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Isospin is included in the description of Coulomb excitation of multiple giant isovector dipole
resonances. In the excitation of even-even nuclei, a relevant portion of the excitation strength
is shown to be associated with 1% two-phonon states, which tends to be hindered or completely
supressed in calculations in which the isospin degree of freedom is not considered. We find that the
excitation cross sections is strongly dependent on the ground state isospin.

I. INTRODUCTION

Coulomb excitation of two-phonon giant resonances in heavy ion collisions at relativistic energies was predicted by
Baur and Bertulani in 1986 [1] and generated considerable interest during the last few years [2-4]. The double giant
isovector dipole resonance (DGDR) has now been observed in several nuclei: 136Xe [5], 197 Au 16, and 28Ph [7,8].
The double giant isoscalar quadrupole resonance has been also observed in the 4°Ca {**Ca, *°Ca p) reaction, at 44- A
MeV laboratory energy [9]. Data on the DGDR were confronted with results of coupled channels Coulomb excitation
theory [10,11] and the major conclusion reached was that theoretical predictions underestimate the data by a factor
2-3 in the cases of 1%Xe and ¥7Au. A similar discrepancy, albeit appreciably smaller, was found in 2°3Pb [12].

Several effects, not taken into account in the coupled channel theory, were considered to explain this discrepancy.
Among these are anharmonicities [13,14] and the Brink-Axel mechanism [15], to cite a few. In this paper we examine
the relevance of isospin effects in the excitation process relying on the pioneering work of Fallieros, in which the
isospin splitting of the isovector giant dipole resonance was first analyzed [16-18]: We next present an extension
of this work to the double giant isovector dipole states [19], before turning to more technical details of the coupled
channels caiculation.

The relevant dipole excitation operator is the component T3 = 0 of an isovector (T" = 1) operator, D=1 1,—¢. Thus,
when acting on a target nucleus with isospin quantum numbers T, T3 =T, two GDR states will be generated having
isospin quantum numbers Ty =T and Ty = T+ 1 (T; = T — 1 is forbidden due to charge conservation), where the
label I has been introduced to designate the (intermediate) one-phonon state. If the dipole operator is applied again
to these one-phonon states, final states with isospin Ty =T, T+1 and 7"+ 2 will be generated. In order to take into
account the bosonic nature of isovector phonons in these final states, one must keep track of another isospin quantum
number, namely the total isospin & of the twe dipole phonon operator, whichk can take the values & = 0, 1, 2. These
values will constrain the total angular momentum of the two coupled phonons through symmetry requirements. For
a nucleus with J” = 0% ground state, the DGDR may have J7 = 0%, 1% and 2%, and for the state 11 one must have
& = 1. If isospin is not taken into account, 1% states, reached from the 1— GDR, will be quenched [20], since by
itself it is antisymmetric under exchange of the two phonons. However, 17 states will in general contribute to the
excitation cross section, if explicit reference to its & = 1 nature is made. In this case, the exchange symmetry is odd
both in the spin and isospin spaces, so that the product has even symmetry, as required.

The energy splitting of the isodoublet GDR was studied in [18] and was found to be related to the symmetry energy
and to the average particle-hole interaction, leading to the estimate

T+1

Af), = ES) — B =0 — MeV]. (1.1)

‘The energy splitting of the isotriplet DGDR can be estimated in a similar way. Since the Ty == T+ 2 state is a double
isospin analog state it involves twice the displacement energy, and we may write

T
AR, = Ef, - BP =120 T2 vy, (12)
Furthermore, for the Ty = T+ 1 state we may write
AR =EP —E? =¢ % [MeV] . (1.3)




We give in table I the energies of the isospin doublet and triplet states in °3Pb (T = 22) as obtained from these
expressions.. '

Energy shift (MeV) “Eph (T = 22) BCa (T=4)
NN 6.63 _ 625

AP, 13.85 15

AP © 6.63 6.25

Table 1. Isospin splitting (in MeV) of one- and two-phonon states in 28 Pb and #*Ca.

i

Having given the above account on the isospin structure of the one and two-phonon dipole states, we now turn to the
required modifications of the coupling interaction for the coupled channels calculation.

II. EXCITATION OF MULTIPHONON STATES
A. The coupling interaction

The coupling interaction for the nuclear excitation  — f in a semi-classical calculation for an electric (7 = E), or
magnetic (r = M), multipolarity, is given by (egs. (6-7) of ref. [21])

We=-—=3 Wunulr), (2.1)

where
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Tn this expression b is the impact parameter, 7 = yvt/b is a dimensionless time variable with y = (1 — ﬁz)_l/ ? and
8 = v/c being the usual relativistic parameters. The energy scale is set by € = Yyhiv/b and the quantity Qrau &, 1),
with £ defined as the adiabatic parameter §¢ = & = (Es — E;) /eq, depends exclusively on the properties of the
projectile-target relative motion. The multipole operators acting on the intrinsic degrees of freedom are, as usual,

MEN ) = [ Er o) P Vi) (2.9)
and
M(M1,p) = —Ei(-: fd3r J(r).L (rY1,) , (2.4)

We treat the excitation problem by the method of Alder and Winther [22]. We solve a time-dependent Schrédinger
equation for the intrinsic degrees of freedom in which the time dependence arises from the projectile-target motion,
approximated by the classical trajectory. For relativistic energies, a straight line trajectory is a good approximation.
The wave function is expanded in the relevant eigenstates of the nuclear Hamiltonian, {| k); k=1, N}, N being the
number of relevant intrinsic states included in the coupled-channels (CC) problem.

In order to simplify the expression for the coupled equations we define the dimensionless parameter 1"%) by the
relation

3 _ i Zie 1 2m . 2.5
Ui =07 5 22+ 1)1 M (BX)- (2.5)

The coupled channels equations can then be written in the form [21]
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In what follows we concentrate on the F1 excitation mode. In this case, we have
3 . (VN2 3 '
Qr10(6,7) = 72 |T¢3(t) — i¢ (;) )| 5 Qmma(€,7) =F6%(7), (2.7)

where ¢(7) = (1 + ‘1'2)1/2 .

The excitation probability P;(b) of an intrinsic state | J) in a collision with impact parameter b is obtained from
the amplitudes a;(7} at asymptotically large times, in terms of an average over the initial and a sum over the final
magnetic quantum numbers. The cross section is then obtained from the classical expression

o5 =2 / P;(5) T(8) bdb. 2.8)

where the impact parameter dependent transmission factor 7'(b) accounts for absorption [21].

B. The 1-phonon states

Consider the excitation of a nucleus with ground state spin zero (any even-even nucleus) and isospin Ty, with

its 3-component T3 = Tp. In terms of the relevant quantum numbers, these states are written as: |7 >=

. |E§n); JiM;; TjT5; >, where n is the number of phonons, E the energy, J; and Mj; are respectively the spin and

its z-component quantum numbers, and T; and Ty; are the isospin and its third component. Note that due to charge
conservation, all states have T3; = Tp. The ground state and the 1-phonon states are given in the Table II below.

n E J* T

0 0 0T To

1 Ecpr i~ Ty
Egpr+ AL, 1~ To + 1

Table II. Ground-state and one-phonon states with angulor momentum and isospin dependence.

The energy splitting A% ), which is assumed to depend exclusively on isospin, is given by eq. 1.1.

In order to calculate the matrix elements My,; (w), 1) between initial, 7, and final states, k, we use the Wigner-
Eckart theorem in spin-isospin space and (except for the energy dependence) assume that the reduced matriz elements
are isospin independent. We get

MY (zwa, ) = <E§“1k); 1Mk§TkT0[ M(EL, p) IE(D);OO; T0T0>

_ (_1)1"“M}'+Tk—T0 1 10 Tk i TO
- —Mp 1 0 - 0T

(1| M (E1}[0) . (2.9)
The value of the reduced matrix element (1){M (£1)||0) can be extracted from the energy-weighted dipole sum-rule
2
_ @ _ 5@\ |/ ED. 127.. ©. go; -3 NZ, 2.10
S= MZT (B -E ) [(ET ,le,TkT0| M(EL, 1) |[E®; 00; ToTo ) g o (2.10)
Inserting the matrix-elements of eq. 2.9 in eq. 2.10, we get
2 2
_ (1) _ =(0) 2Ty 1Ty 1 10 ‘
S—TZ(Ek E )(IHM(EI)HO) (_TO ory ) X ; M0, - (2.11)
K k




Using the relation [24],
7 (! 10\ _(1 10\*_1 2.12)
Co\-Mpp0) “\-pp0) 3’ i
the sum rule takes the form -
_ QIMED0? [ Ty 1T, To+11 T
S="3 ~Ty 0 Ty Beon + “T, 0T ) (Boon+880) ¢ (213)
Using the explicit forms of the Wigner coefficients {24],
Ty 1T\ _ Ty vz
0T/  |(To+1)(2Ta+1) !

@"”:1 : gg) T [(T0+1)12To+3)]1/2 ’ (?-14)

we obtain the reduced matrix element

35
1Y|M(ED||0) = 4] —22 2.15
{1]|M (E1)]|0) FonnF ) (2.15)
with
(1) ' )
F(T, b _ 2.16
(To) = T0+1{2T0+1+ Y eon | 70 13 | (2.16)

C. The two-phonon.states

The two-phonon states must be symmetric with respect to the exchange of the two phonons in spin and isopin.
This symmetry can be tracked by using the coupling scheme |(1112) STo; T¢To)- One has to distinguish the two cases
& = 0 (isospin even) and ¥ = 1 (isospin odd). The states which are spin-isospin symmetric correspond then to the
combinations

(I, 9) = (0,0); (0,2); (2,0); (2,2); (1,1). | (2.17)

The two-phonon states are represented as |j >= |E(2) JiMy; (1112) QT TyTo >. We list the main quantum numbers
of the two-phonon states in table III.

G E Jr T

0 Epcor ot Ty
Epcor 2+ To

1 Epepr 1t To
Epcpr + A%,)H 1t To+1

2 Epepr ot Ty
Epapr 2t Ty

EpGgpr + ATO o 0F To+1
Epepr+ A%, 2¢  To+1
Epepr + Ag \o  O0F To+2

EDGDR + AT +3 2+ TG + 2
Table ITE. Two-phonon states with angular momentum and isospin dependence The isospin dependence arises from
the coupling of the phonon isospins § = 11 ® 1s.




The isospin shifts A® in the above table are given by egs. 1.2 and 1.3.
To obtain the excitation amplitudes for the one phonon to two phonon transitions we need to calculate the following
matrix elements:

M (81, 1) = (B JrMp; (1, 10) STo; TyTo| M (B, ) | B JuMig Ty

. (2.18)
This can be done by changing the final state coupling scheme. We use the relation (ref. [24],eq. 6.1.3, p.91)
|TM; (1112) STo; T¢To) =y (-1)™ /@S T 1) @71 + 1)
T
1 1 &
{0y 2, 3 M s (T T T
(2.19)
and obtain
(21) N (T4 Ty 1 1
MED (E1,p) = ;l( T BS T @0+ 1) { LR
x (BE); JpMy; (12 (LTo) Th); TfTo‘ M(E1, 1) [E(l); TeMis TiTy ) -
(2.20)

We next use the Wigner-Eckart theorem in spin-isospin space, assuming that the reduced matrix element are spin
and isospin independent and vanish unless T} = T}. We get

(BR; 7: My (1 (LTo) Th) TfTof M(E1, 1) 'E(l); JeM; (1,T0) TkT.;,) -

- {1 10\ /T; 1T
8(ry,my - (—1)7 M =T (—Mf p O) (_')&10 0 Ts) (2[IM(ED) 1) .

(2.21)
Using (2||M (E1)[|1) = v2(1||M (E1) ||0) in eq. 2.21, eq. 2.20 becomes
MED (B, p) = VB (=) =M 2Te=Tot T 1110 (1) |10) /(25 7 1) (@ 7 1)
1 10\ /Ty 1T 11 9
% (—Mf P 0) (—Tg 0 To) { To Ty Te | - (2.22)

III. APPLICATIONS

In this section, we apply our results to the excitation of one- and two-phonons states in 2°*Pb and 48Ca target nuclei,
in collisions with relativistic 2®® Pb projectiles. Before we present the numerical results, we rewrite the matrix elements

so that they can be used as input to the coupled-channel code RELEX for Coulomb excitation [21]. They become

“effective reduced matrix elements” that incorporate the isospin dependence of M&B) (7, p) (eq. 2.9). Namely,

WMED 0D = (15 (T L) oy o, 1)

while for equation 2.22 it is more convenient to define

CIMED 1D E = VB (1) =+ (110 (B1) |10) B + 1) CT + 1) (_‘}0 0% ) { 7 :z%f n } . (3

The modified reduced matrix-elements for one- and two-phonon excitations are presented in tables IV and V, in the
cases of **®Pb and *8Ca, respectively. For comparison the original reduced matrix-elements are also given in the last
column. :




Ee B J J T Tr S (n+1|MEY|Y
) B35 0 1 22 22 7.16  (7.39)
0 201 0O 1 22 23 1.53

13.5 27 1 0 22 22 0 ~5.84 (10.45)
13.5 27 1 2 22 22 0 —5.84 (10.45)
135 27 1 1 22 22 1 0.318

135 336 1 1 22 23 1  —146

13.5 27 1 0 22 22 2 8.25

13.5 27 1 2 22 22 2 8.25

i35 336 1 0 22 23 2 1.53

135 336 1 2 22 23 2 1.53

135 408 1 0 22 24 2 0

135 408 1 2 22 24 2 0

201 27 1 0 23 22 0 1.25

201 27 1 2 23 22 0 1.25

201 27 1 1 23 22 i 1.49

2001 336 1 1 23 23 1 —6.85

201 27 1 0 23 22 2 0.824

201 27 1 2 23 22 2 0.824

201 336 1 0 23 23 2 —6.56

201 336 1 2 23 23 2 —6.56

20.1 408 1 0 23 24 2 —2.83

20.1 408 1 2 23 24 2 —2.83

Table IV. Reduced matriz elements for transitions from the GS to one-phonon states and also from one to
two-phonon states, for 298 Pb in units of fm.e. The numbers within parentheses in the last column are the
corresponding reduced matriz elements without consideration of isospin. To avoid ambiguities in the two-phonon

final states, we also indicate the tsospin of the coupled-phonon pair.

E,  Ef Jr Js T, Ty R {n+1j| M (E1) Hn)ﬁfkff)
0 19.2 0 1 4 4 2.66 (3.00)
0 254 0 1 4 5 1.2

192 384 1 0 4 4 0  —217 (424)
192 384 1 2 4 4 0 -2.17 (4.24)
162 384 1 1 4 4 1 0.594

19.2 446 1 1 4 5 1 —1.08

19.2 384 1 0 4 4 2 3.01

192 384 1 2 4 4 2 3.01

192 446 1 0 4 5 2 1.31

19.2 446 1 2 4 5 2 1.31

192 534 1 0 4 6 2 0

19.2 534 1 2 4 6 2 0

254 384 1 0 5 4 0 1.09

254 384 1 2 5 4 0 1.09

254 384 i 1 5 4 1 1.19

254 446 1 1 5] 5 1 —2.15

2.4 384 1 0 5 4 2 0.548

254 384 1 2 5 4 2 0.548

254 446 1 0 5 5 2 —1.76

254 446 1 2 5 b 2 1,76

254 534 1 0 ] 6 2 —-1.92

254 534 1 2 5 6 2 —1.92

Table V. Same as Table V, for 8Ca




The calculated excitation cross sections for one and two phonon states in the 28Ph (650 MeV - A) + 205Pb collision
are given in table VI. They are also plotted in figure la, as a function of the excitation energy. In this figure, the
dominant spin and parity is indicated in each case. For a comparison, corresponding results neglecting isospin are
given within parentheses in table VI and are shown in figure 15. If isospin is neglected, only T' = 22 (the ground
state isospin of 2*®Ph) states are populated. Namely, the GDR state at 13.5 MeV and 0+ and 2+ DGDR. states at
27.0 MeV. With the inclusion of isospin, about 3 % of the GDR cross section is associated with the population of the
T = 23 state at 20.1 MeV, as can be seen in table VI and in figure 1a. This corresponds to the exhaustion of about
6.3 % of the GDR sum rule. The consequences of the isospin degree of freedom on the DGDR population are more
important. Although most of the cross section remains associated with the T' — 22, J7 = 0t and 2% states at 27.0
MeV, 7 % of the total DGDR cross section then arises from the population of the 7' = 23 states at 33.6 MeV, of which
over 90 % corresponds to the non-natural parity J7 = 1+ state. Thus, 6 % of the DGDR cross section goes to the
excitation of the J™ = 1t state, which would be forbidden in the usual harmonic oscillator picture (without isospin).
On the other hand, some calculations using RPA descriptions of the giant resonances find non-vanishing population
of such states. Lanza et al [13] find negligible populations while Bertulani ef al, [20] get about half of that of the
present work. This result could be traced back to the fact that their second order transitions cancel exactly, so that
1+ states can only be reached through higher order coupled channel processes.

Table VII and figure 2z give similar results for the excitation of GDR and DGDR states in 48Ca, in the collision
28Pb (650 MeV - A) + *8Ca. Corresponding results neglecting isospin are given in the same way as above. For this
system, isospin plays a more important role due to the lower isospin guantum number (T’ = 4) of the *8Ca ground
state. In this case, the dominant T = 4 GDR state at 19.2 MeV loses more than 10 % of its cross section to the 7' = 5
17 state at 25.4 MeV, which exhausts about 21 % of the GDR sum rule. Moreover, the DGDR cross section is very
much affected by isospin. Figure 2z indicates that the cross section for T = 5 DGDR states at 44.6 MeV reaches 32 %
of that for the dominant T = 4 DGDR states at 33.6 MeV. It is also important to discuss the J™ distribution of the
DGDR cross section. Since over 95 % of the T = 5 DGDR cross section corresponds to J™ = 171, the population of
states with this spin and parity is rather large.

E (Mev) J° T S o (mb)

GDR_ 13.5 T 22 2240 (2597)
20.1 1- 23 59.86
DGDR 27.0 0F 22 0 4489 (15.80)
27.0 2t 22 0 3116 (117.5)

27.0 1T 22 1 0.8608
33.6 1t 23 1 8373
27.0 ot 2 2 1085
27.0 2 22 2 60.89
33.6 ot 23 2 01257
33.6 2t 28 2 03732
40.8 ot 24 2 00237
40.8 2t 24 2 00874

Table VI. Ezcitation cross sections of one and two phonon states in the collision 2°° Pb (640 - A MeV) + 208 P,

E (MeV) J* T [ o (mb)
GDR 19.2 I~ 4 318.5 (405.5)
' 25.4 1- i) 33.11
DGDR 38.4 0t 4 0 0.2842  (2.137)
38.4 2t 4 0 0.4453  (3.613)
38.4 1t 4 1 0.6695
44.6 1t 5 1 1.275
38.4 0t 4 2 1117
384 2t 4 2 1.640
44.6 ot 5 2 0.0155
44.6 2+ 5 2 0.0366
53.4 0t 6 2 0.0268
53.4 2t 6 2 0.0375

Table VII. Same as Toble VI, for the ezcitation of ¥ Ca in the collision 26 Pb (640 - A MeV) + *8Ca.




IV. CONCLUSIONS

In this paper isospin is taken into account in the excitation of the double giant dipole resonance. We have used
a semiclassical coupled-channels formalism to calculate excitation probabilities and cross sections for the collisions
208Ph (640 - A MeV) + 20%Pb and 2%8Pb (640 - A MeV) + “8Ca. We have assumed that the eletromagnetic matrix
elements are isospin independent and adopted the isospin splitting of energy levels as given by Akyiiz and Fallieros
[18]. It has been shown that isospin leads to a redistribution of the strengths of the electromagnetic matrix elements
such that the probability for Coulomb excitation of J™ = 1+ DGDR. states is enhanced. This enhancement depends
on 3J and 6J coefficients in isospin space so that it becomes more relevant for nuclei with low ground state isospin.
Consequently, this effect turned out to be much stronger in the excitation of “8Ca than in the excitation of 208pp,
One should then expect that isospin splitting should contribute to make de DGDR, broader, particularly for nuclei
with low ground state isospin. This result suggests that our formalism should be especially relevant to study the
excitation cross sections of a family of isotopes with charge numbers varying from the proton to the neutron dripline.
Study along these directions is underway.
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