2 and m = 6. We have solved this problem and we
anticipate the solution. Qur technique gives the same exponents 7y and 7y as obtained by
Sak and Grest'®. In the field-theoretic approach that we have used in order to determine the
critical exponents first we have to calculate dimensional regularization poles of primitively
divergent Green’s functions. We have accomplished this without any approximations. Our

calculations are as accurate as the analogous one for the ¢* theory. Since the algebra is
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forthcoming paper®.

V. APPENDIX

In this appendix we illustrate in a simple case the cancellation of singularities which
come from the insertion of Tt into other diagrams. This cancellation is a consequence
of the interplay of the renormalization constants Z,, £, and of the renormalization of the
coupling constant A. The renormalization of A plays a double role: it cancels the primitive
logarithmic divergence of T4% and, together with Z, it eliminates part of the divergences
due to the insertions of T2%. It is convenient, following Amit!®, to analyze both effects

separately by extracting a factor Zg’; from the rencrmalized coupling constant g and define
g= Z;~, ) (72)

where 7 is determined in such a way as to eliminate the primitive logarithmic divergence of
of T9 and Z3 takes care of the logarithmic divergence of T30,
The poles of T to two-loop order come from the diagram D, shown in Fig. 1. Recall

that

A B
Dy =)\ hé{-?ki + ak% + regular terms, (73)

where A # B, and we have written down explicitly the combinatoric factor 1/6 and the
minus sign which multiplies all 1P1 diagrams.
Following the prescriptions to obtain T9” from I'®®, given in Eq. (13), and recalling

that oy = Z; !0 we obtain

Ac

6

B
B+ &kEJ + regular terms, (74)

TG0 = 2,27 0kl + Zyk - 3 |
Note that since D, is order A? we can make the replacements op — ¢ and A — g in its
contributions to T%™®. The error is O(g"). Zg and Z, are chosen so that Eqs. (14) and (15)

are satisfied. A simple calculation yields
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P

Beg ;

(B—4) ,
= (75)

o Z¢:1+

Z, =1+

Consider the diagrams shown in Fig. 2 which contribute to the connected four point
Green function GE™. Let us consider only the poles of the diagrams and neglect the regular
parts. After expanding A in terms of § the primitive logarithmic divergences of the diagrams
(C) and (D) are eliminated and the only divergence which remains comes from diagram (B)
in Fig. 2. Diagram (B) results from the insertion of D in the upper left leg of diagram (A).

We have to insert Dy in all legs of diagram {A). Thus, the singular part of G{*® is given by

GO (ko kg, kg, kay = —§Go(kn )Golkz) Golks) Golks)
—§° G (k1) Gok2)Golks)Golka) [%’»ﬁ + G*Ei’ffﬂ] -
7 Galka)Golka)Golka) G (k) [ 22K%, + D%, (76)
ar;d
! 1
Golk) = A {77

is the free propagator. Note the absence of the minus sign in the T'2? insertion which is
now a part of G and as such should not be multiplied by —1. We have to show that
GSE’U) = £y 2GUO) i finite, after we make the replacements og — Z3'o and § —» Z7%g in
G, The renormalization constants Zg and Z; are given in Eq. (75). After expanding oy,

the free propégator Go(k), to order §°, becomes

Golk) = G(k) - #%22(A ~ BYG*(h), (75)
where
G(k) = !
(k) = m- (79)

In the terms proportional to §* in Eq. (76) we can make the substitutions oy — o, g— g,

Zy =1, Z; =+ 1, Go(k) = G(k). The error is order §° After making all these replacements
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tional to B combine in such a way as to produce terms like okf, + k% = G~ (k;), 1= 1,2,3,
and 4, which eliminate one of the squared propagators in the order g* terms. In this way
we obtain the finite result
4B
GO (ky, kg, ks, ka) = — (9354 + 4.0'3&) G (k1) G (k2) G (ka) G (k4)

= —gG (k)G k) G ka) Glka), (80}

.where we have used the definition of Zy given in Eq. (75) to cancel out the singularities

proportional to 5.

To summarize: the expansion of oy in the propagators of the lower order diagram,
without %% insertions, cancels the poles proportional to A. The poles proportional to
B combine to eliminate the extra propagator on the line where ["%% was inserted. In this
way all terms become proportional to the lower order diagram. Finally, the Z, constant,
which commes from the definition of the renormalized Green functions (G = Z;N/ KelLn
v zy 72PN and from the renormalized coupling constant {g = Z3°§) eliminates the
singularities proportional to B. This mechanism generalizes to all orders of perturbation.

Examining the demcnstration above one realizes that the essential ingredient is the
presence of a factor Z7 ! for cach line of the diagram. Consider a diagram of order g*
which contributes to G{"® containing 7 internal lines and N external lines. In this case
we need a factor Zy =¥ to climinate the divergences. The coupling constant provide a
factor Z * another factor Zg /% comes from the definition of Gg’o). There is global factor
Z‘Q’ 2= _ Zy I=N_and in the last equality we used the fact that since each internal line is
shared by two vertices then 4v = 27 + N. Thus, Z, is raised to a power equal to the total
number of lines of the diagram. The demonstration for I‘ERN’DJ is analogous. However, in this

case the external lines are removed and one needs a global factor Zy I
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FIG. 2. Diagrams which contribute to G5+,
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