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Abstract

A semiclassical description of multiple giant resonance excitation that in-
corporates incoherent fluctuation contributions of the Brink-Axel type is de-
veloped. Numerical calculations show that the incoherent contributions are

important at low to intermediate bombarding energies.

PACS Numbers: 25.70.De, 24.30.Cz, 21.10.Re

I. INTRODUCTION

The Coulomb excitation of two-phonon giant resonances at intermediate energies has
generated considerable interest in the last few years [1]. The isovector double giant dipole
resonance (DGDR) has been observed in ¥*%Xe [2], 17 Au [3], and 28Pb [4-6]. The isoscalar
double giant quadrupole resonance has also been observed in the proton emission spectrum

from the collision of **Ca with “°Ca at a laboratory energy of 44 A Mev [7). When the



data on DGDR excitation for 13¢Xe and %" Au are compared with coupled-channel Coulomb
excitation calculations [8], it is found that, in the harmonic approximation, the calculated
cross sections are a factor of 2 to 3 smaller than the measuréd ones. A similar discrepancy,
albeit somewhat smaller, is found for 28Pb.

Several effects that are not taken into account in the coupled-channel theory have been
considered as possible explanations of this discrepancy. As examples, we mention the effect
of anharmonicities [9,10] and the quenching of the 1+ DGDR state [11]. Here we will
consider a potentially important mechanism, which consists in the Coulomb excitation of a
GDR on the background states populated by the decay of a previously excited GDR [12-14],
as shown in Fig. 1. The importance of such ‘hot’ collective excitations in nuclear gamma
emission was suggested long ago by Brink and Axel [15]. Due to the complicated nature of
the noncollective background states, the amplitude for this excitation process varies rapidly
with energy and possesses an average close to zero. Its contribution to the cross section can
be sizable, however.

The excitation of a second GDR after the decay of a first will be possible only if the
decay occurs before the collision has ended. We can thus obtain an estimate of the relevance
of this excitation mechanism by comparing the Coulomb collisibn time to the giant dipole
resonance decay time. The decay time can be estimated as 74 = i/T'y, where I'y is the
giant resonance spreading width. For ?®Pb, the GDR width is I'y =~ 4 MeV, which yields
74 &~ 16 x 1072* 5. We estimate the collision time using the schematic time dependence of

the Coulomb interaction of Ref. 8,

Vo

1+ (yvt/b)?’ (1)

V(t) =

which furnishes a collision time of the order of 7, =~ 2b/~yv.

In Fig. 2, we compare the decay and collision times for the case of 2%®*Pb + 2%8Pb, as a
function of the incident energy per nucleon, using a value of 15 fm for the impact parameter
b. We see that below about 150 MeV per nucleon, the collision time is longer than the decay

time. We expect that the excitation of a second GDR after the decay of a first will be an



important process in this energy range, when compared to direct double GDR excitation.
As the collision times decreases slowly with the incident energy, we expect it to remain

important over an even wider energy range.

II. THE BRINK-AXEL MECHANISM AND THE EVOLUTION EQUATION

Giant resonances have many characteristics that suggest a treatment in terms of simple
collective degrees of freedom. The first and foremost of these is their classical interpreta-
tion in terms of macroscopic shape oscillations of the nucleus. The properties of multiple

_excitations of these resonances would then suggest.that they are simple bosonic degrees
of freedom. The Brink-Axel hypothesis, which assumes that a giant dipole resonance may
be constructed on each of the intrinsic excited states of the nucleus, suggests that the res-
onances can be considered as degrees of freedom independent of the intrinsic states. Of
course, the microscopic representation of the giant resonances, in terms of of the intrinsic
p_article—hole states, implies that their treatment as independent degrees of freedom can only |
be approximate. Yet, in many instances, it seems to be a very good approximation.

We will treat the giant resonance as an independent degree of freedom and label the
states of the nucleus with both a collective index n, denoting the number of collective dipole
phonons, and a statistical one s, denoting the number of collective phonons that have decayed
into the incoherent background. The class of states denoted by the pair of indices n and s
thus possesses n phonons of collective excitation and an incoherent background excitation
obtained through the decay of another s phonons. We will represent this class of states by a
single state. In the limit of harmonic phonons, this state would have an excitation energy of
(n+ s)eq and a width of nI'y, where ¢4 is the energy of the giant dipole resonance and I is
its spreading width. We neglect contributions of the escape widths, as these are extremely
small when compared to those of the spreading widths of the systems of interest here [14].
A schematic representation of the states and the transitions between them is given in Fig. 3.

We will consider the Coulomb excitation of a collective degree of freedom of a projectile



nucleus by an inert target and the subsequent decay of the collective states into complex
intrinsic ones. Although the collective excitation of the nucleus is a coherent process, its
statistical decay is an incoherent one. The time evolution of the system thus possesses
both coherent and incoherent aspects, making a density matrix formulation necessary. We
consider the time evolution of the density matrix elements p,s s (t). The diagonal element
Prsns(t) represents the instantaneous occupation probability of the state with n collective
phonons and a statistical background equivalent to s phonons.

Following Ref. 16, we can put the time-evolution equation of the semiclassical density

matrix into the form

0 ns,n’s’ .
N 55 ((en+0) B+ V() s
+1 Z Pnsms’ {(E'n/ + 53’) 6mn’ + an’ (t)} (2)

Fn + r ry
—‘(*‘f‘—‘—n—'—)pnsn’s' -+ 6nn’ 688' Z Fnsk_mrpmr,m""

2 ™m,r
The terms in the first two lines on the right-hand side induce the coherent contribution to the
evolution. This is given in terms of the (diagonal)‘collective and statistical contributions
to the excitation energy, €, and g5, and of the interaction V, which couples the states
through collective excitation alone. The two terms on the third line describe, respectively,
the loss of probability due to incoherent, statistical transitions out of the state and the gain
of probability due to statistical transitions from the other states. The partial gain widths

I'smr are such that

Z Fns«——mr = Fmr- (3)

s
This condition simply states that the sum of the partial widths for probability transfer from
any one state to all others must be equal to the total width for probability loss from the
initial state. This guarantees probability conservation during the evolution of the system
(assuming, of course, that e, and e, are real and that V (¢) is Hermitian).

We note that the standard calculation of giant resonance excitation [8] assumes it to be

a coherent process, with a wave function that evolves according to
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This expression takes into account the coherent excitation and subsequent decay of the GDR
in the same manner as Eq. (2). However, due to its coherence, it cannot account for the
probability that has decayed and thus lacks a gain term. The density matrix formalism of
Eq. (2) and the additional statistical states are necessary to obtain a complete description
of the time evolution.

We will assume that the initial population is iﬁ the ground state. The initial conditions

for which the equation will be solved are then
Prsn's (t - —OO) — nn’6n06ss"650(1 - T(b))} (5)

where T'(b) is an impact-parameter dependent transmission coefficient that takes into ac-
count the probability of projectile-target interactions more complex than those being dis-
cussed here. We approximate the transmission coefficient as

1
~ 1+exp({b— R)/a))’

(o) (6)

where we take the strong-interaction radius to be R = 1.23(A}3/3+A¥ %) fm and the diffusivity

to be @ = 0.50 fm, with Ap and Az the projectile and target mass numbers, respectively.
As the only coherent coupling in the time-evolution equation is through the collective

interaction V, which couples only collective states having the same statistical index s, we

conclude that the density matrix will remain diagonal in the statistical index s at all times,

Prs s (t) = 63.9" Prsn's (t) . (7)

The density matrix thus reduces to a separate density submatrix for each value of the
statistical index, with the coupling between these submatrices, through the gain and loss
terms, being completely incoherent.

It is convenient to explicitly take into account the time dependence due to the collective
excitation energy. To do this, we define a modified density matrix, which will have the same

diagonal matrix elements as the original one, as
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Pr (8) = exp [—i(en — €n )t/ D] pros s (t). (8)

The time evolution equation then reduces to the form

ap ;sln’

h*é’"t_ = ; (Vnm(t)fofnn' - pvsszm"' (t)) (©)
Fns Fn’s
_.(——--*2-——-2102“, + 5nn’ Z Fnsbmrprmm7

r,m
in which the remaining contribution to the coherent evolution is due to V', where

Vor (t) = exp [i(e,, — €nr)t/B] Vi (2). (10)

The second line of Eq.(9) contains the incoherent contributions of the statistical loss and
gain terms, respectively.
Assuming that the collective excited states are harmonic n-phonon giant dipole states,

the interaction matrix elements can be written as

Vo (£) = (exp lieqt /I) /16 1 + exp [—ieqt/B] V/'n + lén/,nH) Vo1 (%) (11)

where €, is the excitation energy of the giant dipole resonance and Vp, (#) is the semiclassical
matrix element coupling the ground state to the giant resonance, which we take to have the

simple form

Vou(t) = Vool )

T (e "

as given in Ref. 8. As is done there, we neglect the spin degeneracies and magnetic multi-
plicities of the giant resonance states and approximate the projectile-target relative motion
as a straight line.

The decay widths in the case of harmonic phonons can be approximated as
Fns = 'n’Pda (13)

where I'y is the spreading width of the giant dipole resonance. We have neglected the contri-

bution to the width of the hot statistical background of states since, at the low temperatures
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involved here, the decay widths of the hot Brink-Axel resonances are very similar to those
of the cold ones.

According to the convention we have adopted for labeling states, the statistical index
denotes the number of collective phonons that have decayed to the incoherent statistical
background. The decay of the n-phonon s-background state thus transfers its occupation
probability to the (n — 1)-phonon (s + 1)-background state. The form of the gain terms

reflects this fact,
Fns<—mr = 53,r+15n,m--1Fmr = 5s,r+15n,m—1mrd- (14)

We solve the differential equations numerically. A typical solution is shown in Figs. 4 and
5, where we display the time dependence of the occupation probabilities (diagonal elements
of the density matrix) of the zero-, one- and two-phonon states, for the system 2%Pb +
208Ph at an incident energy of 200 MeV per nucleon and an impact parameter of b=15 fm.
For the centroid and width of the giant dipole resonance, we use values taken from a global
systematic, €4 = 43.4 A=%%5 MeV and I'y = 0.3¢4 [17], giving €4 = 13.8 MeV and 'y = 4.1
MeV, slightly above the experimental values.

In Fig. 4, we see that the ground state occupation probability drops rapidly in the first
half of the collision, while the occupation of the collective one-phonon state rises accordingly.
The occupation probability of the decayed one-phonon state follows more slowly but, by the
midpoint of the collision, at ¢ = 0, is about 25% of the value of the occupation of the
coherent one-phonon state. We find the tendency of the two-phonon states in Fig. 5 to be
similar. The occupation probability of the coherent two-phonon state rises first, with that
of the one-coherent, one-decayed phonon state following more slowly but attaining a value
of about 50% of that of the collective one at the midpoint of the collision. The one-coherent,
one-decayed phonon state is occupied both through the decay of the coherent two-phonon
state and through collective excitation of the decayed one-phonon state. The occupation
probability of the two-decayed-phonon state grows more slowly than the others, as it is

occupied only through the decay of the one-coherent, one-decayed phonon state.

7



We observe in Figs. 4 and 5 that all states eventually decay to the states containing no

collective excitations,
Prm(t —00) =0 n,m#0, (15)
We can define asymptotic occupation probabilities for the states with no collective excita-

tions as

Poo(t — 00) — Fg, (16)
where probability conservation requires that

Y Py =1-T(b), (17)

with T'(b) the transmission coeficient of Eq.(6).
Although the states containing collective phonons are asymptotically depopulated, we
can still obtain an estimate of the probability that passes through them by calculating the

probability that decays out of them. We thus define for these states

¢

P =T, / T dt s (1) n 0. (18)

We note that this is only an estimate of the probability that has passed through each state,
as it takes into account only that part of the probability that decays incoherently. It does not
include the fraction of the probability that was transferred coherently (through the action
of V) to other states.

Finally, we define a cross section o}, for each state by integrating its probability P° over

the implicit dependence on the impact parameter,

o = 27r/°° bdb P:(b). (19)
b

At extremely low energies, the lower limit of the integral over impact parameter, bm;n, is
determined by the classical point of closest approach of the Coulomb interaction. When the
energy is sufficiently high to surpass the Coulomb barrier, the transmission coefficient 7'(b)

cuts the integral off at low values of the impact parameter.
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III. NUMERICAL CALCULATION OF MULTIPHONON EXCITATION

We have performed calculations of multiple giant dipole resonance excitation within
the model for the system *°®Pb + 2%®Pb in the projectile energy range from 100 to 1000
Mev/mucleon. We display in Fig. 6, as a function of the projectile energy, the coherent
n-phonon cross sections o (dashed lines) and total n-phonon cross sections of (solid lines)
obtained from the calculation. The coherent cross sections o0 describe the direct excitation
of the n-phonon states. These are the cross sections that result from a standard calculation
of multiple giant resonance excitation amplitudes. The total n-phonon cross sections og
account for all possible n-phonon excitations, including those in which one or more of the
phonons decays incoherently before others are excited. The respective coherent or total cross
sections decrease by about an order of magnitude for each additional phonon of excitation.
The coherent n-phonon cross sections increase monotonically with energy, as do the total
excitation cross sections for low phonon number. For the cases of three phonons, the total
n-phonon cross section first decreases with the incident energy, but then turns and increases
like the other cross sections.

Except for the 1-phonon case, the total n-phonon cross sections of in Fig. 6 are clearly
larger than the coherent cross sections 0. This can be readily understood by noting that,
although there is only one way a single phonon can be excited and decay, alternative se-
quences of excitation and decay are available when more than one phonon is involved. As
we have emphasized previously in the case of 2-phonons [12-14], the total cross section oa
contains both the coherent 2-phonon excitation, 2-phonon decay contribution ¢ and an
incoherent contribution due to the excitation (and decay) of a second phonon after the first
phonon has decayed into the statistical background. A part of the apparent discrepancy in
experimental double giant dipole resonance cross sections can thus be explained by arguing
that what is observed is the total 2-phonon cross section o and not just the coherent cross
section .

The relative importance of the coherent excitation cross sections, 02, compared to the



total ones, 0%, can best be seen by looking at their ratio, 09 /0f, as shown in Fig. 7 as a
function of the projectile energy. We observe that the total n-phonon cross sections o are
greatly enhanced relative to the coherent cross sections o2 at low energies. As the energy
increases, the relative enhancement decreases and tends toward one. This trend can be
explained by comparing the time scale of the collision process to that of the decay of a giant
resonance into the statistical background. At low bombarding energy, the collision occurs
slowly relative to the decay time of the resonance. Subsequent excitations then usually occur
after the previous ones have decayed and the cross sections for coherent multiple excitation
are small compared to the total ones. As the energy increases, the collision time decreases
and the time available for decay of a phonon before the excitation of another also decreases.
The relative importance of the incoherent contributions to the n-phonon excitation cross
section thus decreases as does the relative enhancement of the total cross section over the
coherent one.

In Fig. 8, we show the differential excitation cross section that we obtain for the system
208ph 4 208Ph at 640 MeV /nucleon as a function of the excitation energy. This was obtained
by summing Breit-Wigner expressions with the appropriate excitation energy and width for
each of the total n-phonon cross sections. We show only the céntributions of the first three
giant dipole resonances, as the higher order ones are almost invisible even on our theoretical
curve. Only the first and second giant dipole resonances have been observed experimentally.

As the GDR excitation mechanism proposed here does not depend on the peculiarities of
the excited nucleus, we expect it to be ubiquitous in the periodic table. We can ask, however,
how the energy range in which it is important varies with the mass of the projectile being
excited. To estimate this, we compare the collision and GDR decay times and calculate the
value of the projectile energy for which the two are equal. For the case of ***Pb, the decay
and collision times are equal at Ep/A, ~ 150 MeV, where the DGDR enhancement is about
50%.

To obtain a general estimate, we use a global systematic, 4 = 43.4 A70?% MeV and

I'y = 0.3¢4 [17], to approximate the decay time, 74 = h/T’y. We assume a projectile of mass

10



A, incident on 2%Pb, to estimate the collision time as

AL/3 4 2081/3
rm b TolA 4 ) ro = 1.23 fm.
v v

Equating the two expressions yiélds the curve of Fig. 9. From the figure, we conclude that
the energy range in which the fluctuation contribution to the DGDR excitation is important

grows slightly larger as the projectile mass decreases.

IV. CONCLUSIONS

In summary, we conclude from the semiclassical calculations presented here that the
collective-statistical description of multiple giant resonance excitation provides a theoretical
basis for at least a part of the energy-dependent enhancement of multiple excitation cross
sections observed experimentally. Although we do not claim that the entire enhancement
.arises in all cases through this mechanism alone, we have shown that it can produce an
r__li‘)mportanfg_ part of the enhancement and should be‘ taken into account before seeking other

causes for the experimental observations.
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FIGURES

GDR DGDR

S A e e ‘

FIG. 1. Cartoon depiction of the conventional double giant dipole resonance excitation (DGDR)

and the alternative ‘hot’ giant dipole excitation (HGDR) described here.
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FIG. 2. Collision time 7, (solid line) and GDR decay time 74 (dashed line) for the system 208Pb

+ 208Pb at an impact parameter of 15 fm as a function of the projectile energy per nucleon.
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FIG. 3. Schematic representation of the collective/statistical states and their transitions. The
vertical arrows represent the two-way coherent excitation/de-excitation of collective phonons. The
horizontal arrows represent the one-way statistical decay of the collective phonons. £ denotes the

excitation energy.
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FIG. 6. Total n-phonon excitation cross sections o (solid lines) and coherent n-phonon exci-

tation cross sections 0¥ (dashed lines) for the system 208Pb 4 298P} as a function of the projectile

energy.
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FIG. 7. Relative enhancement of the total n-phonon excitation cross section of over the co-
herent excitation cross section o0 for the system 28Pb + 208Pb as a function of the projectile

energy.

18



r T T - T T T i
et i .// \ ]
per C / h ]
e A " N ]

E - n=1" . \\ .
i 10 . N E
g - 3
Tj L n=: ~ ]
E I : ]
5 | " n=3 _:
C : L | ! I ; l ! 1

0 10 2 30 40 50

s (MeV)

FIG. 8. Theoretical multiple giant resonance differential excitation cross section of 29Pb at a
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FIG. 9. Energy per nucleon at which the collision time and giant dipole resonance decay time
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of the projectile.
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