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Recently, there has been considerable interest in the study of the superparticle (super-
string) theories due to Siegel [1--7]. The first formnlation of such a kind {the AB-model)
can be viewed as the conventional superparticle [8] with only first—class constraints re-
tained [9]. The second modification (the ABC- superparticle) appears if one tries to close
the algebra of gquantnm A, I3- constraint operators in the presence of external super Yang-
Mills [10]. The third refornsmlation (the ABCD-, or “first -ilk”-superparticle) originated
from the attempt to cure problems intrinsic in the BRST quantized ABC model [11,2].
Having advantage of being free of problematic second-class constraints, the latter two
theories were proven to be physically equivalent te the conventional superparticle [12],
thus sugpesting an interesting alternative to attack the covariant quantization problem

intrinsic in the original superparticle.

An important characteristic feature of the conventional superparticle, superstring the-
ories is that they admnit consistent {minimal) coupling to super Yang-Mills, supergravity
backgroumds [13-15]. In particular, this allowed one to construct low energy offective
action for the supersiring theory within the framework of the sigma-model approach [16]
and to get an elegant geometric interpretation of the super Yang--Mills, supergravity con-
straints themselves [14,15]. It is natural then to ask about the behaviour of the Siegel

superparticles in external background superfields. For the ABC D-model in a curved su-
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perspace this question was previously addressed in Ref. [17], where it was shown that
the system can not be minimally coupled to the supergravity background, thus showing
serious drawback of the model.

In this brief note we address the similar question for the ABC-superparticle. Asshown
below, this model does admit consistent minimal coupling to external supergravity. Inter-
esting enough, the consistency check essentially invelves all the supergravity constraints.
This is in contrast with the conventional superparticle for which a smaller set is known
to be suflicient to define the consistent coupling [14,151.

A conventional way to couple a superparticle model to a curved superspace is to rewrite’
its action in terms of the vielbein of a flat superspace and then set the latter to be that
of a curved superspace. For the case at hand this yields!

5 = [dr{L(#¥en"(2) + iho®p — ipo™i))?
— #Nen®(2)pa ~ FVenal2) 7% + potpiA,
+ p°k + p°k}. (1)

World indices appear on the coordinates 2™ and the vielbein ey (z) only, all other indices
being tangent ones. Because consistent coupling has to preserve a number of degrees of
freedom of the original model, we pass to the Hamiltonian formalism and analyze dynamics
of the theory. Defining a phase space momentum to be the left derivative of a Lagrangian

with respect to velocity, one finds the primary constraints

Pe =19,

pp =0,

=0

Pp= 0,

s =10,

pa =0,

pe =10,

=0,

Po+ oo =0,

Pa+pa=0, {2)

'For simplicity in this work we examine the problem in d = 4 superspace. The generalization

to other dimensions is straightforward.



where pa = e,V px and (pe, Py, P> Ppr P Pas Dl PR P} AF¢ momenta canonically conju-
gate to the configuration space variables (e, 1,4, p, p, A, k, k, 2"} respeetively. The canon-

ical Hamiltonian reads
HY = Aope + A0 Ppe + Mgl

+2,"Dpa + A,;(-,p,—,".‘ + A" Pan
FAPx + AgpE + A% (P + pa)

ay2
3 Y ¥ 4 - a=
AP be (?2} — po pp,
+ipaPp, — potph, — ptk — ptk, (3)

where X, denote the Lagrange multipliers corresponding to the primary constraints. To
analyze consistency conditions for the primary constraints one introduces the Poisson
bracket associated with the left derivatives [15] (note that under this bracket {y, p,} = —1
with u a fermion)

{A,B} — (_1)6.-15.\’ 3.—\ 3.’3

Az o

- (_1)6{“84”[35”%&3;)‘:}: (4)

where €4 is the parity of a function A. In what follows, the important bracket

{paps} = T1s"pe — wanpe
+ (— 1)(’1' nw;;,.xc‘])(:, (5)

proves to be useful. Here T,y H(‘ and wyp" are components of the super torsion and the
super connection respectively. The preservation in time of the primary constraints gives

now the secondary ones
2
)" =0,

Palo®p), =0,
{po“}.pe = 0,

pﬁﬁd = 0)
=0,
=0, (6)

“and the equations to determine some of the Lagrange multipliers (together with their
complex conjugates) o

Ae = —‘ipn(r;r“'a[_}]n + Au(aﬂﬁ}a + 2kpa,

Mo = (Top®pp — wpa P}V
~ (T3 D — wya )X
- epa{TanDpD + wnavp'y)
+ i{140°P) Taa pe — 1(p0°%) Ton*Per (7)

In obtaining Eq. (7) we used the constraints (2),(6) and the explicit form of the connection

Whab = —WNba, UNa® = %wNﬂb(aﬂ'b)Qﬁ,deé = %wNab(Er“b)ﬁd. It is worth mentioning that
the last two lines in Eq. {G) follow from the second and the third ones and, hence, can
be omitted, We find it convenicnt to keep the corresponding trivial contributions to the
Lagrangian (1) in oder to write the local k-symmetry in the simplest form {see Eqgs.

(12),(13) below).
Consistency conditions for the secondary constraints produce the equations (together
with their complex conjugates)
pﬂa‘an’y)\ﬁﬁ + (Uu.a)n{f(Tuﬁcpc
+ wﬁabpb)Aﬂ + (Tuércpc + Wdub}’b))\d
+ ep?(Tup"Pe + W)} = 0,
pn("TaaDpDAn -+ Tno’:DpD/\d
— (Yo’ 5y Te pe + 1(po*) Ty pe) = 0,
po)‘ﬁd - ﬁd)\pa - 0: (8)

which, after the substitution of Eq. (7), imply further (highly nonlinear) constraints and,
hence, change a number of degrees of freedom in the problem as compared to that in
a flat superspace. Thus some restrictions on the background geometry are neccessary to
define consistent coupling. Taking these to be the full set of d = 4, N = 1 supergravity
constraints 18],

T =0,
Tan® =0,
Tap" =0
Taﬁc =0,
T =0,
T = 210 14, (9)

where ¢ means either o or &, one can check that equations (8) vanish and, moreover, the
constraints?

®The variables (e, %, p, 5, A, k, k) together with the correspoixling momenta, can be omitted
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(pu)2 =0,
pu(gﬂﬁ)a =0,
(pe®)ape =10,

papd - 01 (10)

form a closed algebra and completely determine dynamics of the model just as in the
free case. It is interesting to note that checking this one essentially needs to use all the
supergravity constraints (9) as well as the solutions of the Bianchi identities involving
T.s” {see Ref. [19] for the explicit relations). This is in contrast with the conventional

superparticle [8] for which the similar analysis shows that the equations

T&{uc) - TI(IETﬁ?

TO_BC = O:
T =0,
T, 5 = 2ic°, 3, _ (11}

with Ty an arbitrary superfield, are sufficient to determine consistent coupling (see also
Refs. [14,15,20]).

In complete agreement with the Hamiltonian analysis, the Lagrangian (1) becomes
invariant under the local s-symmetry when the restrictions (9) hold. Actually, varying
the action (1) with respect to the direct generalization of the flat k-symmetry to a curved

superspace (for technical details see Ref. [20])

82V ene = —ie M1, (c"R),,,
$zNeys = ie " 1, (o),
§zNen® = ipo®R — iko®p,
de = 43N ey i, + 4RV en®,
59 = D(xc),
59 = D(&Y), (12)

where [1* = #¥en? + o p—ipe®yd and D(k") is the covariant derivative, and making use
of Eq. (9) and the solutions of the Bianchi identities involving T’ [19], one finds that

after imposing the gauge conditions e = 1,4 = 0,% = 0,A = 0,k = 0,k = 0, and constructing
the Dirac bracket associated with the second class constraints ppe = 0,00 + po = 0,956 =

0115('! + Pa = 0.

all the terms entering the variation are proportional to pp, p*, 7%, provided the additional
variations of the fields e, 9

de = 2e{ Rk p, + Rpsi®
— %paGadf‘_ﬂd - %RaaadﬁdL .
8 = — i1, (ko) G + FkoTLFGy, (13)

have been done. The superfields R, (44 are those entering the solutions of the Bianchi
identities [19]. Obviously, the remnant can be canceled by an appropriate variation of the
fields A, k, k.

Finally, let us briefly comment on the possibility to couple the AB-model to a curved
superspace. The Lagrangian to start with is given by Eq. (1) with the three last terms
omitted {the Hamiltonian analogue is the omitting of the three last lines in Eq. (6)). '
Exploiting the same machinery as above, it is easy to check that the consistency conditions
like Eq. (8) do not vanish even if the full set of the supergravity constraints holds. They
involve terms proportional to pp (times background superfields), thus giving further higher
order fermionic constraints in the problem and changing the original number of degrees
of freedom. This suggests that another way to formulate the ABC—superparticle is to
require the closure of the algebra of the A, B—constraints in a curved superspace. '

To summarize, we conclude that the ABC—model is the only one in the family of the
Siegel superparticles which admits consistent minimal coupling to external supergravity.

The work of A.V.G has been supported by INTAS-RFBR. Grant No 95-829 and by
FAPESP. D.M.G. thanks CNPq for permanent support.
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