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Abstract

The low enérgy Feshbach resonances recently observed in the inter-particle
interactions of trapped ﬁltra.—cold atoms involve an intermediate quasi-bound
molecule with a Spin arrangement that differs from the trapped atom spins.
Variations of the strength of an external magnetic field then alter the dif-
ference of the initial and intermediate state energies (i.e. the ‘detuning’).
The effective scattering length that describes the low energy binary collisions,
similarly varies with the Near-resonant magnetic field. Since the properties of

the dilute atomic Bose-Einstein condernsates (BEC’s) are extremely sensitive




. to the value of the scattering length, a ‘tunable’ scattering length suggests
highly interesting mé.ny—body studies.

In this paper, we review the theory of the binary collision Feshbach reso-
nances, and we discuss their effects on the many-body physics of the conden-
sate. We point out that the Feshbach resonance physics in 2 condensate can
be considerably richer than that of an altered scattering length: the Feshbach
resonant atom-molecule coupling can create a second condensate component
of molecules that coexists with the atomic condensate. Far off-resonance, a
stationary condensate does behave as a single condensate with effective binary
collision scattering length. However, even in the off-resonant limit, the dy-
namical response of the condensate mixture to a sudden change in the external
magnetic field carries the signature of the molecular condensate’s presence:
experimentally observable oscillations of the ﬁumber of atbms and molecules.
We also discuss the stationary states of the near-resonant condensate system.
We point out that the physics of a condensate that is adiabatically tuned
through resonance depends on its history, i.e. whether the condensate starts
out above or below resonance. Furthermore, we show that the density de-
pendence of the many-body ground state energy suggests the possibility of
creating a dilute condensate system with the liquid-like property of a self-

determined density,
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I. INTRODUCTION

The recent observation of Feshbach resonances in the inter-particle interactions of a
dilute Bosé—Einstein condensate of Na-atoms by Ketterle’s group at MIT (1] was an ea- o
gerly anticipated event. The significance of this experimental breai:through appears of
singular importance as its consequences are far-reaching in two subfields of physics: (i).

Atomic and Molecular Physics. Although predicted theoretically, technical difficulties had

previously prevented the observation of the low-energy Feshbach resonances [2]. This situa-
tion abruptly changed when the experimental efforts recently culminated in the observation
of resonances in ultra-cold »Na at MIT, in %R} by Heinzen’s group at U.T. Austin [3] and
by the Wieman-Cornell collaboration at JILA [4], as well as in Cesium by Chu’s group at
Stanford [5]. This cascade of results indicates that the field of atomic trapping and cooling
has achieved the necessary amount of control and precision to carry out systematic studies
of the resonances in a variety of atomic systems. (ii). BEC-physics An important distin-
guishing feature of the MIT—experiment (1], is that the Feshbach resonances were observed
in -an atomic BEC-system [6]- (8]. The resonances were observed by varying an external
magnetic field, thereby altering the ‘detuning’ (defined as the difference between the initial
and intermediate state energies). Similarly, the effective scattering length that describes
the low energy atom-atom interaction, varies with magnetic field and is consequently ‘tun-
able’. As all quantities of interest in the atomic BEC’s crucially depend on the scattering
length, a tunable interaction suggests very interesting studies of the many-body behavior of
condensate systems [9].

Previous searches for the low energy Feshbach resonances had been unsuccessfil 2]. The
difficulties that had to be overcome were multiple: the magnetic traps can only trap high
field seeking states, the resonant magnetic field strengths are rather high and the margin
of error on the predicted values for the resonant magnetic fields were considerable due to
the uncertainties in the interatomic potential curves. Conversely, the measured values of

the resonant fields and the the ‘vﬁdths’ will be of great help in refining the potential curves




that characterize the inter-atomic interaction. This, in turn, has important applications in

spectroscopy, high-frequency resolution measurements and atomic clocks.
The Feshbach resonance has been listed as one of the prospective schemes to alter the

effective inter-particle interactions of the cold-atom systems [10]. A variable interaction- -
strength is a highly unusyal degree of freedom in experimental studies of many-body systems.
_Especially for the atomic condensate system, the ‘tunability’ of this parameter suggests
highly interesting applications as virtually all observable quantities, as well as the stability
of the system, sensitively depend on jts value.

- Among the many applications suggested by this novel degree of freedom, we name but

a few: (i). Study of negative scattering length condensates. A dilute gas condensate of

bosons that experience an effective mutual attraction is unstable in the absence of an exter-
nal potential. A trapping potential can ‘stabilize’ a negative scattering length condensate
of limited number of bosons [11]- [15]. Once the population of the condensate exceeds this
critical number, the condensate collapses. Although most theories agree on the collapse
and the critical number of particles, the details and the mechanism of the collapse are still
being debated in the current literature (for a discussion see, for example, Ref. [15]). Mea-
surements taken by Hulet’s group at Rice university with 7L provide valuable data on this
interesting system, but a study of the collapse at. variable values of the interaction strength
will give definitive tests of the theoretical predictions and yield much needed insight in

the dynamics of the collapse. (ii). Study of the condensate phase separation. Overlapping

condensates are unstable if the strength of the unlike boson interactions exceeds the geo-
metric mean of the like-boson interaction strengths. Mutually repelling condensates then
separate spatially and act as immiscible fluids. As the phase separation criterion depends
solely on the interaction strengths, one could by varying one of the strengths, render the
condensates miscible or immiscible. Whether fhe BEC-systems will have practical applica-
‘tions remains to be seen, but a two-fluid system that can be made miscible or immiscible

at will, does suggest applications in areas such as data-storage, or perhaps even quantum




computation. (iii). Study of Josephson oscillations. A mixture of same species condensates

in different internal states can exchange bosons coherently, for example by interacting with

coherent near-resonant laser light [19]-citepr21. Such coherent inter-condensate particle ex-

change processes are often referred to as inter-condensate ‘tunneling’ processes because of -

the strong analogy with Josephson tunneling 2] - [23]. Interestingly, unlike the condensed
matter Josephson junctions, the dilute condensate mixtures can actually probe the non-
linear regime of the Josephson oscillations [19]- [22]. Like the DC Josephson junction, the
number of bosons in each condensate oscillates when the values of the chemical potentials
of the respective condensates differ. For a single dilute condensate, the chemical poten-
tial is equal to the product of the interaction strength and the density. Thus, a sudden
change of the interaction strength effects precisely such a chemical potential difference. (iv).

Condensate Dynanncs While the near-equilibrium dynamics of dilute single condensate

systems are well-understood, at least in the low-temperature limit, the far-from equilibrium
condensate dynamics poses a problem that has not been satisfactorily resolved. A detailed
understandmg of the condensate formation, in particular of the formation time [24] - [27],
W111 have important implications in a variety of fields, such as field theory and early uni-
verse theories. Experimental studies with a variable interaction strength will give a firm
-understanding of the role of the inter-particle interactions.

Clearly, each of the above applications represents an exciting prospect. It is in this
context, the creation of a tunable interaction strength, that the motivation for much of the
previous research on Feshbach resonances has been situated [9)], [28]- [33]. However, we
would urge caution in interpreting the effects of the Feshbach resonance on the condensate
solely as altering the inter-boson interaction. We believe that the effects of the Feshbach
resonance are considerably more profound.

In particular, in this Paper, we review some of our previous research results ( [34], [35],
see also ref. [36] for a brief review of the tunneling aspect) that show that in a near-resonant
BEC , the Feshbach resonant atom-molecule coupling creates a second condensate component

of quasi-bound molecules. The many-body dynamics predicts that the expectation value of
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- the molecular field does not vanish in & near-resonant magnetic field, (¢,,) # 0: the hallmark
| of Bose-condensation. Whether the presence of the molecular condensate predicts a behavior
that differs from that of a single condensate with altered scattering length depends on the
values of several relevant parameters: the detuning, the rate of change of the detuning - -
(in a dynamical experiment with changing magnetic field), the lifetime of the quasi-bound
molecules, limited-most importantly-by collisions with other atoms or molecules that change
the molecular state.
- Off-resonance, the stationary condensate system does behave as a single condensate with
a scattering length that has the value predicted by the binary collision description. However,
even in the off-resonant limit, the dynamical response of the condensate system to a sudden
change of the external magnetic field, can differ significantly from that of a single condensate
with effective scattering length. We find that, subsequent to a sudden change of the external
magnetic field, the number of atoms and molecules that occupy the respective condensates
oscillate. These oscillations are damped out on the time scale of the single molecule life-
time. The off-resonant condensate lives much longet than the individual molecules, since
the atomic condensate acts as a reservoir of atorns, continually replenishing the molecular
condensate. The oscillations can then be observed by illuminating the condensate with light
that is near resonant with a transition of the quasi-bound molecule. The oscillations in the
molecular condensate population then reveal themselves as an oscillating intensity of the im-
age. The oscillations, like the oscillating current observed in J osephson junctions, are caused
by the coherent inter—condensate exchange of particles. Unlike the J osephson tunneling, the
exchange involves boson pairs. This, as we shall show, has a profound effect on the sta-
tionary state properties of the BEC system. For instance, we find that, for a near-resonant
detuning, the homogeneous ground state system is always unstable in the limit of ultra low
atomic particle density. Unlike the negative scattering length condensate, this instability
~ does not necessarily lead to collapse. At higher densities the near-resonant condensate sys-

tem can be stabilized by the inter-particle interactions of the atoms and molecules. In that




case, the many-body energy, as a function of the atomic particle density, goes through a

minimum. The many-body system can find this minimum by decreasing its volume and, if

given enough time, can relax to the state of minimal energy and self-determined density,

a typical liquid-like property. This self-determined density would still be of the order of -
10%em=3, so that these considerations suggest the possibility of creating the world’s first

rarified liquid!

The paper is organized as follows. In section IT, we review the binary collision theory of
low energy Feshbach resonances. In section III, we specialize to the magnetically controlled
Feshbach resonances recently observed in atomic traps. In that section, we set up the

| Hamiltonian for the many-body problem and we argue that a second molecular condensate
component is formed, A compelling argument follows from the equations that describe the
many-body dynamics. We also discuss the effects of the most important destructive influence
that the molecular condensate undergoes: collisions of the molecules with other atoms or
molecules that changé the vibrational state of the quasi-bound molecule. In section IV, we
1nvest1gate the stationary states of the Dear-resonant condensate system, neglecting, for the
time being, the effects of particle-loss. We point out that the state that the near-resonant
condensate system finds itself in, depends on its history. If the system was brought near-
resonance by adiabatically increasing the detuning, its state differs from that of the system
created by lowering the detuning, Furthermore, we show that, in contrast to the effective
scattering length description, the condensate system does not have to collapse, as it is tuned

adiabatically through resonance, Finally, we conclude in section V.,

IL. LOW ENERGY FESHBACH RESONANCES

A. Introduction

In this paper, we focus on the implications of a Feshbach resonance on the many-body

behavior of Bose-Einstein condensed systems. To this purpose, we develop the necessarvy




theoretical framework to describe the relevant binary collision physics. The following dis-

cussion does not aim at being comprehensive with regards to Feshbach resonance physics.

For such treatment, we refer the reader to more specific articles [37]- [39].

By definition, Feshhach Iesonances involve intermediate states that are quasi-bound, so
that they are sometimes referred to as closed-channel collisions. These intermediate states
are not bound in the true sense of the word, as they acquire a finite lifetime due to the

interaction with continuum states of other channels (such as the channel of the incident

- projectile/target system). For example, in electron-atom and electron-ion scattering, the

intermediate states generally decay by ejecting the electron captured in the intermediate

state. These states are known as auto-ionization states. In the atom-atom scattering Fesh-

bach resonances of interest here, the intermediate states are molecules with electronic and

nuclear spins that have been rearranged from the spins of the colliding atoms by virtue of
the hyperfine interaction. The intermediate molecular states interact with the continuum
states of the incident channel that are the scattering states of the single channel atom-atom

scattering problem. In the next paragraph, we discuss these singlé channel scattering states.

B. Low-energy potential scattering

As the interactions of interest involve bosonic atoms at ultra-low translational energies,
the collision physics reduces to the description of s-wave scattering. Specifically, the angular
momentum potential barrier of ‘height’ ~ (#%/M L?), where L is the range of the interatomic
interaction and M the mass of 5 single atom, prevents colliding atoms with relative motion
of lower kinetic energy and non-vanishing angular momentum from entering the inter-atomic
interaction region. The magnitude of the angular momentum potential barrier height is of
order (A*/ML?) = (fiz/meag) X (ao/L)? x (me/M) ~ 10 — 100mK , where m, represents

the electron mass, (m./M) ~ 10-4 10, and where aq denotes the usual Bohr radius,

| (L/ag) ~ 10. Thus, in cold atom samples of temperature below 1mXi , bosonic atoms

undergo pure s-wave scattering. The atomic Bose-Einstein condensates have temperatures




of the order of 1K,

Before we proceed with the treatment of low-energy Feshbach resonances, we describe
the solution to the single channel scattering problem for the collision of two of such indis-
tinguishable atoms. In the center-of-mass frame the problem reduces to an integration of =
the radial s-wave Schrodinger equation with the corresponding molecular potential. The re-
sulting regular solution, u(r), where r denotes the internuclear distance and ‘regular’ means
that lim, . u(r) is finite, has to be normalized. We normalize u(r) to uy(r) by requiring
its asymptotic behavior to be‘similar to that of the zeroth-order spherical Bessel-function,

which is the regular solution to the free atom Schrodinger equation:
un(r) ~sin(kr + &) /(kr) , r — oo : (1)

where & is the s-wave phase shift.

For future reference, we relate 4 ~(r) to the s-wave components of scattering states that
have been normalized using alternative schemes. One useful normalization consists of sep-
arating the scattered wave into an incident plane wave of wave vector k and an outgoing

spherical wave:
oule) ~ exp(ilc 1) + f2RET) ®)

where f is the scattering amplitude. By comparing its asymptotic behavior to that of uy,

Eq.(1), we find the usual expression for the s-wave scattering amplitude:

f — [eXp(zéI'fg) - 1] , (3)

where & denotes the wavenumber, which is the magnitude of the k-vector. Furthermore, the
S-wave component of yy is equal to
[ex(r)], = exp(ibo)un(r) . (4)

An alternative normalization that we shall consider, requires the regular solution to the

Schrodinger equation to be g superposition of incident and outgoing spherical waves:




) (r) ~ exp(-ikr) /T = 8exp(ikr)/r | r— o0 , (5)

where the coefficient of the outgoing wave, S, is the scattermg (or S)-matrix for the single
channel s-wave scattering problem, S = exp(2idy). By comparing the asymptotic behaviors

of uy and ™), we find that

o (r) = 2ik exp(i6y) uy (r) . (6)

The alkali atoms in the atomic-trap condensates interact through molecular potentials
that support bound states. In accordance with Levinson’s theorem, uy(r) has then nodes
‘in the inter-atomic interaction region. The number of nodes is equal to the number of
bound states of the corresponding potential. Furthermore, uy (r) for the ultra-cold collision
energies is essentially independent of the energy. To see that, we start by noting that for
the relevant collision energies the de Broglie wavelength, (2r/k), vastly exceeds the range L
of the inter-atomic potential, Outs1de the range of the inter-atomic interaction, r > L, but
well within the de Broglie wavelength, r < k-1 , ru(r) is approximately linear: ru(r) o« r—a,
where a is the scattering length. By scaling u(r) tothe normalized function uy, which in
this region of the internuclear distance, L < r < k™1, takes on the form un(r) & 1+ (/kr),

we see that § = ~kq and
un(r) = 1—(a/r) where [ <r < k- , (7)

independent of the collision energy.

C. Low energy Feshbach resonances

In describing the Feshbach resonant collision, we distinguish the channels of the con-
tinuum incident projectile/ target state and the closed (molecular) channels to which it is
coupled. To this purpose, we introduce the projection operators P and M that denote, re-
spectively, the projections onto the Hilbert subspace of the incident channel and the subspace
of the closed (molecular) channels. These projection operators satisfy the usual projection

operator properties

10
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0 =MP=PM
P’=P and M’=M . (8)

The time-independent Schrédinger equation, satisfied by the total scattering state |¥) of _

the binary atom system,
(E-H)|¥) =0 , @
takes on the form of coupled equations:

(E = Hpp) P|¥) = Hppy MIT) (10)
where we use the notation PHP = Hpp ete. . ..

We may obtain the pro jection of the scattering state onto the Hilbert space of the quasi-

bound molecules, M|\¥), by formally inverting Equation (11):
M) = (B — Hyppy)™? HypP|T) . (12)

The substitution of Eq.(12) into the projection of the Schrodinger equation onto the contin-

uum channel (10) then yields an effective Schrodinger equation for the continuum scattering

state, (E — H.q)P|¥) =0, with an effective Hamiltonian,

1
- Hex = Hep + Hppr—— T Hur (

that exhibits a strong dependence on the energy, E, of the colliding particles.
For the purpose of treating the scattering problem, it is, in fact, more instructive to start

by inverting Equation (10) for P|T), by means of the propagator for outgoing waves,

9SE) = (B = Hpp +in)~" (14)

~ where 7 is an infinitesimally small positive number. This inversion leads to

PIT) = 16§9) + g(B) Hoay MIT) (15)

11




The @{*)-state in the above expression is a scattering state of the single channel (P) scatter-
ing problem, (E —~ Hpp)|p,) = 0. In addition, we choose the asymptotic boundary condition
of the scattering state so that ") is the superposition of incident and outgoing spherical
waves shown in Eq.(5) for the P-channel, lim,_,,, o{H(r) = exp(—ikr)/r — Sexp(ikr)/r: -
Upon insertion of the expression for P¥) from Eq.(15) into Eq.(11), we find the effective

Schrodinger equation satisfied by M|\T):

(E - Hsg) MJIII) = HILIPI(PI(;}.)) +

Hyp gf,"")(E') Hpy M|T) . (16)

Finally, substitution of the forma] solution for M|¥) from Eq.(16),

1
E- Hypg ~ Hyp g;(:+)(E) Hpy

MY =

Hyp gf?) (17)
into the initial expression for P|¥) of Equation (15) yields the following result:

PIT) = 1pf"y + gt(E) Hpyg .
1
E— Hypy - Hyp 9;(7+)(E) Hpy

HyplolH) (18)

The asymptotic dependence of P[¥) on the radial inter-nuclear distance r supplies the S-
matrix that characterizes the Jow energy collision with Feshbach resonance. At the end of

this section, we determine § in this manner.

D. Width

The experimentally observed low energy Feshbach resonances are narrow — each individ-
ual resonance is well-separated in frequency space from the other resonances. Near a partic-
ular resonance m, with a single intermediate molecular state l¢om} of specific ro-vibrational

quantum number, we may further simplify the expression (18) by keeping only a single di-
| agonal matrix element in evaluating the energy denominator of Eq.(18). Specifically, we

replace

12




_ 1
E~ Hyn — Hyp 91(7+)(E) Hpy

1
19
where the energy ., and width I, of the resonance are equal to
En = Re{pm|Hpr + Hyp 9;(,+)(E) Hpr|om)
I
5 = ~Im{on|Hyp ¢{P(E) Hpylep,) . (20)

Furthermore, the coupling between the continuum and molecular states for these resonances
is weak enough that we may evaluate [¢,,) in the spirit of perturbation theory as the eigen-
state of the molecular potential, and approximate E,, by its eigenvalue.

In particular, the low energy dependence of the width is of importance to the observed
resonances and we will evaluate I, (E) in detail. The expansion of g§P(E) in continuum
states k) gives with Eq.(14) the following expression:

o[ ittt
= ‘ff;l(som!ﬂwlk)f%(ﬁ' - Ey) . (21)

In this equation, the continuum states, [k), are not plane waves, but properly normalized
scattering states ¢y (introduced in equation (2)). We shall work in box normalization so

that in coordinate space

(rlk) = o (r)/ V2
[exp(ik 1)+ fex*p,@ﬂ]
~ ol - T — 00

where 2 represents the macroscopic volume to which the binary atom system is confined. At

(22)

H

the uitra-low collision energies of interest, the matrix elements {(Ym|Hppr|k), are dominated
by the s-wave component of the |k}-wave. Within the molecular interaction range, the
amplitudes of the higher partial waves have all but vanished at these energies as the colliding

particles lack the energy to overcome the angular momentum potential barrier. Furthermore,

13




the low-energy s-wave, un(r) is essentially energy independent, so that (| Hpplk) is not

only independent of the direction of the k-vector, but also of its magnitude:

(@) Hyplk) = (i) f d’r Qﬂm(r)HMPUN(T)

exp(zég) : |
\/ﬁ @, (23)

where the a-parameter denotes the 1ntegral over the relative internuclear position, a =

J & o (r) Hyp up(r). Consequently, the width is proportional to the square of o and the
remaining ‘phase space factor’ 2k 0(E - E)/:

sz(E) = T —-ZJ(E B, or
Tn(E) = o (%) kp | (24)

where M is the mass of a single atom and kg the wave number corresponding to the relative
velocity of a pair of atoms with total kinetic energy E in the center-of-mass frame. Note
that the width depends on the energy of the colliding atoms through the phase space factor,
which is a measure of the phase space volume available to the binary atom system after
the collision. Evidently, this remark is of importance to the Feshbach resonances in the
ultra~cold atoms systems. where the relative velocity of the interacting atoms rigorously
vanishes,

It is customary to introduce g ‘reduced width’, 4, which makes the k-dependence of the

width explicit:

Im(E) =27k , wherey = a ( M (25)

471'712) ’
where it is understood that £ is the wave number corresponding to £. Under condensate-
conditions, £ — 0, and I'm(E) — 0, although the value of the coupling constant, ¢, remains
| constant. The corresponding phase shift also vanishes linearly with k, but the effective

B scattering length tends to a well-defined finite value, as we shall see below.

14




E. Scattering matrix

We evaluate the continuum scattering wave P|T),

PI) = lof?) + g§(E) Hparliom) x

(+)
E= B, +ipy2 elurley?) . (26)

As discussed above, |ioi*)) is normalized by requiring its asymptotic r-dependence to take on
the form (") (r) = exp(—~ikr)/r — exp(2i6,) exp(ikr) /r, where & is the s-wave phase shift.
In the low energy regime, §y = —ka, where g is the scattering length. Furthermore, we
remarked in Eq.(6) that o (r) = —2ik exp(ido)un (r), where uy is the regular solution to
the Schrodinger equation with ¢ ~(r) = 1 —r/a outside the range of the molecular potential.

In evaluating the state (26) in the asymptotic region of coordinate space, the following

asymptotic expansion of the s-wave component of the gl(j')-propagator is useful:

[g;(,J’)(E; r, r’)]s —

M o\ exp(tkr
- (471_52) exp(idp) " )uN('r') :
where r — co | (27)

and where we replaced the mass in the usual expression for the propagator by the reduced

mass, M/2. The asymptotic behavior of 9IS E)Hpprlom) of Eq.(26) is then given by

Im oo (r}glH (B) Hpasliom)
_ ( M ) exp(ikr)
47h?
/d3r un (1) Bpariom(r)

=_ (45:22) expg.z'kr) exp(ify) a . (28)

exp(ify) x

Finally, with (¢om|H :1IP|99§,+) ) = —2ik exp(ifp)c, we obtain the desired asymptotic behavior:

(xlo" (B) Hpaslom) (om| HarplolH)

= iexp(2i60) (_.__25:22) ok eXp(z!cr)

= 1exp(2i60) Tm(E) eXPfkr) . (29)

e

15




Consequently, we obtain the following expression for the asymptotic r-dependence of the

scattering state of Eq.(26):

(I‘]PI‘P) ~ exP("";kr) _ [1 _ sz(ET) J X

r E-E,+ila(B)/2

exp(2i6;) E-XP#Q . (30)

By identifying the factor in square brackets in Eq.(29), with the scattering matrix S, we

obtain

. . Tn(E)
S = exp(—2ika) |1 - 31
xp(—2ika) [ == Z, +z’r"‘2(E3J y (31)

where we used that §; = —ka. Note that the S-matrix is unitary, |S| = 1, as befits scattering
without loss-channels' As a consequence, we can describe the scattering by means of an

effective scattermg length, § = exp(—2ia.s k), where Qeff = a+ a’, with

T
__2-1;: } — 3 m
*p(-2ika) = 1 "E—~E, +i[,./2
- E-En,+iln/2"

Thus, we find that the effective scattering length for arbitrary collision energy E is equal to

| L [ Tux[E=Ey]
%es1(E) =a+ — tan 1[(E—Em)2+I‘$n/4J : (33)

In the ultra-low energy limit appropriate for condensate systems, £ and I'n(E) vanish and
E - E, — —¢ where ".;ve will refer to e, the energy of the molecular state relative to
the continuum level of the P-channel, as the detuning of the Feshbach resonance. In this
limit, we need to expand Eq.(33) to lowest order in k. With U = 2vk, E = #%k*/M and

tan~Hz) = z if x << 1, we find

Bm o aers(E) =a -'—E” . (34)

Furthermore, in describing the weakly interacting many-body system, it is notationally more

convenient to work with the interaction strength A than with the scattering length a. If the

16




inter-particle scattering can be described in the Born approximation, then the A\-parameter
represents the zero-momenturm Fourier component of the inter-particle interaction potential.

The zero momentum Fourjer component is related to the scattering length a, calculated in the

Same approximation as A = (472 /M)a. However, the Born-approximation cannot be used *

in describing the low energy binary atom collisions. In that case, the interaction strength
is still proportional to the scattering length, although the latter has to be determined more
accurately from the full potentia] scattering problem. In the same spirit, we may introduce
- an ‘effective’ strength, A, 1= (4xh?/M )@ess, to describe the binary atom interaction, related

to A as

2
&
Aefr =X~ e (35)

In Eq.(35) we made use of the expression for the reduced width, v = o®(M/4nh?).

III. FESHBACH RESONANCES IN ATOMIC CONDENSATE SYSTEMS
A. Magnetically controlled, hyperfine induced Feshbach resonance

In each of the experiments, the low-energy Feshbach resonances were observed by study-
ing the behavior of the ultra-cold atom systems under variations of an external magnetic
field. The resonance in the binary-atom interactions is caused by the hyperfine interaction
which flips the electron@__c and nuclear spins of one of the colliding atoms, bringing the col-
lision system from the continuum (P)-channel into a closed channel, M, of different spin
arrangement. The M-channel is cloged by the external magnetic field which has raised the
continuum level of the binary spin flipped atom system. While in the M-channel, the col-
liding atoms reside in a quasi-bound molecular state m. A second hyperfine-induced spin
flip breaks up the molecule, returning the system to the initia] P-channel. If the energy
of the intermediate quasi-bound molecule is equal to the continuum level of the P-channel,
the above described collision brocess is ‘on resonance’. Variatiox;s of the external magnetic

field shift the relative energies of the M molecule and the P-continuum level and tune. or
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detune, the interacting atoms close to, or far from resonance. We now describe the physics
of this collision in more detail.

We find it instructive to discuss the collision first in the [imit of high external magnetic

field, although this is not the regime in which the experiments were conducted. A high . -

magnetic field, B = B2, aligns the electronic (s) and nuclear (i) spins of the atoms. To
be definite, we consider a systerﬁ of ultra-cold 2*Na atoms (i = 3/2) with spin projections
ﬁ,- = —1/2, and m, = —1 /2. The interaction of two such atoms is described by the triplet
potential, where ‘triplet’ refers to the total electronic spin of the interacting atoms. In the
triplet state, the valence electrons of the atoms behave as indistinguishable fermions and
‘avoid each other’ , thereby reducing the Coulomb repulsion of the electrons. In contrast,
if the spins of the colliding atorms are arranged in a singlet state, the valence electrons do
not avoid each other and the Coulomb repulsion generally reduces the depth of the inter-
atomic potential, as compared to the triplet potential. Thus, the inter-atomic interaction
depends on the magnitude of the total electronic spin, S, where S = s, +s,. In this
case, the spins of the initia] binary atom System art in a state |S,) = ms = 1/2,m; =
=1/2im, =1/2,m; = -1 /2), with electronic Spins arranged in a pure triplet state, S = 1.
Consequently, the atoms interact through the molecular triplet potential. However, the
binary atom hyperfine interaction, Vir = (ans/h?) x [81- i) + 55 - is], does mot commute
with S? and can flip the electronic Spins of a triplet state to a singlet configuration. At
large internuclear Separation, this singlet channel corresponds to the binary atom system
with a .single spin flipped atom. Consequently, the continuum of the singlet channel lies
an energy A above the continuum of the incident triplet channel, where A = B[2u, + ©nl,
and where u, and £ denote the electronic and nuclear magnetic moments. Under near-
resonant conditions, the singlet potential Supports a quasi-bound molecular state ¢, (r)]S; ),
of energy E,, near the continuum of the P-channel and total (electronic and nuclear) spin
state | Sy ).

In this context, the atom-molecule coupling, Hppr + H Mmp, 18 provided by the binary

atom hyperfine interaction, Vh 7- The corresponding a-parameter that indicates the strength
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of this inter-channel coupling is the product of the spin matrix element and the overlap of

the regular triplet wave function with the molecular singlet wave function,

*= (SlVerlSa) x [ @ omie untr) , (36)

which characterizes the resonance.

The observed resonances were created at intermediate values of the magnetic field for
which the actual spin state of the individual atoms are not states of good m; and m,-quantum
number. Instead the single atom spin degrees of freedom occupy a state that diagonalize

the spin dependent part of the single atom Hamiltonijan:

2UeS1 — upi -
HSpin(l) = (%) 51 'il +B- [ o Slh “Nll] . _ (3’)

The first term on the right-hand side of Eq.(37) is the single atom hyperfine interaction,
characterized by af, an energy that depends on the isotope (e.g. ans = 42.5 mK for
#Na, see, e.g. ref. [40]). At zero magnetic field, B = 0, the diagonalization yields the
hyperfine states of good f ’ quantum number, where f represents the ‘total’ single atom
spin, f =s+1i. At high mnagnetic field strengths B >> a;;/ [tehi], the hyperfine interaction
can be treated as a perturbation and, to lowest order, the electronic and nuclear spins are in
states of good m; and m, quantum number. At arbitrary values for the magnetic field, the
atomns find themselves in a linear combination, c_, j2lmi =m+1/2;m, = -1 [2)+cpipalm; =
m~1/2;m, = +1/2) with coefficients ¢y, /2 that diagonalize A, spin(1) (37). The system of two
alkali atoms, each atom in this particular spin state, is then generally in a linear combination
of a singlet and triplet state. We represent the interatomic potential interaction V to the
binary-atom Hamiltonian by means of Projection operators [Ig, projecting onto states of

good total electron spin S:
V= Z Vs(r)lls . (38)
s

“We also write the scalar spin product of the binary atom hyperfine interaction in terms of

the total electronic and nuclear spins, I = i; + iy:
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S1 i) 4851y =
(514 32) - (8 +12) + (81— 82) - (i1 — )] /2 =

—

S-I+8,.-1,]/2 , (39)

where S; and I; denote the corresponding ‘spin difference’ operators: Sy = §; — Sy, and

I; =i;~i;. The S;and I, operators, antisymmetric under the interchange of the subscripts,

couple states with 7 and S quantum numbers differing by 1. The spin dependent Hamiltonian

of the colliding binary atom system takes on the form:

2pte - S — ppI]
Hopinioy = (201 2. il
Spin(1,2) (252) S-I+B. > +

Z Vells + (252) Sa- L4

= Hé'(;?m(l 2y T Z VSHS +

a
(2;22) Sa-La . (%)

The expression of Eq.(40), suggests that a convenient partitioning into collision channels
divides the Hilbert space of the binary atom/spin. system into subspaces j of states of
good I and S-quantum numbers with the proper superposition of |1, S; M;, M) states that
diagonalizes the H¥ spin(1,2)"OPerator. The corresponding eigenvalues determine the continuum
levels of the j-channels. By construction, the atom-atom potential interaction, V, is diagonal
in these channels, but not the S4 - Iz-contribution. In describing the collision, we project
the spin of the incident binary atom system, |Sin) onto the collision channels j: [Si,) =
2 |Sim; 7). The Feshbach-resonance occurs if the interaction potential of another, ‘spin
flipped’. binary atom channel of spin state [Sy), accessible from the j-channel by virtue of
the I; - S-interaction, supports a bound state ¢, (r)|Sy) of energy E,, near the continuum
level of the incident j-channels. The corresponding a-parameter (defined as in section II) is

equal to

Qj,j'm = (27'12) (Sy184 - LalSin; j) x
[ o) (41)
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Since the strength of the magnetic field is the experimental knob that controls the reso-
nance detu.ning, it is helpful to make the magnetic field dependence explicit. The detuning, e,

is the energy difference of the quasi-bound molecular state, E,,, and the continuum of the in-

cident atoms, pictured in Fig.(1). When B takes on its resonant value, B, the energy of the =

quasi-bound molecule Jines up with the continuum of the incident atoms so that A equals the
binding energy of the bound state, A = E,,. Near resonance, A En+(0A/0B)x[B~B,),
and thus e = A - F,, (0A/0B) x [B — B

Consequently, the near-resonant effective scattering length of Eq.(33) depends on the

external magnetic field strength as

Gorr — [1 AB J
eff = Q B"“‘Bm, ’

_ T | | 42
WhereAB-_axaA/aB ) (42)

Thus, the dependence on the magnetic field strength is ‘dispersive’. Likewise the effective

interaction strength of Eq.(34) takes on the form

Aefr = A [l-— AB J . (43)

— Ym

B. Feshbach resonant interactions in many-body systems

We treat the many-body physics of the atoms in second quantization. In describing the
‘homogeneous’ many-body system, it is convenient to work with the creation and annihilation
operators & and & of the single particle plane wave states. In a more general description, we
work with the field operators T,B(r, t), which, for the homogeneous system, take on the form
P(r,t) = >k exp(ik - r)é(t) /vQ, where we use Box-normalization, and where Q represents
the macroscopic ‘box’ volume., The dynamics of the single species low-temperature dilute
gas can be taken to be governed by a Hamiltonian operator J = Jd&® H(r) , where we

denote the Hamiltonian density operator by H,

R ve:

H(r) = 9H(x) [ ; v;mm] d) +
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3 10 ) 50 ) &
- and where V,,, represents the external potentia] experienceq_ by the atoms.

In the ultra-dilute atomic-trap systems of density, n ~ 1013 — 10¥cm 3, giving na® ~
1078—10"*, particles interact essentially as binary atom systems. Specifically, the atom-atom
interactions can be described as in binary collisions, partly because the collision complex is
- so short lived that its interaction with other particles may be neglected. This assumption
is a crucial ingredient of the formal many-body treatment which reintroduces the binary
atom scattering length as a result of the “ladder approximation’ in treating the atom-atom
interactions. The final result of this treatment is the result quoted above Eq.(35): A =
(4mA*/M)a. The low density of the gas might suggest the prescription \ — Aefs, Where A, 7

is the effective interaction strength of Eq.(43) that describes binary atom collisions,

2

1
A= Agpr= A= =2 45
Ress = dA/8B B—B,, ° (45)

to describe the effects of the Feshbach resonance. However, this recipe, which we shall refer to

as the A.ys-description, becomes problematic near resonance, € — 0. One reason, of course,
is that the system does not remain dilute in this description, nagﬁ — oo, Alternatively,
we may consider the time that two atoms, approaching each other at relative velocity v,
spend in each others presence during the collision. If we estimate this time by the delay
time, 7p = A(860/8E), we can naturally break up 7p into a contribution that describes the
time that the atoms spend in each others potential well, ITpp| = a/v, and the time that
the atoms spend in the intermediate molecular state, [rpn| = |y/(ev)|(k — 0). Note that
lime_o|7p,m/Tpp! = oo, which means that the atoms spend an infinitely longer time in the
intermediate molecular state near resonance, The validity of approximating the interactions
as ‘one-on-one’ collisions, is then not self-evident. Furthermore, as we discuss in section
IV, the A.¢s-description leads to unphysical predictions for the many-body behavior of a
stationary on-resonant condensate.

In an approach that avoids making any ‘a priori’ assumptions, we reformulate the many-

body problem while treating the particles as compound particles. We account for the Fesh-
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bach resonances by including the intermediate state molecules explicitly, as well as the spin
flip interactions that access the molecular states. We include the compound character of
the particles by adding a subscript to the field operators or annihilation/creation operators,
. and Cok for the atoms and Yrm and Cmx for the m-state molecules. The hyperfine in- -
duced spin fhps that create the molecules formed in the intermediate state of the Feshbach
resonance, are then described by the following term in the many-body Hamiltonian of a
homogeneous system:

A 1
HMP-'- {-——- (K,ml%ﬂk,k” X

& xloiclape} (46)

where V¢ denotes the two-particle hyperfine interaction, and where the interaction matrix
element is an integral over the unsymmetrized two particle wave functions of the m-molecule
with center-of mass momentum K, |K,m), and the binary atom continuum state of a-atoms
colliding with momenta k and k', The factor of 1/v/2 has to be included to insure that the
matrix elements of Hy,p calculated in first and second quantization are equal, as follows
from the example of an & mp-atrix element with single molecule bra and a binary atom
ket-state. Likewise, the hyperfine induced break up of the molecules is described in the
Hamiltonian by Jif par, the hermitian conjugate of H MP-

We now evaluate the matrix element explicitly in coordinate space. The wave functions
then depend on the positions r; and ry of both nuclei. The dependence of the molecular
state on the relative position, ry —ry, is given by the molecular wave function, ¢, (r; —r3),
and the dependence on the center-of-mass position by the box normalized plane wave state
exp(iK-[ro+r1,)/ 2)/ vQ. The binary atom state depends on the relative coordinates through
a scattering state with s-wave component uy (|r; —r,|). Its dependence on the center-of-mass
coordinate is expressed by the plane wave exp(ilk + k'] - [r; +15]/2) /9. Using the notation
introduced in the previous section, the resulting expression for the matrix element of Hyp

15 equal to




n_ 1 ;
(K. miVale k) = 1 (g_;g) (Sy18a- Lu)Sim; 7} x

. K
exp(idy) / d°ry / d3ry Pm(T1 — 1) EXP(—?_E [r1+r2))

un(lrs = ral) exp(ifk + K] - [r; +1]/2) . “n

The substitution to ‘sum’ [f1 +1)/2 = R and ‘difference’ coordinates, r, — r; =r, then
factorizes the integral into the product of an R-integral, J P Rexp(—i[K — k — K]-R) =

Q Ok k+xr, and an r-integral, proportional to the Feshbach resonance a-parameter:
1
K, m|V; kk)=——35 ra 48
( l h.fl 3 > \/ﬁ K.k+k ( )

where we have used that exp(ifg) == 1. Consequently, the Feshbach-resonance interactions,

in second quantization, are described by

- 1 «
Hyp = — Z —_— {g &, 16 ]
M VvV kk V2 Ltk CakCa

= 55 e e i) )

* Similar to the ‘elastic’ inter-atomic interactions, the l‘ow energy conditions imply a coupling
strength to the molecular channel that is independent of the momentum transfer. Conse-
quently, the Feshbach resonant interactions are also characterized by a single parameter: the
atom-molecule coupling strength .

In accordance with these results, we generalize the Hamiltonian density for the many-
body system, Eq.(44), to describe the many atom/molecule system:

2v72
A=t | o +

T+ 0] ) +
ALt + S (9 + i) (50)

~where the position dependence of the operators is understood, and where \,, A, and A
represent the strengths of the atom-atom, molecule-molecule and atom-molecule interactions

respectively. In Eq.(50), we have assumed that the atoms and molecules do not experience
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external potentials. We note that the same Hamiltonian correctly reproduces the Feshbach

resonant behavior of a binary atom system.

C. Dynamics of the Condensate Mixture

A new phenomenon oceurs in the many-body physics: the appearance of a molecular

condensate component, which foHows from the many-body dynamics. A convenient starting

point to describe this dynamics are the Heisenberg equations of motion for the atomic and

| molecular field operators:

iy (%, 1) = [H, Ju(x,1)]
iht,, (x, t) = [H, Ym(x, t)] . (51)
With the following expressions for the relevant commutators, [¢)](r, #), by(x,1)] = 65 6(r —

x), and [zb,(r t), uj(r, 9] =0, 4,7 = a or m, we obtain the following coupled operator

equations:
. ﬁz 2
ihy, = ¢a + /\aT/) Tpa?:ba
+Aw;_¢mwa + V2041t
IRAvE
ZFL?,[) = ——“—'—‘lﬂm + E'ﬂ[)m + /\m mwmwm
AT Gam + fww , (52)

where it is understood that all field operators depend on the same position. The operator
equations (52), which provide an ‘exact’ description of the many-problem, are generally very
difficult to solve. However, for dilute condensates, we obtain a closed set of equations for
the condensate fields, g,(r) = (¥a(r)) and Om(r) = (Yn(r)), by taking the expectation
value of Egs. (52). F urthermore, we assume that for the dilute gas systems considered here,
we may take the condensed fields to be totally coherent in the sense that the expectation
value of the products is equal to the product of the expectation values, e.g. (;Z'a@[}a) Ko
This corresponds to a particular Gaussian trial wave functlonal in the Dirac time dependent

variational scheme {41]. We find




L[ BV? . 2

Zh¢a - ["’W + Aa,¢al + /\lqul J ¢’a +
V2044,
Z'v"l

thigpy, = [_%Fﬁ + €+ Am|om? + A[qh,]QJ B +

—%qsi . (53)

~ These coupled non-linear equations replace the usual Gross-Pitaevskii equation that de-
 scribes the time evolution of the dilute single condensate system [42] - [43]. Note that the
| Pm-field has a source term o @2 so that the expectation value of the molecular field oper-
ator is forced to take on a finite valye when ¢, # 0: the atom-molecule coupling creates a
molecular condensate component in the presence of an atomic condensate, |

The Gaussian trial wave function, which leads to an effective classical Hamiltonian den-
sity, |

272

* hi Ar)‘.
Hepr = ¢ [_—271/? + —2—l¢a12J Pa +

4M
o * * ,
Mol lonl® + == [67.02 + 6msi?] (54)

Ve Am ¢
¢:n ["'_—'— +e+ _—2_'935"1‘2} ¢m +

gives equations of motion identical to Eq.(53).

D. Effects of particle-loss

The experimental lifetime of the m-molecules is not only determined by the hyperfine
induced spin flips, but also by collisions with other atoms, or even molecules. The importance
of such three-body collisions is particularly pronounced as the recent experiments ‘resonate’
on a molecular state m of high vibrational quantum number (e.g. v = 14 for the MIT
experiment). The created quasi-bound molecules are consequently fragile and a collision
with a third particle, atom or molecule, likely causes the molecule to decay into a state

of lower vibrational quantum number. Such collisions that ‘quench’ the internal molecular
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state are a potential problem for molecular condensation. They are also the most likely
culprit for the particle loss that served as a signal to detect the Feshbach resonances in the
MIT experiment,

Particle loss in atomic traps is usualljf described to sufficient accuracy, by very simple -

rate equations:

7.I'z:z =T, [—'Caana - Camnm]

Ty, = nm["cmanm - Cmmnml . (5'3)

In the above equation, n, and T represent the particle densities of atoms and molecules,
n; = |#:|%, where i = g or m, if all particle are Bose condensed. The ¢; j-coeflicients represent
the rate coefficients for collisions between particles 7 and J that change the internal state
of the é-particle. Typical values for the alkali-atoms are c,, ~ 10713 — 10~ 4em3sec—!. The
fragility of the lopsely bound alkali dimers is expressed by atom-molecule and molecule-
molecule state changing collision rates that exceed the atom-atom rates by several orders of
magnitude; 10-9 — 107" em3sec™! | where these numbers are estimates based on calculations
with Hydrogen molecules [44]. A ‘pure’ molecular condensate of dens.ity 10Mem =3 of such
dimers is then not expected to survive longer than 10-3seconds. Nevertheless, this time
scale might actually suffice to study interesting molecular condensate physics. Furthermore,
off-resonance, the molecular condensate is significantly smaller than the atomic condensate,
which keeps ‘replenishi{lg’ the small molecular condensate with bosons. The lifetime of
the condensate mixture is then equal to the molecular lifetime divided by the fraction of
molecules , e.g. a condensate system with a 1 percent molecular condensate can survive 100
times longer than a single molecule embedded in an atomic condensate of the same density.

Of equal importance is the question whether, and how, the atomic/molecular condensate
system reaches its equilibrium as the detuning ¢ is altered by varying the magnetic field.
;From the two-field coupling in the equations of motion, Eq.(53), we expect, as we discuss
below, that a sudden change of the detuning is followed by oscillations in the atomic and

molecular populations. From Eqs.(53), it would appear as if these oscillations persist indefi-
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nitely, or, at least until the condensates have disappeared due to state changing CoﬂISlOIlS or
other three-body recombination processes. However, we point out that a correct treatment

of the effects of state-changing collisions on the condensate pTedicts that the number oscilla-

tions damp out on a time scale that ; is the lifetime of a single molecule. As we noted above, -

the molecular condensate can survive for a much longer time and the condensate system can
reach a ‘quasi-equilibrium’ state on g time scale small compared to its lifetime.

To build in the effects of state-changing collisions, we treat the loss-processes by con-
sidering the channels of aj] chemical reactions that remove particles from the atomic and
molecular condensates. The elimination of the two-body collision channels in perturba-
tion theory modifies the equations of motion (53) in a predictable way: the interaction
strengths become absorptive with an imaginary part that determines the loss-rates. In the
$m-equation, for instance, the interaction strengths are replaced by A, — X — thcmm/2 and
A= A=~ ihe, /2. We define the off-resonant regime to correspond to values of the detuning
that exceed, in absolute value, the molecular kinetic energy, as well as any of the single
particle interaction energies € >> Amnm,Anm,Aana;Ana and n,, << n,. In this regime,
we can neglect the variations of an initially constant atomic density and the main effect of
the atomic condensate is that of g coherent (i.e. one that preserves the phase information)
reservoir of atoms for the molecular condensate. In that limit, the molecular field equation

of motion is linear:

ihd,, =. [e(t) + /\77;l - zl@} Om + (56)

ﬁqﬁi(t)

where v, corresponds to the molecule loss-rate: Ym/R = Cmana. In the same off-resonant
limit, the atomic condensate ﬁeld, to lowest order, propagates without feeling the effect
of the molecular condensate: $alt) = \/1ig exp(—iAangt/R). The solution to Eq.(56) for a
detuning that is suddenly shifted from its initia] value to ¢; then gives the time dependent

field ¢, (t):
¢m(t) = (oo EXP [—%(2)\(;71,1)] +

28

R




(57)

~

(B0 ~ Boo] X exp [—%(ef + ’\n“)J exp (__12’?_1;;)

where @o represents the initial value of the molecular fleld, @9 = ¢n(t = 0), and de
is the value that the molecular field tends to at large times, ¢ >> (A/m), doo =
—an,/ [\/§(ef + Ang — 2X\,n, — m/2)] = —an,/ (\/iﬁf), which isl the quasi-equilibrium
value of the molecular condensate field. Note that the 1ﬁolecula,r condensate density has an
oscillating contribution ~ 2|(¢, — Poo)Bao| cos([es + An, — 2Xano)t/B) exp(—vmt/2h). This
oscillation in the molecular population is caused by the interference of the propagation of
the initial molecular field amplitude with the amplitude stemming from the coherent inter-
condensate exchange of atom pairs. Thus, the oscillations are pure quantum effects and, if
observed, provide strong evidence for the presence of a molecular condensate. Similarly, the
atomic condensate density will oscillate with twice the amplitude of the molecular density
oscillations, since each molecule that appears takes out two atoms from the condensate.
These oscillations of the population imbalance are similar to the oscillating current observed
at Josephson junctions. Here, due to the additional concern of boson-decay, the oscillarions
damp out on a time scale of (A/ ¥m)- Thus, in addition to leading to particle loss, the state
changing collisions serve as relaxation processes, allowing the molecular condensate to ap-
proach its ‘static’ value ¢o, & —an, /(V2¢€). For a more general variation of the detuning
with time, the oscillations appear if the rate of change of the detuning |¢| exceeds |evy, /fii,
or alternatively, if the rate of change of the magnetic field exceeds [B/[B — Bp)| >> (Ym/h).
In the opposite limit, fé/e] < Ym/h, the system adiabatically follows its quasi-equilibrium
state, dm(t) & ~an,(t)/[v2e(t)).

With the expression for the static value of the molecular field, we can also obtain the loss-

rate of the condensate system in the off-resonant regime. We define the loss of the condensate

system as the loss of atomic particles that occupy the atomic/molecular condensate. The

total density of atomic condensate particles, n, is then equal to n = n, + 2n,,, where we
count each molecule as two atomic particles. The corresponding loss-rate of the atomic

condensate particles is given by
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n="n, + 2Ny = —Ng[CaaMy — 2Cman] (58)

where, in the off-resonant regime, we only account for atom-atom and molecule-atom col-
lisions, 7, ~ —Caat? and 7, ~CmaTimNa. In the case of a slowly varying magnetic ﬁeld

N % [0°n /26%], 50 that, with n, n, we find -

A= —cgen? — 28X 3 . . (59)

As a three-body collision Process, the molecular-state changing collisions contribute & term
bns , proportional to n®, From Eq.(59) we find that the three-body collision rate is equal to
b= cmaa?/el.

We note that the above expressions are only valid in the far off-resonant limit. Closer to
resonance, the nonlinearities of the equations become important and have to be included.
However, in a qualitative Sense, the response of a condensate to a sudden variation of the
magnetic field agrees with the off-resonant behavior: out-of-phase oscillations of the atomic
and molepular densities are damped out, after whi‘ch the total condensate density decays

exponentially, as shown in Fig.(2).

E. Conclusions and remarks regarding molecular condensate formation

The population imbalance oscillations, discussed above in the far-off resonance regime,
illustrate that the presence of g molecular condensate leads to observable effects. Thus,
the appearance of a molecular condensate component is not a semantic issue but one that

implies fundamental and ghservable differences in the many-body physics of the condensate

system.

Before proceeding, we point out that the formation of a molecular condensate component
does not defy common sense. For instance, in the limit that the molecules are destroyed
extremely rapidly, the oscillations that occur in response to a sudden change of the mag-

netic field are ‘overdamped’, and we won’t find a signal of the molecular condensate. It is
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furthermore interesting and important to note that the lifetime of the molecular condensate
can greatly exceed the lifetime of & single molecule,

We also point out that the appearance of a condensate of molecules does not violate
conservation of energy. It is true that in the binary collision the energy and momentum - -
the molecule receives from the incident atoms are generally ‘off-shell’, so that the creation
of the molecule can only be understood in the sense of a ‘virtual’ particle. However, this
consideration does not preclude the appearance of a molecular condensate. In a conden-
sate system, it is not possible to assign a definite energy to a single particle component of
the full wave function. Nevertheless, we may assign a chemical potential to each conden-
sate: fi, represents the chemical potential of the atomic and u,, the chemical potential of
the molecular condensate. These chemical potentials include the non-linear self-interaction
terms (e.g. A;|@,/|? is one contribution to tha) and g, includes the single molecule energy «.
The energy required to make a single molecule is then equal to ., — 2p,. Interestingly, in
‘the equilibrium condensate mixture, fm = 244, as we discuss in the next section. Thus, it

~COStS MO energy to make a molecule in the equilibrium condensate mixture, even though ¢
‘may be different from zero. In that sense the energy and momentum of the molecules are
‘on shell’ and the molecules may be treated as long-lived ‘real’ particles without violating

any conservation laws.

IV. STATICS

Under the present experimental conditions, particle loss is an important effect to be
reckoned with, Nevertheless, in the near-future, it might be possible to ‘resonate’ on less
fragile molecular states (i.e. with lower values for the Cmo-~collision rates). Even with the
present systems, it might be possible to let a near-resonant condensate relax to its quasi-
equilibrium state. In this section, we discuss relevant aspects of this equilibrium. We find,
for example, that some of the unphysical predictions of the Aefs description on resonance are

avoided in the condensate mixture description, Furthermore, we show that the stationary
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state of the system depends on its history. For instance, the state of the system at a
near-resonant value for the detuning may be different if it was obtained by an adiabatic

lowering or by an adiabatic increase of the detuning. Near resonance, the homogeneous BEC

‘ground state is unstable in the limit of very low atomic particle density. At higher densities, = -

on the other hand, the condensate can be stable with respect to density fluctuations, in
contrast to the predictions of the ), sr-description. At higher atomic particle densities, n, the
inter-particle interaction dominates over the atomic-molecular condensate coupling and can
stabilize the system. As a function of the density n, the energy goes through a minimum at
a density where the inter-condensate coupling interaction is of the order of the inter-particle
interaction energy per particle. The appearance of a minimum suggests the possibility of
creating condensate systems with the liquid-like property of a self-determined density. A low
density condensate would Spontaneously adjust its volume to settle in a state with density
equal to the value at which the energy is minimized. ;From previously calculated numbers,
it appears that the corresponding density is only of the order of 10 — 1015ém'3, and the
resulting system would be a rarified liquid! y

In the Acrs-description of the on-resonant BEC, the dispersive dependence of the effective
scattering length on the magnetic field gives a diverging inter-boson interaction. For the
purpose of visualizing the inter-particle interactions, one can picture the bosons as hard
'spheres with radius equal to the scattering length (assuming a > 0). The fraction of space
occupied by the spheres diverges as- € approaches zero, ¢ — 0, and the system is not a
weakly interacting single condensate. Not surprisingly, a naive extrapolation of the dilute
condensate results leads to unphysical predictions for macroscopic measurable quantities in
this limit. For instance, the chemical potential, 4, and the pressure, P, of dilute condensates

of interaction strength \ and density n are given by

L=Ain
P:%Tﬁ | (60)

Hence, a simple replacement A — A, f+ gives diverging values that change discontinuously
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from +00 to ~oo at the pole, ¢ = 0. Of course, one can argue that near resonance, the
scattering length description of the collision breaks down, or, if nothing else, that the ex-
pressions (60), valid only for weakly interacting condensates, do not apply. However, in the
hybrid atomic/molecular condensate picture, we find that the unphysical divergencies do -
not occur. Near and on-resonance, the equilibrium system simply arranges the atomic and
molecular densities so as to insure that pm, = 2u,, where u,, and Ha respectively denote the

chemical potentials of the atoms and the molecules,

A. Static Equations

In this section, we will assume that the condensate system has relaxed to a stationary
state and that the effects of particle loss are negligeable on the time scale that the system
is observed. We determine the stationary state variationally. A first remark of relevance to
the determination of the ground state of the system is that the inter-condensate coupling
interaction (I:I s + H, MP) necessarily lowers the ground state many-body energy. Indeed.
the coupling contribution, ~ ady §2 + h.c., sensitive to the relative phase of the atomic and
molecular condensate fields, can and will be negative in the lowest energy state. As usual
in describing the static System, we may choose the fields to be real, but the relative sign of
the ground state fields is determined by minimizing a¢2é,,. Without loss of generality, we
will assume that o > 0, and we will choose the phase of ¢, to be zero, ¢, > 0, so that the
ground state value of ¢,, is negative, ¢@,, < 0.

If we neglect particle loss, the total number of atomic particles, N =
[ d®r n(r) =fd (8a(r)]? + 2(¢m(r)[?, is a conserved quantity. To account for this, we
may vary the Hamiltonian with 2 Lagrange multiplier 4, 6(Hesr — uN)/6¢%(r) = 0. and
6(Heps — ulN) /607, (r) = 0. These equations take on the form of coupled time -independent
Gross-Pitaevskii equations,

Rave

- |V 2 2
HDq [ Y + ’\afba + /\CbmJ Pa + ﬂaqﬁm@g ?
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2B = —@—2-+e+,\ G2 +AP2 | b + —= 2 (61)
4M m¥m a ™ ‘/5 a

of the from of Eq.(53) with the time-derivatives replaced by the correspending chemical
potential, z?’zga, — ;¢;. Note that i in the ¢, equation plays the role of the é,tomjc chemical .
potential, p, = u, and 24 in the ¢m equation plays the role of the molecular chemical
potential, y, = 2u. Thus, the condition of chemical equilibrium is satisfied: p,, = 2u,.

In the limit of large detuning, by which we mean here that |¢] greatly exceeds the kinetic
energy as well as any of the molecule interaction energies, [¢| >> A1y, An,, we find that the
corresponding approximations in the Gross-Pitaevskii equation of the molecular condensate

lead to:

b = —-\—/% 2l >>0, (62)

in agreement with the value of the quasi-equilibrium molecular field found in Eq.(57). The

insertion of this expression into the $a-equation of (61) yields an effective single condensate

Gross-Pitaevskii equation for Da: .
hv? o? 63)
KPo = [-—Eﬂ—{— + (Ag — - )na} s - (

Thus, in the off-resonant limit, the stationary atomic condensate behaves effectively as a
single atomic condensate with an inter-atomic interaction described by the effective interac-
tion strength Eq.(35) of the binary atom systém. However, the effective single condensate
Gross-Pitaevskii equatioﬁ (63) does not descfibe the appearance of the small molecular con-
densate, and consequently, cannot describe the interesting dynamical effects discussed in the
previous section.

Note that the molecular condensate jn the off-resonant limit of negative detuning takes on
the same sign as the atomic condensate. This does not contradict the remark that the Hpyy
interaction is minimized by fields of opposite sign. The variational procedure with Lagrange
multiplier z finds an extremum, but does not guarantee that the extremum is a minimum.

In fact, the actual ground state ; in the off-resonant regime of negative detuning is the ‘trivial’
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all-molecule solution to Egs.(61}, ¢, = 0. Interestingly, the state ¢y, = —am,/v/2, € << 0,
represents a local mazimum of the energy. .

To see that, we reformulate the variational problem. Instead of introducing the chemical
potential, we insure particle conservation by substituting n, = n — 2nm,. If the system is -
large enough to neglect surface effects, we may omit the kinetic energy and work with an

energy density,

Ag m
u= -Q—ni + -/\z—nﬁz + Mg + en, + v2an, 4, . (64)

We parametrize the ‘population imbalance’ or the fraction of atoms that are converted to
molecules by a scaled molecular field T, $m = z1/n/2, which can take on values between
—1 and +1. In terms of the molecular field parameter, the atomic condensate density is

N =71l —z%), and the energy per particle, e = u/n. is a simple quadratic polynomial in z:

Aa .
e=gn+ av/nz + {[-A, + A2l + €/2} 2®

~ay/nz? + [\, /2 - Am/4— A/2nz? . (65)

Minimization of the energy e, yields the value of the ground state expectation value of .
In the interest of simplicity, we start by considering Feshbach resonances in ideal gas
condensates, i. e. we consider the limit A = )\, = A, = 0. In that case the energy per

atomic particle is equal to
72
€d = ay/n {6’3 +z(1 — $2)J : (66)

where we introduced the scaled detuning, € = ¢/[av/n]. We determine the expectation
value of the molecular condensate field, ¢m = z(/n/2, for a system of atomic particle
density n, n = n, + 2n,,, variationally by finding the extrema of ei¢{z,n) for fixed value of

n, 0eia/0z = 0. Within the limitation that |z < 1, we find two solution for any given value

of € = ¢/[ay/n]:
zo(¢) = [¢ + Ve & 12]/6 ,if £ <2 |
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and zy(€) =+1 ,if ¢>2
()= [¢ ~VeT+12) /6 ,if ¢> 2

and z_(¢) = -1 |if ¢ < -2 . ) (67)
Thez, =+landz_ = ~1 correspond to the above mentioned trivial all-molecule solution,
¢a = 0. Although the all-molecule solution represents a third solution in the detuning
interval —2 <€’ < +2, the analysis of the next paragraph shows that this solution is unstable
in this detuning region. The previously obtained off-resonant limit (62), ¢m = —an/y/2e
or x ~ —1/€, corresponds to z_ if ¢ >>0and z, if € << 0. The molecular field solution
of positive sign, .., corresponds to a maximum of the energy, as we can see from Fig.(3).
Nevertheless, as we discuss below, the molecular condensate field value z cannot simply
‘Toll down’ on the energy curve. Such changes of the relative population of the atomic and
molecular condensates also involve a change of the relative phase. From the dynamical
treatment of the population changes, it follows that both solutions, z, and z_, are stable
with respect to small perturbations of the condensate populations. This is a significant

conclusion, since it suggests that the near-resonant BEC-system can reside in two distinct

stationary states.

B. Near-—EquiIibrium Population Dynamics

How can a maximum in the energy correspond to a dynamically stable state? To gain
insight into this issue, we construct the classical Hamiltonian that describes the dynamics
of position independent atomic and molecular fields. Again, we limit the discussion to
the ‘ideal gas’ condensate mixture, A = A, = A, = 0, although the treatment can easily

be generalized to include the non-linear interactions. In terms of the density and phase

variables, ¢, = Ve exp(if,), ¢ = VT €xp(i,,), we obtain the following expression for

“the Lagrangian density of the Dirac variational principle:

R CORETA i PV
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= —héana - Tiémnm ~ €Ny,

—a\/ina\/ﬂcos(ﬁm ~26,) . (68)

We now simplify the expressions by making use of particle conservation, n, = n — 2n,,. We
also introduce the relative phase variable, § = 26, — brn- In terms of the relative phase and

the total number of molecules, N,,, the Lagrangian-per-particle, [, = [d% L/N, reads

L = ~16 + 10(Nyn/N) = e(Nyn/N)
—ay/n(Np /N)[1 - 2(Nm/N)] cos(d) | (69)

where N represents the total number of atoms. The fraction of molecules (Nm/N), which
can take on values from 0 to 1 /2, is the (dimensionless) conjugate momentum of the relative

phase variable,

g‘;‘ R{Nn/N) =Hhp . (70)
The 6,-dependence of the Lagrangian does not contribute to the equations of motion. ex-
pressing the fact that one of the condensate phases can be chosen arbitrarily and that 8 is the
only dynamical phase variable, ¢From Eqs.(69) and (70) we find the classical Hamiltonian

H that governs the time evolution of the two-field system by identifying H from L = fp— H:

H=ep+ayn \/Q_p (1-2p)cos(6) . (71)

The corresponding equation of motion,

= P s faym ](\/_p)cos(e);

hp = _oH = —[ay/n] \/2_p 1 —2p)sin(d) , (72)

lead to the stationary states r.,z_ < 1, by requiring 8H/8p = 9H /08 = 0 at the equilib-
rium solution (6y, py). The p = O-equation gives sin(f,) = 0, corresponding to atomic and
molecular fields of the same, fy = 0, or opposite, §, = 7, signs. The second requirement,
8 = 0, results in a quadratic equation for /2p = || (where z denotes the scaled molecular

field of the previous paragraph}. The solution to this equation gives the stationary states:
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V2P0 = [T 3 + cos(80)e] /6 (73)

identical to the solutions of Eq. (67) in the regime |z.| < 1. Since at (6o, po), 6*H/3pd8 = 0,
the small amplitude fluctuations, § = g — 09 and f = p — po, evolve in time according to the N

following linearized equations of motion:

5. O°H +6
10 Gt = —eto) [ [evip
8% H . ~
hp =gz 0 = —cos(fo)y/2p [1 - 2p]a/m 6 . (74)
Consequently, 67 = —w?, where w is a real-valued frequency, regardless of the sign of
cos(fy) = +1:
ﬁ,2w2 = 62___H QiH..
Op? 862 °
= [av/m? (1+6po) (1 — 2py) (75)
2po '

Thus, the Huctuation variables, § and  describe a harmonic motion in phase space, and
the position-independent field fluctuations experierice a restoring force, both at 6, = 0
(corresponding to z,.) and at fo = m (corresponding to z_). The reason for the dynamical
stability of the fluctuations around the fo'= 0, in spite of the local maximum in the energy,
follows from the analysis. Although the ‘inverse mass’ is negative, m~! = 524 /0p* < 0,
80 is the ‘spring constant’, K = §2f /06% < 0. The resulting frequency, Aw = \/f% is
consequently real-valued.

Likewise, we may study the stability of the the ‘all-molecule’ solution, ¢, = 0. In that
case, the relative phase 6 is not a meaningful quantity, and it is more convenient to start

from the field equations of motion:

s = V20¢nd,

zhgpm = €@y, + T . (76)

These equations have, in fact, been solved analytically in the field of non-linear optics

[45]. Near the all-molecule solution, ¢, = 0, the molecular field is approximately equal to
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bm A \/n/2 exp(—iet/ fi). In the same limit, the fluctuations of the ¢q-field are approximately

decoupled from the $m- fluctuations, and evolve according to
ihidh, = a\/ﬁexp(—iet/ﬁ)gb; : (77) _
Substitution of the following linear combination of positive and negative frequency fields of

small amplitude,
$a = exp(—iet/2H) [a+ exp(iwt) + a_ exp(—iwt)] , (78)

into Eq.(77) yields a set of linear equations in the a+ and a_-coefficients. The frequency at
which the system near the all-molecule state oscillates after it has been perturbed by breaking
up a few molecules into atoms, follows from the requirement of a non-trivial solution to the

linear set of equations in a, and a_:

= (¢/2)" ~ (ay/n)* . (79)
Thus, w is imaginary if lel < 2ay/n, and the all-molecule system is unstable in the regime
- where both |z, < 1 and lz_| < 1.

Thus, at any value of the detuning, we find two (and not three) different stationary
states the system can occupy. Which state the system will find itself in, depends on its his-
tory. For instance, if the condensate was brought near-resonance by adiabatically increasing
the detuning from ‘below resonance’, the system is expected to reside in the z-state. In
Fig.(4), we plot the molecule fraction of both stationary states as a function of the detuning.
Interestingly, the analysis of the next paragraph shows that the all-molecule branch of the
T-solution is unstable with respect to density Auctuations. In the figure, we indicate the

instability by plotting the unstable branch in a dotted line.

C. Considerations regarding the mechanical stability

The previous analysis does not give insight into the stability of the homogeneous syvstem
with respect to position dependent fluctuations of the densities. That this is a major concern

in describing the dynamics of these systems will become clear from the discussion below.
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A first example that illustrates the importance of position dependent field fluctuations, is
the instability of the homogeneous all-molecule solution if € > 2a/n. To see the instability,

we allow for position dependent fAuctuations and solve for plane wave ¢,-fluctuations around

the all-molecule solution,

$o = exp(—iet/2h)[a, exp(~ifk - r —wt]) +
a_exp(ilk - r — wit])] . (80)

Upon insertion of this expression in the equations of motion (74), after restoring the kinetic

energy term, we find that the resulting frequency,

2
h%ﬁ:(%—-f) _ (a/7)? (81)

does become 1magma.ry for a finite range of wavenumbers if ¢ > 2ay/n. Specifically, the

modes with k vectors of magnitude \/M (e - 2ay/n) < hk < \/M (e + 2a4/n) grow expo-

nentially: the homogeneous Z4 = +1-branch is unstable and the system spontaneously
generates a finite atomic condensate, Consequently; we show the corresponding branch of
the z,-state in Fig.(4) in dotted line, to indicate that the system will not remain in that
state. Whether the other branches are stable, is a question that can be answered from a
more general RPA-study, and will be the subject of further research. .

However, even without the knowledge of the excitation modes, we can make statements
about the mechanical stability of the system by investigating the pressure, for example.
Whereas we could omit the inter-particle interactions to get an accurate qualitative picture
of the population dynamics, their effects in the mechanical stability of the homogeneous
system are all-important and they have to be considered. Indeed, the ground state of the
homogeneous near-resonant ideal gas-condensate is always unstable. This follows from the
pressure, P, which we determine from the energy per atomic particle, e, P = n?(de/dn):

_nzae dzg tn 23e

dz dn an o
=n228 | (82)




where z, represents the actua] value of the scaled molecular field, which follows from de/d8z =

0. In the ideal gas condensate, e = gy = (¢/2)z2 + ay/n(1 - z2)z, we find

ayvn

Fa=n —5— Zo(l-z3) (83)

so that its pressure has the same sign as the molecular field. In the ground state system, for

which 2o =z < 0, P ig negative and the homogeneous system is unstable. Furthermore,

we expect the stationary state of Positive molecular field, z., to be equally unstable, as its

energy can be lowered by Spatially separating the atomic and molecular condensates.
The inter-particle interactions can stabilize the homogeneous condensate system, but
only at higher values for the density or in the off-resonant regime. The pressure that follows

from Eq.(82) can be written ag

A

P==
2

Am.
n? 4+ 2% 5 nZ, + Anp,ng + —é@nz(l ~z?), (84)

In this expression, we recognize the ‘elastic’ inter-particle interaction contributions in addi-
tion to the atom-molecule Feshbach resonant coupling term that was the sole contribution
to Pg. The inter-particle 1nteract1on contributions are proportional to n?, Ar-12/2, where
Ar I8 an interaction strength of a magnitude that is representative of A, A, and . The
a-contribution to the ground state pressure, on the other hand, is of order —an3/? if the
System is near-resonance, € s 0, and of order ~an*?x (o /n/ [2€]) in the off-resonant regime.
Near-resonance, the inter-particle interaction and atom-molecule coupling contributions are
of the same order of magnitude if 5 a - = (a/Ar)?. In the limit of vanishing density,
n << n, = (/)2 the density-dependent contribution to e is dominated by the Fesh-
bach resonant interaction and the system behaves as the near-resonant ideal gas system.
In contrast, at ‘high’ densities, n >> N, the inter-particle interactions dominate, so that
the molecular population ig determined by the fraction that minimizes the inter-particle
interaction. At these higher densities, the Feshbach resonant interactions can be treated as
a perturbation and generally do not determine the stability of the system. Thus, at higher

densities the condensate system will be stable if, for example, Asy A > 0 and A2 < VAN,
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( [18]). Note that this behavior is very different from the predictions that follow from the
Aefs-description, A — Agpp = A, — a?/e, which predicts that the homogeneous system has a
negative pressure, P = A,;sn?/2 < 0, if 0 < ¢ < (a®/As), regardless of the density.

If the homogeneous near-resonant condensate system is stable, the slope of the many- - -
body ground state energy (proportional to the pressure) changes sign as the atomic particle
density n is increased. The corresponding change in sign of the pressure, occurs in the
dénsity regime of n ~ n, = (a/),)? for near-resonant detuning.

Remarkably, the existence of a minimum in the energy-versus-density curve implies that
the negative value of the pressure at low densities does not necessarily lead to collapse of the
c.ondensate system. Indeed, the unstable system that was initially at very low density n < n,
can decrease its volume until its density reaches the value at which the energy is minimized.
In the assumption that the system can relax to its stationary ground state, the system
does not collapse, but settles at the volume that corresponds to the self-determined density.
Interestingly, with the parameters calculated for the observed *Na-resonances the value of
this density ~ n,, is only of the order of typical atomic-trap condensate densities, n, ~
10" — 10%em~2. Moreover, the atomic-trap set-up lends itself very well to the observation
of this unusual property. After switching the trap-potential off, the condensate of self-
determined density does not fly apart, but stays together as a ‘blob’ of approximately uniform
density.

The above considerations suggest that the equilibrium Feshbach-resonant BEC can be
an ultra-dilute gas with the liquid-like property of a self-determined density. Whether the
liquid-like system is really stable, will have to follow from an RPA-study of its excitations.
Nevertheless, it is certainly a fascinating thought that the dilute atomic condensates with

Feshbach resonances might yield the first example of a rarified liquid!
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V. CONCLUSIONS

In this paper, we discussed the theoretical description of the hyperfine-induced low-energy
Feshbach resonances in the neutral atom interactions of condensates. Such resonances were
recently observed in atomic-traps, of the type used to achieve Bose-Einstein condensation.
In fact, one of the observations of the resonance was carried out in a BEC [1].

We pointed out that the Feshbach resonances affect the condensate physics in a more
profound manner than the alteration of the effective inter-particle interaction. The atom-
molecule coupling that gives rise to the resonance in binary-atom collisions, creates a second
molecular condensate component in the many-body BEC-system. Even if the molecular con-
densate density remains small in the off-resonant detuning regime (an/e? ~ a few percent
or so), the presence of the molecular condensate can still be detected by suddenly varying
the magnetic field and observing oscillations in the atomic and molecular populations. If
the molecular condensate survives long enough to reach its equilibrium, the resulting double
condensate displays fascmatmg properties: (i). The state of the near-resonant condensate
depends on its history. For instance, the behavior of the BEC that is taken through the
resonance by adiabatically varying the detuning, will be different if the system starts out
above or below the resonance, (if). Although, in the limit of vanishing density, the ground
state of the near-resonant BEC can experience negative pressure, in agreement with the Agfp-
description, the homogeneous higher density system can be stabilized by the inter-particle
interactions of the atoms and molecules. In that case, the ground state energy goes through
a minimum as the atomic particle density is increased. This suggests the remarkable, liquid-
like property of self-determined density. Thus, by tuning an external magnetic field near
resonance, an atomic condensate could become the first rarified liquid to be observed in

nature,.
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Figure Captions

Fig.1 : Schematic representation of the molecular potentials of the incident and intermediate
State channels. The energy difference of the continuum levels, A, is the sum of the binding

energy, denoted here by E,, of the quasi-bound state and the ‘detuning’ .

Fig.2: Plot of the particle densities: the tota] condensate density, n = n, + 2n,, in full
line, the atomic density n, in dashed line and the molecular density n,, in dash-dotted
line. The calculation is for a homogeneous BEC that was initially in equilibrium at density
n = 1[j14cm‘3 when the detuning experienced a sudden shift from e = 50An to ¢ = 2\n.
The order of magnitude of the interaction parameters, An = Amft = A7 = ay/2n = 10° Hz,
and of the decay parameters, Cma = Cmm = 5 X 10~%cm3sec~! (while neglecting the atomic

decay) are realistic.

Fig.3 : The ehergy per atom particle of a homogeneous mixture of Feshbach resonant coupled
atomic and molecular condensates, as a function of the scaled molecular field z, (¢, =
x\/rﬁ), at a fixed detuning, chosen so that ¢ = «/[a/n] = 0.5. The energy is shown
in units of the tunneling energy, a+/7, and the curve was calculated in the assumption of

non-interacting, or ‘ideal’, atomic and molecular condensates (A = A, = A, = 0).

Fig. 4 : Plot of the molecule fraction, (N,,/N), as a function of the detuning, scaled by
the ‘tunneling energy’, ay/n, for both stationary state solutions, called z, and z_ in the
text to denote a molecular field of, respectively, positive and negative sign. The atomic and
molecular condensates were assumed to be ‘ideal’ in this calculation. i.e. A = Aa = Ay =0,
The all-molecule branch, (Nm/N) = 1/2, of the T -state is shown in dotted line to indicate

that the homogeneous z, -branch is unstable in this regime, as explained in the text.
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