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' Abstract

1t is emphasized that the coupling of the elastic channel to an elastic transfer channel
leads to a non-dispersive polarization potential with a periodic energy dependence.
Evidence of this is found in the elastic scattering data of 2C+24Mg at low energies.
The finding hints at a significant ?C+12C clustering effect in the ground state of 2*Mg.

The dispersive optical potential usually referred to as the Feshbach potential [1], obeys a
dispersion relation. In the heavy ion context this relation has gained notoriety in recent
years and is usually referred to as the Threshold Anomaly (TA). As eloquently explained by
Satchler [2], the dispersion relation of the Feshbach potential comes about as a consequence
of the polarization nature in the sense that the potential has the general structure:

1 ' '
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The intermediate channel Green operator, (£~ H;+i¢) ™1, has the following simple structure:
| 1
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where P stands for the principal part and H; is taken for simplicity to be Hermitian. Clearly,

one can write:
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From equations 1 and 3 one finds the dispersion relation:

, P ImVreeshbach (2, 1y r |
ReVFeshbach(ra T 1E) = ; / dz es;b“c%( )1 (4)

which can be generalized to the whole Vieeghpach Eq. (1). The generalization of the dispersion
relation for the case of non-hermitian H; is given in Ref. [3]. This reference shows that Fq.
(4) still holds. In actual use in data analysis one relies on local potentials. The intrinsically
non-local dispersive Feshbach potential is therefore transformed into a local-equivalent one.
This brings in more subtle energy dependence. We should point out that the non-dispersive
"bare” part of the intercation is also non-local owing to the Pauli exchange effects. In its
local equivalent version the bare interaction also carries important energy dependence as
has been stressed recently in [4-6]. In practical application, it was found [7] that the local-
equivalent Feshbach potential potential at a given value of the now one spatial variable r,
still satisfies Eq. (4)

Now we raise the following question: do all channel couplings result in a dispersive
Feshbach potential? The answer is no, at least in cases involving elastic transfer. Here we
mean a process which involves the elastic scattering of the following objects.

(a+b)+b— (a+b)+b (5)
(a+b)+b— b+ (atDd) - {6)

The two corresponding amplitudes add coherently. Since the projectile — target system, in
the second process, becomes the target — projectile system (no change in internal structure)
the second process in Eq. (8), the elastic transfer process, is important at large angles. Thg
Feshbach potential that takes into account the coupling of the elastic channel to the elastic
transfer channel is found to be [8,9]
lastic—1 I

Veeasaan 0 = (-1)'F(r) (7)
where [ is the orbital angular momentum and F{(r) is an approximate transfer form-factor
of the second process in Eq. (6). There is no energy dependence in (7). Clearly, (7) does
not satisfy any energy dispersion relation. Of course some weak energy dependence may be

. tig—1 . .
found in VE2shemransle” when higher-order processes are taken into account, e.g.:

(a+b)+b— (a+b)*+b—rb+(atb) (8)

In the following we ignore these processes for simplicity. The above discussion may become
very important in situations where elastic transfer is significant. Such a situation may occur
not only in nuclear but also in atom-atom scattering.




In a recent experiment [10,11] the complete angular distributions of the elastic scattering
of 12C+2*Mg were measured at fifteen energies near the Coulomb barrier, namely between
Ecm = 10.67 and 16.00 MeV. The data were analysed in the optical model framework
(Pot II) and the best-fit potentials were: shallow, energy dependent, real potentials (V,
~ 37 MeV, 1,=1.29 fm, a=0.4 fm) with no continuous ambiguity and very weak, energy”
dependent, imaginary potentials ( W,/V, ~ 0.01, W,=0.5-1.5 MeV, r;=1.77 fm, a; ~
0.4-0.8 fm}).

We present in figure 1a some of the lowest energy angular distributions, situated at en-
ergies under and at the Coulomb barrier (Vep=12.67 MeV using the Christensen-Winther
radius) together with the optical model fits. The angular distributions present clear oscil-
latory pattern even at the lowest energies. In figure 1b the low-energy elastic scattering
angular distributions of '2C+25i system are presented. These unpublished data [12] were
also measured at the Pelletron Laboratory of the Sio Paulo University, and will be pub-
lished in the near future together with an optical model analysis. The optical model used
to reproduce the data is much more absorptive (3 to 5 times more), then the Pot. II used
for the 2C+?*Mg system. The Christensen-Winther Coulomb barrier for the 12C-+28
system is Vop=14.36 MeV. We indicate in the figure caption the ratio E../Vca to allow
a quantitative comparison between angular distributions of figure 1a and 1b.

It is clear that the angular distributions at the same energy with respect to the Coulomb
barrier are different for the two systems considered. While the oscillations are clear for the
12C+24Mg system, even at energies under the Coulomb barrier, they are smooth and non-
oscillating for the '?C+?8S system at the same energies. Even at energies 12% above the
Coulomb barrier, where the very back angle region of the 2C+28Si begins to show one
oscillation, the '?C+?®Mg system shows much more oscillations in the intermediate angle
region.

Both optical potentials are dependent on the bombarding energy. From the point of
- view of radial dependences, their differences can be pinned down in the notch-test. This
test consists in summing a localized perturbation to the optical potential at variable radial
positions and observe the quality of the fit (defined through the x?) as a function of the
position of the perturbation. It showed very different results for the two systems. For the
12C 4288 system the notch test presents a localized peak at R;j+R,=7.3 fm, which means
that the elastic data are sensitive to the optical potential only in a radially restricted region
at the nuclear surface around 7.3 fm. For the ?C42*Mg system the notch test indicates
that the elastic data are sensitive to the optical potential on the surface and in the nuclear
interior, from 3 to 8 fm, result compatible with the very transparent optical potentials used
to fit the data [11].

The differences between the two potentials become even more interesting, when they
are compared from the point of view of their energy dependences, through the dispersion
relation (Eq. 4). While the optical potentials of the !2C+28Sj system satisfy the dispersion
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relation at the R=7.3 fm, the optical potentials of the 2C+2*Mg system do not satisfy
the dispersion relation at any radius (see Fig.2). Nevertheless the volume integrals of the
optical potentials of the *2C+24Mg system satisfy the dispersion relation as it was shown
previously [10,11].

We can calculate the differences between the real part of the optical potential and the
real part of the dispersive potential, also called Feshbach potential in the introductory
discussion. The real part of the Feshbach potential is calculated from the imaginary optical
potential through the dispersion relation. The plot of these differences as a function of the
energy is presented in Figure 3. _

" In the case of the 12C+28Si system, at least at these very low energies, the difference
called ReVipon_gispersive 18 zero, while for the 12C+**Mg system it presents a clearly os-
cillatory pattern, as a function of energy, with a decreasing amplitude, when the radius
increases. If we assume that the non-dispersive part of the potential is responsible for the
coupling of the elastic channel to the elastic transfer channel, then from the point of view
of Egs. (4) and (7), we can write:

Revopt.mod - ReVchhbach = ReVnon-—dispersz've = (_l)lF(T) = COS(?TI(T‘, E))F(T)! (9)

where a semiclassical interpretation was invoked to transform the I-dependence into an r-
and E-dependences. Here {(r, E) is a function to be obtained from the classical turning
point condition:

RU(I+1)
2ur?
Then qualitatively the non-dispersive part of the potential should have an oscillatory char-
acter (coswl) and decrease in ampitude with increasing r (F(r)), as it appears in Fig. 3.
We also show in Fig. 3 a very qualitative fit t0 ReVaon_dispersive, DY @ cosine function. We
assumed that the argument of the cosine function, which is w1, where [ is an orbital angular
momentum like quantity, which varies as v/E and linearly with r. The argument for the

cosine function in the three fits was roughly :

nl=Constx VE x r (11)

B=V(r)+ (10)

This is different from that obtained from the classical turning point relation:
{=Consty/1 — %\/Er

The reaction amplitudes of Egs. (5) and (8) can interfere only in case the cluster b is
present in the target. Thus, from the nuclear structure point of view the crucial question
is whelher or not the (exotic) cluster corresponding to the projectile nucleus is present in
the ground state of the target.

In light nuclei, the I/{3) symmetry is known to be approximately valid [13], therefore,
these kind of questions can be investigated by applying a U(3) selection rule. The problem
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is relatively simple due to the fact that the nuclear states can be characterized by a single
irreducible representation (irrep) of the U(3) group, called leading irrep. The selection rule
requires a matching between the U(3) representation of the parent nucleus, described by
the [ny, ng, ng) Young pattern, and one of the representations, obtained from coupling those
of the daughter nuclei ([nf, n’, ng’], i = 1,2), with the relative motion ([r,0, 0]):

[n1', ', ng'] ® [n?,n5?, 28] ® [n,0,0] =
> BInS 4 0 g 1 4l (12)
k

Here & means direct product, and @ indicates direct sum. The number of the relative
~ motion quanta is fixed by the Wildermuth condition [14], i.e. by the requirement that
the total number of quanta of the whole system (clusters and relative motion) have to be
greater or equal than the lowest possible number of oscillation quanta allowed by Pauli’s
Principle in the parent nucleus. For details, see Ref. [15]. This selection rule is based on
the equivalence of the Hamiltonians of the shell model and the cluster model. For harmonic
oscillator approximation it was shown to be valid in the early days of cluster studies, [14],
but it turns out to be valid for more realistic interactions as well [16].

For different samples of light nuclei this selection rule has been applied systematically
[17,18]. As a result we have found that (in the leading term approximation) the 12C cluster
is present in the ground state of the **Mg nucleus, but is absent from the ground state of
the 28Si. (For these two nuclei more detailed cluster calculation have also been carried out
in the algebraic framework, which incorporated a large number of excited states, as well
[19,20].)

The different oscillatory pattern of Figs. la and 1b, as well as the different nature
of the corresponding potentials, as discussed in the previous sections, seem to justify the
predictions of the nuclear cluster model. Actually, the coherence effect between the reaction
amplitudes of Eq. (5) and (6) can be considered as the fingerprint of the exotic (projectile-
like} clusterization in the ground state of the target nucleus. It can be considered as a
promising and effective way of hunting for the clusterization in the ground states of light
nuclei, which is a very difficult task otherwise.

In conclusion, experimental evidence has been presented in this paper in. favor of a
non-dispersive component in the Feshbach potential, which is traced to the coupling of the
elastic channel to an elastic transfer channel. The system *C+2*Mg was used for the pur-
pose. The finding may shed light on cluster effect in the ground state of light nuclei.
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Figure Captions

Figure la. The '2C+*Mg elastic scattering angular distributions, measured at the indi-
cated energies, are represented by the dots. The solid lines are optical model calculations
with our best fit optical potentials (Pot. II). The Ecps/Vop values at these energies are -
respectively, 0.947, 1.026 and 1.105, with Vop=12.67 MeV.

Figure 1b. The C+8Si elastic scattering angular distributions, measured at the indi-
cated energies, are represented by the dots. The solid lines are optical model calculations
with our best fit optical potentials. The Eqay /Vcp values at these energies are respectively,
0.926, 1.023, 1.120 with Vop=14.36 MeV.

Figure 2. The imaginary and the real depths of the best fit optical potentials of the
12C+2*Mg system, as a function of the laboratory energies (squares) for R=7.1 fm. We
also used data at higher energies (E;,;=37.9 and 40.0 MeV [10,11]) to fix the imaginary
part of the potential. The dispersion relation calculations are indicated by dots and the
disagreement with the real optical potential is evident.

Figure 3. The differences between the real part of the optical potential and the real
part of the dispersive potential {calculated by the dispersion relation) as a function of the
laboratory energy, at three radial positions, R=>5.5 fm, 6.5 fm and 7.1 fm. Discussion of the
solid line in text.
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